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Wide-ranged multiphase equation of state for iron and model variations
addressing uncertainties in high-pressure melting
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We describe the construction of a wide-ranged multiphase equation of state for elemental iron, consisting
of four solid phases and one fluid phase. The free-energy models for the phases are constrained by fitting to a
broad swath of ambient, static, and dynamic high-pressure experimental data, including recent ramp-compression
and shock–ramp recrystallization experiments. In order to better describe the conditions near Earth’s inner-core
boundary, ab initio electronic-structure calculations of various types have been carried out for the hcp and liquid
phases and used as additional constraints. Given the variability of reported iron melting temperatures in the
1–3 Mbar range, we construct EOS model variations based on two separate Tmelt (P) curves: lower-Tmelt and
higher-Tmelt . Our analysis shows that only the higher-Tmelt (P) data are consistent with reported shock-melting
pressure measurements. Furthermore, our examination of the recrystallization data from a recent shock–ramp
x-ray diffraction study motivates a family of EOS models that address experimental uncertainties and provide
a range of possible Tmelt (P) curves that have a somewhat lower melt temperature above 5 Mbar than the one
reported in that study. This family of multiphase EOS models allow us to suggest new experiments to further
reduce the uncertainties on the high-pressure melt curve, and they should also enable more accurate predictions
of complex high-P, T processes involving iron. We show their potential utility by applying these EOSs to the
investigation of properties of interest to planetary science, such as the vaporization entropy, critical temperature
and density, Earth inner-core boundary temperature plus inner- and outer-core density deficits.
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I. INTRODUCTION

Elemental iron (Fe) is one of the most studied materials
in high-pressure science, a result of its importance in under-
standing the interior structure of Earth-sized and super-Earth
planets. Experimental investigations have involved all manner
of ambient-pressure [1–4], static-compression (e.g., diamond-
anvil cell [DAC]) [5–38], and dynamic-compression (shock
Hugoniot or ramp compression) [5,39–85] measurements
conducted over the past seven decades, leading to a picture
of the Fe phase diagram up to (at least) several Mbar for
the five known phases of Fe: α (body-centered cubic [bcc]),
ε (hexagonal closed-packed [hcp]), γ (face-centered cubic
[fcc]), δ (bcc; higher T than α), and the liquid. This expansive
set of data includes detailed information on isobars, pressure
isotherms (in the form of density as a function of pressure
and temperature), and shock Hugoniots. Many of these studies
make explicit reference to planetary-science applications, and
more particularly to the greater understanding of the nature
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of Earth’s core [5–14,38–42,85–108]. Here, recurring themes
include addressing which solid phases are likely to be present
in certain regions within Earth (since different phases are ex-
pected to transmit seismic waves differently), and discovering
precise values for the pressure-dependent melt temperature
Tmelt (P) in multi-Mbar conditions, needed for modeling the
long-time evolution of the geodynamo in Earth and Earth-like
planets.

Most of the experimental work to infer Tmelt (P) for Fe over
the past four decades has involved DAC studies and mea-
surements of shock melting, although it is only in the former
experiments where the temperature T is actually controlled.
This set of DAC and shock data includes the work of Yoo
et al. [7,67], Saxena et al. [19], Boehler et al. [18,26], Nguyen
and Holmes [71], Anzellini et al. [29], Ping et al. [75], and
Sinmyo et al. [14], among others. In general, the reported
values of the melt temperature Tmelt (P) for pressures 0.5 Mbar
< P < 2.7 Mbar fall into two categories: higher-Tmelt values
[29,85], and lower-Tmelt values [14,26]. It is still a point of
contention as to which set of inferences is more correct. As
a result, earlier reports show the predicted temperatures of
iron at the inner-core boundary (ICB, e.g., extrapolation to
3.3 Mbar) to vary substantially between about 4000 to 8000 K.
Likewise, there is a long-standing controversy surrounding
the presence or absence of a high-pressure (> 1 Mbar) stable
bcc phase out of which melting occurs; many experiments
suggest high-P melting out of hcp (see, e.g., [24,29,34,85]),
while others (along with differing interpretations of the former
set of experiments, motivated in part by simulations) suggest
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melting out of a high-P, T bcc phase [37,38,103–111]. The
debate on the core structure is further complicated by the
uncertainty associated with its composition, which is thought
to consist of ∼90% iron, supplemented by other elements,
such as Ni, S, Si, O, C, H, Au [112]. The presence of these
other components can change the relative phase stability of
hcp and bcc. Indeed, for pure Fe, so far only the hcp phase has
been observed experimentally under both static and dynamic
compression up to and exceeding the ICB conditions. In con-
trast, a high-pressure bcc phase was reported for a Fe–Ni alloy
under static compression [38]. Nevertheless, the behavior of
pure Fe at Earth-core conditions provides a critical baseline
and constraint for the modeling of planetary evolution and
geodynamics.

