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Thermal transport simulations have attracted wide attention in recent years, and one standard approach is
to use the Green-Kubo method based on machine-learning interatomic potentials and equilibrium molecular
dynamics (GK-MLIP-EMD). In this work, we focus on the lattice thermal conductivities κLs for solids with
atomic diffusion by taking β-Cu2-xSe (0 � x � 0.05) as an example. Surprisingly, the GK-MLIP-EMD approach
fails in the evaluation of κLs for β-Cu1.95Se, whereas the direct method based on nonequilibrium molecular
dynamics reliably predicts these values instead. The failure of GK-MLIP-EMD for β-Cu1.95Se could be attributed
to the ambiguous projection of the local atomic potential energy Ui in MLIPs, exacerbated by the Cu diffusion
at elevated temperatures. The Cu diffusion in β-Cu1.95Se greatly increases the ratio of the convective term and
the uncertainty of the conductive term. These influences are considered negligible in crystalline solids. Our
findings imply that the ambiguous definition of Ui in MLIPs breaks down the applicability of the GK-MLIP-EMD
approach to κL prediction for solids with severe atomic diffusion.
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I. INTRODUCTION

Controlling thermal transport is a fundamental issue in
material applications. Electron devices require high-thermal-
conductivity materials, while low-thermal-conductivity ma-
terials are favorable for thermoelectric applications [1].
Accurately predicting the lattice thermal conductivities κLs
provides constructive guidance for optimizing the thermal
transport properties of materials [2]. The Boltzmann transport
equation (BTE) based on the perturbation theory framework
clearly describes phonon transport and has been successfully
implemented in simulating the thermal transport of crystalline
materials [3,4]. Even for crystalline systems with strong an-
harmonicity, precise κLs can also be obtained by the BTE
method by considering higher-order phonon scattering [5,6].

There is a special class of solid materials that does
not have fixed equilibrium atomic positions for fractions of
atoms, such as part-crystalline part-liquid (PCPL) β-Cu2Se
[7,8]. Cu2-xSe has attracted abundant research attention as
a promising thermoelectric material. This compound has a
structural phase transition at approximately 400 K [9,10].
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The structure of low-temperature phase α-Cu2Se remains
controversial, and Qiu et al. [11] have reported the coexis-
tence of various structures according to density functional
theory (DFT) calculations. High-temperature phase β-Cu2Se
is a superionic conductor, and Cu ions are kinetically
disordered throughout the crystal lattice [9]. The unique
structure leads to abnormal thermal transport and extremely
low κL.

However, theoretical research on the thermal transport
in β-Cu2-xSe is challenging due to the superionic nature
and the common existence of Cu atomic vacancies [9]. The
BTE method based on small displacements completely breaks
down for β-Cu2-xSe. Molecular dynamics (MD) simulation
[12] provides a feasible way to study the thermal transport
properties of β-Cu2-xSe, as well as other solid materials. The
MD methods can be divided into the Green-Kubo [13,14]
(including convective and conductive terms) method based
on equilibrium molecular dynamics (EMD) and the direct
method [15–17] based on nonequilibrium molecular dynam-
ics (NEMD). Furthermore, all thermal transport simulations
based on MD demand an accurate description of the atomic
interactions, which usually entails DFT-based and/or empir-
ical potentials. However, the precise DFT-based interatomic
potentials are computationally prohibitive for large cells with
atomic numbers larger than 1000, while fast empirical poten-
tials with simplified interatomic interactions are not suitable
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for thermal transport simulations of complex systems such as
β-Cu2-xSe.

Machine-learning interatomic potentials (MLIPs) combine
the advantages of DFT-based and empirical potentials in
thermal transport simulations of complex materials. Vari-
ous MLIP forms have emerged in recent years, such as
the high-dimensional potential energy surface [18], Gaus-
sian approximation potential [19], deep potential molecular
dynamics [20], and moment tensor potential (MTP) [21].
Meanwhile, active learning methods, such as deep potential
generator [22] and dual adaptive sampling (DAS) [23], have
been developed to generate effective training data sets and
further construct accurate MLIP models. MLIPs have been
utilized in the fields of phase diagrams [24], catalysis [25],
thermal transport [26,27], and so on. The total potential en-
ergy and forces predicted by MLIPs are comparable to DFT
calculation results, and MLIPs are suitable for thermal trans-
port in complex materials.