The persistent disagreements about the Fe phase diagram
illustrate that high-P Fe remains an active area of experi-
mental research. Not surprisingly, therefore, many theorists
have used their tools to predict the high-P Fe phase dia-
gram from first-principles quantum simulations [90,91,105–
111,113–129]. While the lower-P regime for Fe is compli-
cated by the propensity for magnetic moment formation and
ordering, it is believed that properties of Fe at multi-Mbar
pressures are free from these complexities, and it is widely
assumed that fairly straightforward applications of density
functional theory (DFT) and DFT-based molecular dynamics
(DFT–MD) should yield accurate results, provided that the
phases in question are simulated with the requisite statistical
and numerical fidelity at elevated temperatures (which is not
necessarily easy to achieve, especially for melting calcula-
tions). Tethered to the prediction of relative phase stability is
the construction of a multiphase equation of state (EOS) of Fe
that is self-consistent with the phase diagram. And indeed, the
modeling needs of planetary scientists in particular require an
accurate multiphase Fe EOS for many of their most pressing
problems, including ICB conditions needed to infer the age of
the core, the density deficit for core composition, and potential
core vaporization resulting from giant impacts. The creation
and dissemination of such an EOS for pure Fe is the subject
of this paper.

There have been many attempts to construct accurate Fe
EOS models over the years. Notable recent efforts in this re-
gard fall into two general categories: (1) those which put forth
narrow-ranged Fe EOS models, meant to be valid over re-
stricted ranges of compression and temperature, and (2) those
which propose wide-ranged Fe EOS models that are at least
sensible over many decades of density ρ and T . Examples
of narrow-ranged multiphase Fe EOS models include those
of Boettger and Wallace [130] concentrating on the α −→ ε

transition at 0.13 Mbar (constructed in the context of a study
of phase metastability and kinetics for this transition), the
Tsujino et al. EOS for the γ phase [131], and the work of
Dyachkov et al. [132] Wide-ranged Fe EOS models include
the works of Kerley [133] and Medvedev [134], each of which
make use of a combination of theoretical and (primarily) ex-
perimental constraints, employing semi-empirical free-energy
models similar in spirit to those of the aforementioned narrow-
ranged studies. Also in this category is the recent multiphase
EOS of Sjostrom and Crockett [135], in which a combination
of Kohn–Sham DFT–MD and orbital-free DFT–MD calcu-
lations were performed to provide most of the constraints

for the model. Sjostrom and Crockett rely on the Boettger–
Wallace limited-range EOS for their α and ε phases, and
they use experimental data on γ , δ, and the liquid to con-
strain the low-pressure part of their EOS. DFT–MD is used
as the primary constraint for most of the rest of their wide-
ranged model, together with interpolation schemes to connect
high- and low-pressure regions. In our paper, we take exper-
imental data as our primary source of constraint. However,
we also generate new first-principles DFT results for the
hcp solid and liquid for conditions pertaining to the ICB,
and use them for both secondary constraints and model
validation.

Because the Kerley (1993) [133] and Medvedev (2014)
[134] EOS models are semi-empirical and were fit primarily
to experimental data, they are each in good accord with most
of the static and dynamic high-pressure data available at the
times of their construction. However, since the experimental
picture of Fe at high pressure is ever evolving, aspects of
these EOSs are less up-to-date, presently. For example, the
Kerley EOS has a Tmelt (P) that is somewhat off at high-P
from both the recent higher-Tmelt [29,85] and lower-Tmelt [14]
inferences, and its phase diagram possesses a thermodynam-
ically stable γ phase even at 100-Mbar pressures, far above
the reported stability of γ , in contradiction to experiment
and ab initio calculations. The Medvedev EOS, on the other
hand, is in far better agreement with the most recent data,
given that it was constructed later. But as any single EOS
must, it chooses just a particular set of Tmelt (P) inferences
[30] as a constraint, thereby discounting alternate estimations
(e.g., those from Boehler et al. [26] and the more recent
Sinmyo et al. [14]). The Sjostrom–Crockett EOS (published
in 2018) is in notable disagreement with much of the shock
Hugoniot data in the several-Mbar range, a fact that is ex-
pected given that its primary focus is on near-ambient pressure
conditions together with the extreme (P, T ) conditions, which
are largely devoid of experimental data. In particular, (1) the
principal Hugoniot pressure is substantially higher than that
measured in experiments (e.g., see Brown et al. [57]), and
(2) the model’s intersections between the principal Hugoniot
and the melt curve (∼1.9 Mbar and ∼3.0 Mbar for incep-
tion and completion of melting, respectively) are quite off
from the currently accepted experimental values, which are
2.25 ± 0.03 Mbar and 2.60 ± 0.03 Mbar, respectively, as
reported by Nguyen and Holmes [71]. This in turn means that
the Sjostrom–Crockett model’s latent heat of melting is very
likely to be a few times larger than the actual value in this
pressure range.

In this paper, we describe the construction of a five-phase
EOS model for Fe. The five phases include the four solid
phases mentioned above (α, ε, γ , δ) and liquid. Like in our
recent paper on developing a multiphase EOS for elemental
beryllium (Be) [136], “liquid” in the present study is used as
a collective term that represents all fluid phases (e.g., ordi-
nary liquids, gases, supercritical fluids, plasmas) in the wide
temperature–density range covered by the EOS. Agreement
with DAC and shock data is enforced over the full ranges
where these data are available. Given the ongoing debate
regarding the two DAC-inferred Tmelt (P) curves, we choose
to constrain the baseline versions of our EOS model to the
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TABLE I. Summary of the four multiphase Fe EOS models we present in this paper. We categorize the models into two types: baseline
and variation. Here, baseline denotes a model that is fit to the full set of experimental thermophysical data deemed in this paper to be robust
and suitably constraining, while variation denotes a model in which agreement with certain key experimental data is intentionally violated in
order to appease agreement with another set of conflicting data. The third column indicates the source of DAC data used for the constraint
of Tmelt (P), specifically for P < 3 Mbar. The fourth column indicates whether or not a particular model satisfies the shock-melting data from
Nguyen and Holmes [71]. The fifth column indicates the relationship between the various models’ Tmelt (P) and different estimations of Tmelt (P)
constrained by the shock–ramp x-ray diffraction (SRX) experiments from Kraus et al. [85], pertaining to P> 5 Mbar; see Secs. IV E 1 and
V B for details. The two baseline models, min-Tmelt-SRX and max-Tmelt-SRX, differ from each other only at pressures above 5 Mbar. As a
convenient shorthand, we use the terms “EOS” or “EOS model” to refer to min-Tmelt-SRX, if not otherwise specified.

DAC Tmelt (P) Shock melt [71] SRX [85]
Model name Type P < 3 Mbar 2.25 Mbar � P � 2.60 Mbar P > 5 Mbar

min-Tmelt-SRX or EOS baseline Anzellini et al. [29] satisfied lower-bound Tmelt

max-Tmelt-SRX baseline Anzellini et al. [29] satisfied upper-bound Tmelt

Kraus-Tmelt-SRX variation Anzellini et al. [29] satisfied Kraus Tmelt

low-Tmelt-DAC variation Sinmyo et al. [14] not satisfied lower-bound Tmelt

Zhang et al. [11]

Tmelt (P < 3 Mbar) from the Anzellini et al. inference [29],
and we have constructed an additional variation (denoted
low-Tmelt-DAC) that respects the lower-Tmelt (P < 3 Mbar)
inference of, e.g., Sinmyo et al. [14]. We have, in fact, con-
structed two versions of the baseline models: min-Tmelt-SRX
and max-Tmelt-SRX. These models differ from each other only
at pressures above 5 Mbar, and as their names imply, they span
the space of acceptable melt curves when considering recent
shock–ramp x-ray diffraction (SRX) data from Kraus et al.
[85] and their associated uncertainties. In addition, an EOS
variation (denoted Kraus-Tmelt-SRX) that adopts the Tmelt (P >

5 Mbar) melt curve presented in Kraus et al. [85] has also
been created and examined along that work’s shock–ramp
trajectories. None of our EOS models include a thermodynam-
ically stable high-pressure bcc phase since this phase has not
been observed in experimental studies [82,85] on pure Fe. A
summary of the four distinct EOS models generated in this
paper—which we divide into two baseline models and two
variations—is provided in Table I, and as described further in
Appendix C, each of these models is represented in tabular
format covering nine orders of magnitude or more in both
temperature and density.

It is our hope that the use of these EOS model versions
will allow applied scientists (e.g., planetary modelers) to as-
sess uncertainties in their predictions that result from the
remaining uncertainties in high-pressure melting. Through-
out, we employ modeling strategies that are congruent with
our recent paper concerning the construction of a multiphase
Be EOS [136], wherein a phase-dependent quasiharmonic
ionic-excitation model, and a phase-independent DFT-based
atom-in-jellium electronic-excitation model [137,138] are
used to represent the thermal portions of the free energy
for each phase. Despite its apparent simplicity, we show
that good agreement with a host of ambient-pressure, static
high-pressure, and dynamic high-pressure experiments can be
achieved with this strategy.

The remainder of this paper is as follows: First we intro-
duce the basic functional forms for the free-energy models
that we use for each phase (Sec. II), and our new ab initio
calculations of hcp solid and liquid Fe (Sec. III). Then we

describe the choices we have made to constrain the phase-
dependent free-energy models for our baseline EOS models
(Sec. IV). The EOS model variations (low-Tmelt-DAC, Kraus-
Tmelt-SRX) and our rationale for creating two baseline EOS
models (min-Tmelt-SRX, max-Tmelt-SRX) are described in de-
tail in Sec. V. Potential applications of the EOS to Earth
and planetary science are briefly discussed in Sec. VI. We
conclude in Sec. VII.

II. FREE-ENERGY MODELS: FUNCTIONAL FORMS

We assume that the Helmholtz energy F = E − T S (where
E is the internal energy and S is the entropy) for each phase
of the material admits the decomposition

F (ρ, T ) = Fcold(ρ) + Fion(ρ, T ) + Felectron(ρ, T ), (1)

where Fcold(ρ) is the T -independent (so-called, “cold energy”
or “cold curve”) piece resulting from expanding or contracting
the system (at T = 0, when considering solid phases), and
Fion(ρ, T ) and Felectron(ρ, T ) represent changes to the free
energy from ionic and electronic excitations, respectively.
Treating ionic and electronic excitations as independent is a
manifestation of the Born–Oppenheimer approximation, as is
often assumed in EOS studies [133–136,139–142]. We stress,
however, that the experimental data to which we fit pertains
to the total free energy F or the derivatives of F . Any effects
from the coupling of electronic and ionic excitations that are
manifest in these data are therefore included at some level,
provided that our fitting respects these features.