Although the Green-Kubo approach based on machine-
learning interatomic potentials and equilibrium molecular
dynamics (GK-MLIP-EMD) is one of the standard solutions
for simulating the thermal transport of complex solid mate-
rials, thermal transport studies of materials with superionic
conductor characteristics have not been discussed. Reportedly,
the Green-Kubo method is not suitable for multicomponent
fluids [28,29], indicating a potential risk when applying it to
the thermal transport of superionic conductors. In this work,
we select PCPL β-Cu2-xSe and full-crystalline compounds
Mg3Sb2 (see more details in our previous work [23]), and
Mg2Sn as typical examples to discuss the applicability of
GK-MLIP-EMD to solids. The κLs of β-Cu1.95Se obtained
based on GK-MLIP-EMD exhibit large deviations among
different MLIP models at high temperatures, although rela-
tively close κLs are obtained for both Mg3Sb2 and Mg2Sn.
The κLs obtained through the direct method show excellent
repeatability among MLIP models and agree well with all
available experimental results for β-Cu1.95Se. The failure of
the GK-MLIP-EMD approach for β-Cu1.95Se is attributed to
the ambiguous definition of the local atomic potential energy
Ui in MLIPs, exacerbated by the diffusion of Cu atoms at ele-
vated temperatures. This work demonstrates that high atomic
diffusion is detrimental to the accuracy of GK-MLIP-EMD
for thermal transport simulations, even in solids. The direct
method is more suitable for predicting the κL in PCPL mate-
rials with severe atomic diffusion.

II. METHODS

A. Thermal transport based on MD

The methods for thermal transport simulation based on
MD include the Green-Kubo method (based on EMD) and the
direct method (based on NEMD). In the Green-Kubo method,
the κL tensor along αβ (α, β = x, y, z) at a given correlation
time t can be defined as

καβ (t ) = 1

kBT 2V

∫ ∞

0
〈Jα (0)Jβ (t )〉dt, (1)

where kB, T , and V are Boltzmann’s constant, the absolute
temperature, and the volume of the simulation cell, respec-
tively. Heat flux J consists of the convective term (Jconv) and

conductive term (Jcond), and it can be defined as

J ≡ d

dt

∑
i

riEi =
∑

i

viEi +
∑

i

ri
dEi

dt
= Jconv + Jcond,

(2)
where ri, vi, and Ei are the position, velocity, and energy of
atom i, respectively. The convective term and conductive term
can be expressed as

Jconv =
∑

i

vi

(
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2
miv2

i + Ui

)
, (3)
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∑
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d

dt

(
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miv2

i + Ui

)

=
∑

i

ri(Fi · vi ) +
∑

i

ri
dUi

dt
, (4)

where Fi, mi, and Ui are the force, mass, and local potential
energy of atom i, respectively. The heat flux depends on not
only the atomic force but also the potential energy of the
individual atom.

In the direct method, the κL along the α (α = x, y, z) axis
can be defined as

κα = J

− ∂T
∂α

, (5)

where J and T are the heat flux and the temperature, respec-
tively. Different from the EMD, the heat flux in NEMD is
manually applied to the system investigated. In this work, the
heat flux is introduced by velocity exchanges, according to the
Müller-Plathe method [17].

B. Calculation details of the GK-MLIP-EMD method

The training data sets of Mg2Sn, Mg3Sb2, and Cu2-xSe
were obtained through the DAS [23] method. The detailed
processes were presented in our previous work [23] (Mg3Sb2)
and Supplemental Material (Mg2Sn and Cu2-xSe) [30]. Nine
MLIP models of Cu2-xSe with different levels and five MLIP
models of Mg2Sn and Mg3Sb2 were trained in the forms of the
MTP. For Cu1.95Se, 5 × 5 × 5 (1475 atoms) supercells were
selected in the MD simulations using the Green-Kubo method
at 300 and 600 K. Each MD simulation was first equilibrated
for 100 ps in the NPT ensemble, and then switched to the
NVE ensemble for 500 ps. For Mg2Sn and Mg3Sb2, 5 × 5 × 5
(1500 atoms) and 8 × 8 × 8 (2560 atoms) supercells were
selected in the MD simulations using the Green-Kubo method.
The experimental lattice constants were adopted for κLs calcu-
lations of Mg3Sb2 [31] and Mg2Sn [32]. Each MD simulation
was first equilibrated for 100 ps in the NVT ensemble and
then switched to the NVE ensemble for 100 ps. Heat flux
data were collected for 2 ns and recorded every 10 fs for all
three materials. The converged correlation times of Cu1.95Se,
Mg3Sb2, and Mg2Sn were from the periods [3, 6] ps, [50, 100]
ps, and [150, 300] ps, respectively, in the MD simulations.
Five independent simulations were conducted for Cu1.95Se
at each temperature to reduce errors, while 40 independent
simulations were conducted for Mg3Sb2 and Mg2Sn.
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FIG. 1. GK-MLIP-EMD method for Cu1.95Se. κLs predicted by the GK-MLIP-EMD method at (a) 300 K along the perpendicular direction
and (b) 600 K with different MLIP models for Cu1.95Se. The contributions of the convective term (κgk_conv) and the conductive term (κgk_cond)
to κL are also shown. The experimental κL [9] is indicated by the black solid line in (b).