A. Solid phases

To represent the cold term Fcold(ρ) for each crystalline
phase, we use both the Vinet analytic form [143] and the
Holzapfel AP2 model [144] for the initial fitting. The func-
tional forms adopted by these models and our near-ambient
fits to them are presented in Appendix B. Both functional
forms are parameterized by the energy minimum E0, the
density at the minimum energy ρ0, the bulk modulus at this
density B0, and the pressure derivative of the bulk modulus
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at this density B′. However, due to the wide range in which
we choose to construct our Fe EOS, it is necessary for us
to employ forms with significantly more degrees of freedom
than just these four numbers. In earlier efforts [140–142], we
augmented our Vinet fits with so-called break points [145]
for this purpose, but we choose here to employ numerical
spline-based cold curves instead, following a similar choice
made in our recent Be and Ta EOS work [136,146]. Analytical
functions are also employed to smooth these spline-based fits
in certain regions, thereby allowing for more smooth pressures
and higher-order derivatives of the free energy. Furthermore,
additional “knots” (i.e., points where the piecewise polynomi-
als that make up the spline are joined together) are employed
only when needed to appease agreement with the combination
of static high-P (such as DAC) and shock data, or to improve
the connection between the different regimes where disparate
sources of data reside. This same combination of spline-based
fitting and “hand-tuned” analytical fits are also employed for
the ion-thermal Grüneisen parameter γion(ρ) described below.

For the ionic-excitation term of the free energy Fion(ρ, T ),
we use the Debye model [147],

FDebye(ρ, T ) = kBT

(
9

8

θ (ρ)

T
+ 3ln

{
1 − exp

[
−θ (ρ)

T

]}

+ D

[
θ (ρ)

T

])
, (2)

where the Debye integral

D(y) = 3

y3

∫ y

0

x3

exp(x) − 1
, (3)

and θ (ρ) is the density-dependent characteristic vibrational
temperature (i.e., Debye temperature) for the phase in ques-
tion. This model represents the free energy due to a spectrum
of harmonic phonons coupled to a heat bath, wherein the
phonon density of states (PDOS) is approximated as a
quadratic function of energy up to a cutoff energy kBθ (ρ),
above which it is taken to be zero. We choose to subsume
the first term of Eq. (2), kBT × 9θ (ρ)/8T = (9/8) kBθ (ρ),
into the Fcold(ρ) of Eq. (1) since it is independent of T (this
term arises from the zero-point energy of the phonons). The
remainder we take to be the ion-thermal term,

Fion(ρ, T ) = FDebye(ρ, T ) − 9
8 kBθ (ρ). (4)

Using the Debye model, the high-T Dulong–Petit limit
[139–141] (T > θ ) of the ionic contribution to the thermal
pressure is Pion(ρ, T ) −→ 3kBT γion(ρ)/V , where V is the
specific volume and γion(ρ) is the ion-thermal Grüneisen pa-
rameter, equal to

γion(ρ) = ρ

θ (ρ)
· dθ

dρ
. (5)

In practice, we fit γion(ρ) to high-P shock data (which reside
in the aforementioned high-T limit), and then determine θ (ρ)
by integrating Eq. (5) along with some knowledge of θ at
a reference density as determined by, e.g., ambient-pressure
heat-capacity measurements [139]. We find it useful to repre-
sent γion(ρ) numerically by piecewise linear functions [136],
thus furnishing the phase-dependent γion(ρ) with more de-
grees of freedom than that afforded by the simple linear-in-V

fits that we employed in some of our earlier papers [140–142].
We note in passing that while initially designed for the de-
scription of the thermodynamics of solids, it has been found
that the high-T limit of the Debye model also works well for
the low-T EOS of simple monatomic liquids [139–142], and
we will therefore employ it in that context too (see Sec. II B).

This assumed form for Fion(ρ, T ) neglects any effects of
anharmonicity that might be present at a fixed density ρ

[148]. Anharmonicity of this type would lead to deviations of
Cion

V (T ) [≡ ∂Eion(ρ, T )/∂T |ρ] from the Debye model value of
3kB/atom for T > θ (ρ) [139]. While the neglect of phonon
anharmonicity might seem like a gross simplification espe-
cially as T approaches Tmelt, we submit that the sizable effects
from Felectron(ρ, T ) at these higher temperatures, to be dis-
cussed below, should largely outweigh the contributions to the
total free energy from anharmonicity for the solid phases of
Fe, as we show later in our comparison to the results of DFT-
based molecular dynamics (see Figs. 18 and 19).

We take the electronic-excitation contribution to the free
energy Felectron(ρ, T ) from a DFT spherical-atom-in-jellium
model known as PURGATORIO [138], which is an updating
of the earlier INFERNO model of Liberman [137]. In this
approach, a single representative Fe nucleus is placed at the
center of a spherical shell surrounded by a uniform electron-
density background. Within the spherical inclusion (the size of
which depends upon ρ), the Dirac equation is solved for the
states of all 26 electrons using Kohn–Sham DFT at nonzero
T , and the results are used to construct the Helmholtz free-
energy function, FPURGATORIO(ρ, T ) = EPURGATORIO(ρ, T ) −
T · SPURGATORIO(ρ, T ). We then subtract off the T = 0 con-
tribution, assigning the remainder to our electron-thermal
free-energy term

Felectron(ρ, T ) = FPURGATORIO(ρ, T ) − FPURGATORIO(ρ, T = 0).

(6)

This treatment neglects any directional chemical bonding,
given the assumption of spherical symmetry, and it considers
only a single representative Fe ion for each (ρ, T ) condi-
tion (rather than admitting the possibility of multiple distinct
charge states, as would necessarily be present in a low-ρ,
high-T plasma). However, work has shown that this prescrip-
tion results in a very sensible electronic free-energy term,
if interpreted in the context of Eq. (1), when comparing to
the results of multi-ion Kohn–Sham DFT–MD simulations
of the EOS of materials at high densities and temperatures
[136,142,149,150]. We will discuss this further in Sec. IV,
where we compare our EOS models to our DFT–MD simu-
lations of Fe at extreme conditions.

Because PURGATORIO is a spherical-atom-in-jellium
construct, it is manifestly agnostic to a notion of crystalline
phase. Despite this, we choose to use the PURGATORIO
model, as applied in Eq. (6), for the electronic-excitation term
for every phase of our free-energy model (including the liq-
uid). While it is the case that the individual phases (α, ε, γ , δ,
liquid) must each possess distinct Felectron(ρ, T ) terms, owing
to their different geometric configurations of ions leading to
different electronic densities of states, the salient features aris-
ing from, e.g., the d-band valence electrons of Fe, are present
irrespective of phase at a given (ρ, T ) point. Furthermore, the
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differences between the true phase-dependent Felectron(ρ, T )
functions are likely to be greatest at low T , but this also
happens to be where Felectron � Fion, generally (i.e., Felectron

tends to be negligible at low-T conditions where our assumed
PURGATORIO model incurs the greatest error) [136,139–
142]. This assumption of a single Felectron(ρ, T ) model for all
phases has been used in our other recent EOS modeling efforts
[136] and was also employed (although with a different atom-
in-jellium model) in the Sjostrom–Crockett Fe EOS [135]; its
efficacy rests on the fact that the primary differences between
the thermodynamic properties of various phases of a typical
metal are due to differences in their cold and vibrational
contributions.

The strategy of Eq. (6) exhibits a subtlety that we now
address. The cold curve of the PURGATORIO model for
any element (and for Fe in particular), which we denote as
FPURGATORIO(ρ, T = 0), possesses a minimum at some ρ that
is different from the ρ0 values of the cold curves of each
of the individual phases. This minimum is spurious, given
that it pertains strictly to the fictitious spherical average-atom
“solid”. But even after the subtraction mandated by Eq. (6),
the resulting Felectron(ρ, T ) exhibits the remnants of these un-
physical features at low ρ. We rid our Felectron(ρ, T ) model
of these artifacts by employing the strategy outlined in the
discussion surrounding Eq. (10) in our Be EOS publication
[136], where the PURGATORIO electron-thermal free energy
is effectively replaced by extrapolations based on the density
scaling of the associated Thomas–Fermi [151,152] contribu-
tion for ρ < ρb = 5.4 g/cm3 (for the Be EOS construction, a
different value for ρb was used, and a temperature Tb above
which no correction was applied was also defined). This
prescription leads to a Felectron(ρ, T ) that is reasonably well
behaved throughout the full range of our interest.

For the α phase, we augment Felectron(ρ, T ) with an
additional term, which accounts for the effects of mag-
netic ordering, given that this phase is known to possess
large, preferentially oriented magnetic moments coming from
its valence electrons. We take the empirical ρ-independent
magnetic-excitation term used in both the Boettger–Wallace
[130] Fe EOS and the Sjostrom–Crockett [135] Fe EOS for
this term {called Fmag; see Eq. (7) in Boettger and Wallace
[130] and Fig. 5 in Sjostrom and Crockett [135]}. Its inclusion
allows us to obtain the correct divergence in the specific heat
of α-phase Fe at the Curie temperature, T = 1043 K, and
low P [153]. Although it is generally small compared to the
other terms we have discussed (and contributes nothing to the
pressure because of its ρ-independent nature), we have found
that including it does have some effect on our fitting of the
Fion(ρ, T ) term for the α phase, when constraining to low-P
experimental data.

B. Liquid phase

Liquids, unlike solids, cannot be viewed as occupying
a localized region of phase space (ionic positions and mo-
menta: {rion, pion}) centered around some perfect arrangement
of stationary ions. Yet it has been shown repeatedly that the
thermophysical properties of dense one-component liquids
for T just above Tmelt (P) are much like that of high-T crys-
talline solids [136,139,140,142,154,155]. In particular, once

a reasonable estimation of Felectron is assumed, the remaining
F (ρ, T ) − Felectron(ρ, T ) can be fit well by the sum of suitably
chosen Fcold(ρ) and Fion(ρ, T ) terms, the latter of which is
well described by a Debye model [140,142,154,155] with an
effective Debye temperature, which is lower than that of the
solid (thereby endowing the liquid with a higher entropy than
the solid at a given set of ρ and T conditions). This is possible
largely because the ionic component to the isochoric specific
heat is very nearly 3kB/atom for monatomic systems for T
up to at least 2Tmelt (P) (see [136,140,142,156], as well as
our ab initio DFT–MD results for Fe presented in Sec. III
and Appendix A). The behavior of the liquid EOS ultimately
transitions to Cion

V −→ 3
2 kB/atom (the ideal-gas limit) at suf-

ficiently high T [135,136,142]. Other properties similarly
approach the ideal-gas limit as well.