C. Calculation details of the direct method based on NEMD

In the direct method, the simulation size correlates with
the thermal mean free path dominating phonon transport.
Five sizes (3 × Nb × 3, Nb = 24, 36, 48, 60, and 80 for
α-Cu1.95Se at 300 K; 3 × Nb × 3, Nb = 20, 30, 40, 50, and
60 for β-Cu1.95Se at 600 K; 4 × 4 × Nc, Nc = 150, 160, 175,
200, and 250 for Mg3Sb2 at 300 K; 4 × 4 × Nc, Nc = 100,
125, 150, 160, and 200 for Mg3Sb2 at 600 K; 3 × 3 × Nc,
Nc = 400, 440, 480, 540, and 600 for Mg2Sn at 300 K; and
3 × 3 × Nc, Nc = 360, 400, 440, 480, and 540 for Mg2Sn at
600 K) were used to calculate the κLs of all three materials.
Five, two, and one independent simulations were conducted
for Cu1.95Se, Mg3Sb2, and Mg2Sn, respectively, at each tem-
perature to reduce errors.

III. RESULTS AND DISCUSSION

A. Lattice thermal conductivity

The crystal structures of Cu2Se, Mg3Sb2, and Mg2Sn
are listed in Supplemental Material Fig. S1 [30]. The low-
temperature phase structure α-Cu2Se is still controversial (the
DFT-predicted structure S3 [11,33] is shown in Supplemental
Material Fig. S1(a) [30] as the initial input for sampling), and
the high-temperature phase β-Cu2Se consists of two sublat-
tices: one is a face-centered-cubic framework constructed by
Se atoms, and the other is formed by Cu atoms located at
8c [Supplemental Material Fig. S1(b) [30]]. Cu vacancies are
randomly distributed and kept as far away from each other as
possible in this case.

The MLIP models in the form of the MTP were fitted
based on their effective training data sets for Mg2Sn, Mg3Sb2,
and Cu2-xSe with the DAS method. The Supplemental Mate-
rial (Figs. S2–S6 [30]) discusses the accuracy of the MLIPs
for Mg2Sn, Mg3Sb2, and Cu2-xSe (0 � x � 0.05) in detail,
especially in terms of the forces on the three systems and
structural descriptions of Cu2-xSe. The GK-MLIP-EMD ap-
proach was adopted to explore the thermal transport properties
of the three materials. Figure 1 shows the total κLs as well
as the contributions of the convective and conductive terms
to κLs at low and high temperatures obtained with different
MLIP models (e.g., MTP1 means model 1) for Cu1.95Se, and
the corresponding heat current autocorrelation functions are

shown in Supplemental Material Fig. S7 [30]. The average
κL of the nine MLIP models of α-Cu1.95Se is 0.82 W/mK at
300 K and the deviation among models is small (0.13 W/mK).
However, the total κL difference among the MLIP models
is up to an order of magnitude for β-Cu1.95Se at 600 K,
e.g., 7.18 W/mK for MTP1, and 0.54 W/mK for MTP4.
The convective and conductive terms of κL fluctuate around
their corresponding mean values for crystalline α-Cu1.95Se
at 300 K, but they strongly deviate for PCPL β-Cu1.95Se at
600 K, which is rare in crystalline solids. Moreover, although
there is an order of magnitude difference in κL between MTP1
and MTP3 for β-Cu1.95Se, the convective terms grow with
temperature in both models (Supplemental Material Fig. S8
[30]). These results demonstrate a non-negligible contribution
of the convective term to the κL in β-Cu1.95Se. In addition,
defects have little effect on κL and are not the cause of the
κL deviation among the MLIP models (Supplemental Material
Fig. S9 [30]).