A number of additions to the Debye model exist (such as
the Cowan model, as applied in Refs. [140–142]), which help
to enforce this limiting behavior; we use our so-called Cell
model [136,142,157], which treats the ions in a high-T [�
θ (ρ)] liquid as distinguishable particles, each of which moves
in a fixed, density-dependent potential (centered at zero ionic
displacement) consisting of an r2 term joined to a spherical
hard-wall boundary of radius R. The resulting ion-thermal free
energy is

Fion(ρ, T ) = FDebye(ρ, T ) − 9

8
kBθ (ρ) − kBT ln

[
erf

(√
T ∗

T

)

− 2√
π

√
T ∗

T
exp

(
−T ∗

T

)]
, (7)

where kBT ∗ is the ρ-dependent energy at which the r2 and
hard-wall portions meet,

kBT ∗(ρ) = mionk2
B[θ (ρ)R(ρ)]2

2h̄2 , (8)

and

R(ρ) =
[

3mione

4πρ

]1/3

. (9)

This form for the ion-thermal free energy has the
property that limT −→∞Eion(ρ, T ) = 3kBT/2 per ion, and
limT −→∞Pion(ρ, T ) = kBT ρ/mion, as desired. The e = exp(1)
in Eq. (9) ensures that the proper ideal-gas entropy for the ions
is achieved as T −→ ∞. We have found the Cell model to be
a satisfactory approach when constraining an EOS to high-
T computational predictions of E and P coming from, e.g.,
path-integral Monte Carlo simulations [142] or specialized
DFT-based methods targeted for high temperatures, such as
SQDFT [158].

We therefore adopt the same three-term decomposition
presented in Eq. (1) for our liquid Fe free-energy model,
where the Fion term is taken to be that in Eqs. (7)–(9) and
our Felectron contribution is taken from the PURGATORIO
model. Two additional points must now be addressed, both
of which pertain to the fact that the liquid occupies the full
density range over which our EOS is defined. First, for very
high ρ (>100 g/cm3), we choose to require that F liquid

cold (ρ)
joins on to the PURGATORIO Fcold(ρ) for Fe. This is because
we know the PURGATORIO cold curve to be an accurate
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representation of the high-ρ Kohn–Sham DFT cold curve
(assuming the use of identical exchange–correlation function-
als) as computed with the usual multi-ion DFT framework
(irrespective of crystalline phase) for all elemental materials.
We mandate this high-ρ connection with spline interpolation,
joining to our lower-ρ F liquid

cold (ρ) as determined by fitting to
various experimental data (see Sec. IV E). Likewise, we re-
quire that γ

liquid
ion (ρ) tends to 1/2 as ρ −→ ∞, as required

by basic considerations of its limiting behavior [159]. The
second point we make is that for low ρ, our liquid free-
energy model must possess the requisite structure to admit a
liquid–vapor transition, which is crucial to include if our Fe
EOS is to be applied to the study of planetary-collision and
impact phenomena [41]. We enforce a liquid–vapor transition
region by joining the low-ρ portion of F liquid

cold (ρ) to some-
thing akin to a soft-sphere model [145] (although in practice,
we use a pointwise numerical form with a similar shape),
which possesses a concave-down portion for ρ < ρ0 smoothly
joined to a ρ-independent piece in the dilute limit {ρ � ρ0;
where limρ−→0[F liquid

cold (ρ) − E0] = the cohesive energy}. The
liquid–vapor dome can then be obtained by applying the
Maxwell construction [139] within the resulting Fliquid(ρ, T ),
restoring convexity to this function [133,134,145,160].

After fixing the electron-thermal term for each phase to
be that of the PURGATORIO model in Eq. (6) {and after
setting the additional Fmag(T ) term for the α phase to be
that from [130]}, we are left with two ρ-dependent functions
that must be specified for each of the five phases of our Fe
EOS: F i

cold(ρ), and θ i(ρ) [see Eqs. (1), (2), (4), (8)], where i
denotes the phase. It is helpful to think of F i

cold(ρ) − F j
cold(ρ)

as controlling the internal energy difference between phases i
and j, and 3kBln[θ i(ρ)/θ j (ρ)] as being the major contributor
to the entropy difference (at least for T > θ i, θ j) [140]. In
Sec. IV, we describe how our choices for these 10 functions
(Fcold and θ for all five phases) arise from fitting to a host of
static- and dynamic-compression data taken on Fe.

III. AB INITIO CALCULATIONS

We have performed DFT–MD for Fe over a restricted range
of compressions and temperatures that are relevant to geo-
physical applications like those mentioned in the Introduction.
We discuss below (in Secs. IV B and IV E) that for two of
the five phases of our model, namely the ε and liquid phases
(especially the latter), we consult these predictions when faced
with a paucity of constraining experimental information. It
should be kept in mind that any particular variant of DFT
involves approximations, specifically in regard to the choice
of exchange–correlation functional. Thus, perfect agreement
between such predictions and experiment, where such data
coincide in (ρ, T ), is not expected, although the calculations
tend to give reasonable results if care is taken with respect
to the various approximations involved. However, qualitative
agreement for EOS-related quantities necessarily buttresses
our confidence in the data and hence in any EOS model that
uses them as constraints.

Our Fe DFT–MD simulations provide calculations of the
internal energy E (ρ, T ) and pressure P(ρ, T ) on a dense
grid of densities ρ and temperature T . These were performed

with the VASP code [161–164] using the PBE exchange–
correlation functional [165,166], with its 16-valence-electron
PAW pseudopotentials [167,168], a plane-wave energy cut-
off of 500 eV, and a single k point at (1/4, 1/4, 1/4). The
electronic temperature was set equal to the average ionic
temperature, and a Nosé–Hoover thermostat [169,170] was
employed. The MD timestep was set to 1 fs. For each DFT–
MD simulation, 256 atoms were placed in a box with periodic
boundary conditions, and E and P were averaged over 104

snapshots (over a time interval of 10 ps) to produce the
E (ρ, T ) and P(ρ, T ) predictions. The (ρ, T ) grid includes
seven isochores between ρ = 12.0 and 18.0 g/cm3, and tem-
peratures in increments of 1000 K, from 4000 to 12 000 K.
The larger-ρ, lower-T simulations were performed in the hcp
phase of Fe, while the lower-ρ, higher-T points were initial-
ized as liquid. For a narrow band of these grid points (roughly
4000 K wide in T ), both solid and liquid calculations of E
and P were performed; this band was chosen to surround the
region where we expected the equilibrium melt curve to inter-
sect the principal Hugoniot, given previous studies [29,125].
We include our DFT–MD P and E predictions for hcp and
liquid phases of pure Fe in Appendix A, along with a brief
discussion of comparisons between these E and P predictions
and those of our EOS.

IV. BASELINE EOS MODELS:
PHASE-DEPENDENT FITTING

In this section, we outline our multipronged strategy for
constraining the phase-dependent EOS model inputs [F i

cold(ρ)
and θ i(ρ); i = phase]. The constraints we use are summa-
rized in Table II. Our detailed methodology is described,
for each individual phase, in the subsections that follow
(Secs. IV A–V B). In the liquid phase subsection (Sec. IV E),
we include detailed discussions of our determination of both
compression and expansion regimes of the free energy, as
well as our strategy for using recent experimental inferences
of high-pressure melting to further constrain the model. This
section concerns primarily the fitting of our baseline EOS
models, which are labeled as min-Tmelt-SRX and max-Tmelt-
SRX in Table I. Section V discusses the two other versions
of our EOS listed in that table. Namely, Sec. V A includes
a detailed description of our low-Tmelt variation to our Fe
EOS motivated by conflicting DAC studies (addressing P <

3 Mbar); in Sec. V B, we describe our motivation for creating
the two baseline models (as well as the Kraus-Tmelt-SRX vari-
ation) that stem from uncertainties in the precise trajectory of
Tmelt (P) for P > 6 Mbar.

A. α (bcc; lower-T )

Because the α phase of Fe is the ambient phase [see the
Fe phase diagram plots Figs. 1(a) and 1(b) to which we shall
return throughout the entirety of Sec. IV], there is a relatively
large amount of highly constraining thermophysical data that
can be used to fit our α-phase free-energy model. These
data, taken over many years and by different researchers,
are largely consistent with each other. Thus, we fix our gaze
on a restricted set of α-phase measurements, including both
ambient-pressure (1-bar heat capacity and thermal expansion)
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TABLE II. Summary of the phase-dependent experimental and theoretical (in the case of DFT–MD) information used to constrain the
free-energy models of our Fe EOS. Here, “DAC” indicates measurements conducted in a diamond-anvil cell, and “RT” stands for room
temperature. The DFT–MD (this paper) entries listed in the last column refer to those calculations performed in the present paper, which are
the focus of Sec. III. Some representative references are listed here, but we refer the reader to the text for a complete enumeration of all the
sources we have used to constrain/test our EOS. The (T, P) conditions listed for the Hugoniot curves refer to the initial conditions where the
shock compression was initiated.

Phase Isobar DAC Hugoniot [171] Phase boundary Calculation

α (bcc) 1 bar S(T ) [4], RT isotherm [25] 300 K, 1 bar [63] α–γ , α–ε

1 bar ρ(T ) [172] Shock release [68]
γ (fcc) 1 bar S(T ) [4], 1573 K, 1 bar [69] γ –liquid, γ –ε

1 bar ρ(T ) [172] Shock release [68]
δ (bcc) 1 bar S(T ) [4], δ–liquid, δ–γ

1 bar ρ(T ) [172]
ε (hcp) RT isotherm [25,28] 300 K, 1 bar ε–liquid, ε–γ DFT–MD

Shock melting [41,71,85] (this paper)
liquid 1 bar S(T ) [4] 300 K, 1 bar DAC melt [29] DFT–MD

1 bar ρ(T ) [1–3] Shock melting [41,71,85] (this paper)

and higher-pressure (room-T static-compression isotherm and
principal shock Hugoniot) experimental data.