The average κLs of the comparison material Mg2Sn (Sup-
plemental Material Fig. S10 [30]) are 7.10 W/mK at 300 K
and 2.83 W/mK at 600 K, which are consistent with the exper-
imental values reported in the reference (7.19 and 3.43 W/mK
at 300 and 600 K [34]). The contribution of the convective
term is always below 4%, even at high temperatures, due to the
small displacement near the equilibrium position in Mg2Sn.
For Mg3Sb2, which contains asymmetrical displacement of
tetragonal Mg atoms at high temperatures, the average κL

decreases from 1.88 W/mK at 300 K to 1.01 W/mK at 600 K.
The average contribution of convective terms increases from
4% at 300 K to 9% at 600 K, and the deviation among models
is within 0.18 W/mK. The low contributions of the convective
terms in the two crystalline compounds are in contrast to
the case of β-Cu1.95Se shown above. The theoretical κLs of
Mg3Sb2 are consistent with the experimental values, which
are 1.62 and 1.12 W/mK at 300 and 600 K, respectively [35].

In contrast, as shown in Fig. 2(a), the κL of β-Cu1.95Se can
be accurately described by the direct method based on NEMD.
Unlike the GK-MLIP-EMD method, the κLs obtained with
different MLIP models through the direct method are almost
identical under the same size, even for the high-temperature
β-phase (Supplemental Material Fig. S11 [30]): for example,
κdirect = 0.47 W/mK with a length of 11.54 nm at 600 K, and
the deviation for β-Cu1.95Se among the nine MLIP models
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FIG. 2. Direct method based on the MLIP for Cu1.95Se. (a) Length-dependent κLs for Cu1.95Se at different temperatures compared with
the available experimental value [9] of β-Cu1.98Se at 600 K. The illustration shows a schematic diagram of the direct method. (b) The κLs
predicted by the direct method with different MLIP models at 600 K (3 × 3 × 20 supercells) in Cu1.95Se.

is within 0.01 W/mK [Fig. 2(b)]. This is distinct from the
GK-MLIP-EMD behavior, as mentioned above. The existence
of vacancies will reduce κL by 11% on average but will not
increase the small deviation among different MLIP models.
The κL obtained through the direct method at 300 K extrap-
olated to infinity is 0.83 ± 0.02 W/mK, close to the value
of 0.82 ± 0.06 W/mK obtained through the GK-MLIP-EMD
method for α-Cu1.95Se. The κL obtained through the direct
method at 600 K is 0.49 ± 0.01 W/mK, which agrees well
with the available experimental results [9]. The κLs of Mg2Sn
and Mg3Sb2 calculated by the direct method are 6.65 and
3.72 W/mK and 1.69 and 0.97 W/mK at 300 and 600 K
(Supplemental Material Fig. S12 [30]). The direct method is
generally applicable to all types of materials.

B. Ambiguous projection of local atomic potential energy Ui

The reason why the GK-MLIP-EMD approach fails for
the high-temperature phase β-Cu1.95Se deserves further ra-
tionalization. Generally, the deviation of κL obtained based
on the GK-MLIP-EMD method could originate from several
key quantities, including the atomic velocity or position, or
Ui, or the training process itself, i.e., the loss function. We
used controlled comparisons to clarify the influence of the key
quantities causing the failure of the GK-MLIP-EMD approach
in the evaluation of κLs for PCPL β-Cu1.95Se.

We performed MD simulations with MTP3 of Cu1.95Se and
fixed the velocities and positions of atoms, and then calculated
the κLs with other MLIP models, as shown in Figs. 3(a)
and 3(b). In this process, the fixed velocities and positions
are all from MTP3, but Ui is generated by the respective
MLIP models. After fixing the velocities and positions, the
deviation of κLs among MLIP models is still small, within
the value of 0.09 W/mK for α-Cu1.95Se at 300 K. The re-
sults are similar to those without the fixed velocities and
positions. For PCPL β-Cu1.95Se, close κLs are obtained when
the same MLIP model (resulting in similar Ui) with differ-
ent velocities and positions, for example, κgk = 7.18 W/mK
and κgk,fix = 6.95 W/mK in MTP1. However, diverse κLs are
obtained when different MLIP models (resulting in different
Ui) along with the same velocities and positions, for example,
κgk,fix = 6.95 W/mK in MTP1 and κgk,fix = 0.89 W/mK in
MTP3. The clear comparison indicates that the deviation of

the κLs of β-Cu1.95Se among different MLIP models cannot
be attributed to the velocity and position; Ui is responsible for
the deviations, as seen below.

Supplemental Material Fig. S13 [30] extracts the Ui of
a transient structure from MD simulations and demonstrates
that Ui exhibits arbitrariness (Ui varies among MLIP mod-
els for the same atom) in Cu1.95Se at both low and high
temperatures. The corresponding Ui distributions are shown
in Figs. 3(c) and 3(d). In MTP1 and MTP2, the Ui of Cu
atoms is relatively low, while the Ui of Se atoms is close
to the high-energy end. However, the order is reversed in
MTP3. In contrast, the Ui distributions predicted by the same
MLIP model at different temperatures have great similarity.
For example, the relative positions of peaks are nearly fixed
at 300 K compared with those at 600 K, only with different
smearing. More importantly, the arbitrariness of Ui also occurs
in Mg2Sn and Mg3Sb2 (Supplemental Material Fig. S14 [30]).
For the same model, the peak position of Ui is not changed
but the width is broadened with increasing temperature. In
other words, the arbitrariness of Ui is common in MLIPs,
but its influence on κL through the GK-MLIP-EMD approach
depends on the material.

Another possible cause is the loss function, representing
how well the MLIP model fits, which involves the total energy,
atomic forces, and stress tensor. The loss functions of the
three materials with different MLIP models converge to close
values after several hundred training cycles (Supplemental
Material Fig. S15 [30]). Although there is an ambiguous
projection of Ui, the total potential energy can always be pre-
served by adopting adjustment of parameters. The ambiguous
projection of Ui does not affect the loss function as long as
the total potential energy remains unchanged according to
Ei = 1

2 miv2
i + Ui. For Cu1.95Se, the mean absolute errors of

the total potential energy [Supplemental Material Fig. S16(a)
[30]] between the other models and MTP3 are approximately
0.6 and 1.0 meV/atom at 300 and 600 K, respectively. The
mean absolute errors of the atomic forces [Supplemental Ma-
terial Fig. S16(b) [30]] predicted by the other models and
MTP3 are approximately 30 and 54 meV/Å at 300 and 600
K, respectively. Therefore, all MLIP models are accurate in
terms of total potential energy and atomic forces, and the
deviation of κLs among the MLIP models is not related to
the training process itself. Similar small mean absolute errors
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FIG. 3. Ambiguous projection of Ui. κLs of Cu1.95Se predicted by the GK-MLIP-EMD approach with/without fixed positions and velocities
(generated from the MD simulations with MTP3) at (a) 300 K and (b) 600 K in Cu1.95Se. κgk,fix means κL predicted with fixed positions and
velocities but using their own Ui. κgk means κL predicted without fixed positions and velocities using their own Ui. Ui distributions of Cu and
Se atoms are achieved from MD simulations at (c) 300 K and (d) 600 K in Cu1.95Se. MTP1, MTP2, and MTP3 are the first three MLIP models.

of the total potential energy and atomic forces are also found
for Mg2Sn and Mg3Sb2, as shown in Supplemental Material
Fig. S17 [30].

C. Atomic diffusion

Why the applicability of the GK-MLIP-EMD method de-
pends on the material relates to the atomic movements in
solids. In principle, the magnitude of the atom deviation
from the equilibrium position is commonly estimated by the
mean square displacement (MSD). Figure 4(a) shows the

relationship between the MSD (obtained from second-order
force constants in crystalline materials) and the average
atomic mass for thermoelectric materials and some other typ-
ical semiconductors (some from the literature [36]). Typical
semiconductors are mainly harmonic materials with a small
MSD, while thermoelectric materials possess a relatively large
MSD, which leads to a low κL. The MSD values of PCPL
materials are infinitely large due to the atomic diffusion. The
corresponding atomic trajectories of Mg2Sn, Mg3Sb2, and
β-Cu1.95Se can visualize how atoms vibrate at finite tem-
peratures, as shown in Fig. 4(b). The atomic displacements

FIG. 4. Atomic diffusion for different types of solids. (a) Relationship between MSDs and the average atomic mass for thermoelectric
materials and some other typical semiconductor compounds; (b) atomic trajectories of Mg2Sn, Mg3Sb2, and β-Cu1.95Se at high temperatures;
(c) diffusion coefficient of Cu atoms at different temperatures obtained with MTP1 and MTP3.
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are located nearly at the equilibrium position for Mg2Sn,
while the displacement of tetrahedral Mg atoms becomes
anisotropic for Mg3Sb2 at high temperatures [35]. Moreover,
Cu atoms jump back and forth between interstitial positions
while Se atoms are located at the equilibrium position for
β-Cu1.95Se, demonstrating the PCPL state and exhibiting the
strongest chemical bond hierarchy among these materials. The
unique trajectory relates to the atomic diffusion in β-Cu1.95Se,
as shown below.

The temperature-dependent diffusion coefficient of Cu
atoms is shown in Fig. 4(c). The diffusion coefficient of
Cu atoms is approximately 10-8 cm2/s in the α phase, and
then rises to approximately 10-6 cm2/s in the phase transition
range 450-550 K. Above 550 K, the diffusion coefficient of Cu
atoms reaches 10-5 cm2/s in the high-temperature β phase.
Such a tremendous diffusion coefficient of Cu atoms is in
sharp contrast to that of Se atoms with a value less than
10-8 cm2/s in the temperature range 300-700 K, as shown in
Supplemental Material Fig. S18 [30], which also confirms the
PCPL state in β-Cu1.95Se. The diffusion coefficients in Mg2Sn
are 10-11 cm2/s for both Mg and Sn atoms. The diffusion
coefficient of Mg atoms with asymmetric displacement at high
temperatures in Mg3Sb2 is approximately 10-8 cm2/s, which
is larger than that in Mg2Sn, whereas the diffusion coefficient
of Sb atoms is approximately 10-10 cm2/s due to the relatively
heavy mass.

Ranninger et al. [37] proposed that the contribution of the
convective term becomes non-negligible when the displace-
ment of the atom from the equilibrium position is comparable
to the nearest interatomic spacing. The small diffusion co-
efficient of atoms, such as for Mg2Sn and Mg3Sb2, thus
causes a small contribution of the convective term to κL in the
GK-MLIP-EMD method. However, the diffusion coefficient
of Cu atoms in β-Cu1.95Se is so large that the contribution
of the convective term cannot be neglected. As the diffusion
coefficient increases, the contribution of the convective term
increases (Supplemental Material Fig. S8 [30]). In addition, a
small diffusion coefficient leads to a tiny contribution of ri

dUi
dt

in the conductive term [Eq. (4)]. However, for β-Cu1.95Se
the contribution of ri

dUi
dt becomes strongly fluctuating among

different MLIP models due to the large displacements (or
large ri) of Cu atoms (Supplemental Material Fig. S19 [30]).
According to Eqs. (3) and (4), the accuracy of the convec-
tive term and conductive term in the Green-Kubo equation is
largely determined by Ui; thus, the ambiguous projection of
Ui will break down the GK-MLIP-EMD approach due to its
influence on both the convective and conductive terms.

In summary, the ambiguous projection of Ui in MLIPs,
exacerbated by atomic diffusion, is the fundamental reason
for the failure of GK-MLIP-EMD in predicting the κL for
PCPL β-Cu1.95Se. The ambiguous definition of Ui is an in-
herent problem in MLIPs. This leads to the arbitrariness
of the convective term and the conductive term within the
GK-MLIP-EMD method; but for most solid materials, the in-

fluence is negligible. The uncertainty in the thermal transport
prediction for the GK-MLIP-EMD method is closely related
to the atomic displacements. The calculated κL is hardly af-
fected for Mg2Sn and slightly influenced for Mg3Sb2 at high
temperatures. However, when the atomic displacements reach
a certain level at finite temperatures, the GK-MLIP-EMD ap-
proach completely breaks down, such as for β-Cu1.95Se with
Cu diffusion at high temperatures. This phenomenon can be
extended to other similar solid materials with severe atomic
diffusion, such as argyrodite-type thermoelectrics [38] and
lithium-ion battery materials [39].

IV. CONCLUSIONS

The κLs of PCPL β-Cu1.95Se obtained through the GK-
MLIP-EMD method based on different MLIP models highly
deviate, and thus are not reliable at high temperatures. In
contrast, when the direct method is adopted to calculate κL,
the results are consistent with available experimental values.
The GK-MLIP-EMD approach fails for β-Cu1.95Se due to
the ambiguous definition of Ui in MLIPs, worsened by the
existence of Cu diffusion. The ambiguous projection of Ui

is common in MLIPs, and it greatly affects the convective
and the conductive terms of the Green-Kubo theory. Because
of the large contribution of the convective term to κL and
the fluctuating conductive term arising from Cu diffusion in
β-Cu1.95Se, GK-MLIP-EMD thus fails to describe the thermal
transport of this compound. The present work elucidates the
fact that the ambiguous projection of Ui leads to failure of
thermal transport application of the GK-MLIP-EMD method
to solids with severe atomic diffusion.
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