As explained in Sec. II and shown in Eq. (1), construction
of the EOS requires us to determine two different terms,
representing the cold Fcold and ion-thermal Fion contribu-
tions, to the total free energy of each phase. (The third term
Felectron, which represents the electron-thermal contribution
to the free energy, is fixed by assumption to be that of the
PURGATORIO model.) For the ion-thermal contribution of
the α phase, we use 1-bar T -dependent thermal-expansion
[172] [i.e., ρ(T )] and entropy [4] data, the latter of which
are derived from specific-heat measurements. This allows us
to constrain both the ion-thermal Grüneisen parameter γion

and the Debye temperature θ of α-Fe in the neighborhood
of the ambient density, 7.874 g/cm3. Figure 2(a) displays
our fit to the 1-bar thermal-expansion data, including not
just the α phase (below ∼1250 K), but γ , δ, and the liquid
as well (to be discussed below). Likewise, Fig. 2(b) shows
our fit to the 1-bar entropy data, the lowest 10 points of
which pertain to α-Fe. In addition, the ion-thermal term has
a strong influence on the principal Hugoniot, and Fig. 3(a)
shows such data for α-Fe, which cover a slightly higher-
density range than the 1-bar thermal-expansion data. Our
major constraint for the cold term comes from the 300 K
DAC pressure isotherm of Dewaele et al. [25], which cov-
ers a range that includes both the α and ε phases. Our fit

(a) (b)

FIG. 1. Fe phase diagram from our multiphase EOS for two pressure ranges: (a) P � 2 Mbar and (b) P � 4 Mbar, respectively. Blue
indicates the α phase (ambient bcc), gray indicates ε (hcp), cyan indicates γ (fcc), brown (just below Tmelt near P = 0) indicates δ (high-
temperature bcc), and orange indicates the liquid. Principal Hugoniot curves for our EOS at two different starting densities (corresponding
to those reported in Nguyen and Holmes [71]) are indicated by the red dashed and dotted lines in the (b) panel. Also displayed are various
points from experimental determinations of the melt curve, and shock-melt pressures from Nguyen and Holmes (vertical red bars, where we
have also included error bars on their reported uncertainties in pressure). The magenta solid curves that appear below 0.25 Mbar in (a) indicate
experimentally reported α → ε, α → γ , and γ → ε phase-transition curves [173,174]. Due to space limitations, in this figure and in all
subsequent figures, we include the name of only the first author in the label for each reference that involves three or more authors.
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(a) (b)

FIG. 2. (a) Ambient-pressure thermal-expansion data from (solid [172]; blue symbols) and (liquid [1–3]; red symbols), and the 1-bar ρ(T )
isobar from our EOS (dashed line); and (b) ambient-pressure entropy from experiments [4] (symbols) and our EOS (dashed line).

(a) (b)

(c) (d)

FIG. 3. Principal Hugoniot of Fe covering different pressure ranges and different thermodynamic stability fields: (a) P � 0.15 Mbar (α
phase [bcc]), (b) 0.2 Mbar � P � 2.2 Mbar (ε phase [hcp]), (c) 2 Mbar � P � 10 Mbar (liquid), and (d) P � 60 Mbar (high-P liquid),
respectively. Symbols correspond to experimental measurements, and the dashed lines are from our EOS model.
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(a) (b)

FIG. 4. (a) Room-temperature isotherm data from the DAC measurements of selected references [25,28,31] (symbols), and the correspond-
ing isotherm from our EOS in the regime of stability for α (bcc) and ε (hcp) phases (black line). (b) NIF ramp-compression data from Smith
et al. [42] (symbols), and the principal isentrope from the EOS (black line).

to the 300-K pressure-isotherm data of Dewaele et al. [25],
Yamazaki et al. [28], and Sakai et al. [31] is shown in Fig. 4(a),
where the portion for P < 0.13 Mbar corresponds to the α

phase.

B. ε (hcp)

Since the ε phase is not stable at ambient pressure (see
Fig. 1), we lack the T -dependent thermal-expansion and
absolute-entropy data that we have for α, γ , δ, and the
liquid. Instead, our main experimental constraints pertain
to the stability of this phase relative to that of α and γ ,
pressure-isotherm data from DAC [25], shock data along the
principal Hugoniot curve (i.e., with initial conditions of ρ0 ∼
7.874 g/cm3 and T0 = 300 K) from multiple studies [43–58],
and recent ramp-compression data from Lawrence Livermore
National Laboratory’s National Ignition Facility (NIF) [42].
Above 2.25 Mbar, the experimental work of Nguyen and
Holmes [71] shows the Hugoniot final states to be either
in a solid–liquid mixed phase state or in the pure liquid.
Thankfully, the literature includes many Hugoniot points with
pressures between 0.13 and 2.25 Mbar, and hence within
the pure ε-phase region. These data, along with the 300-K
pressure isotherms of Dewaele et al. [25] and Sakai et al. [31],
provide us with enough constraints to determine both Fcold(ρ)
and γion(ρ) for ε up to ρ ∼ 12.75 g/cm3, the highest ρ point
shown in Fig. 4(a). From roughly 9–12 g/cm3, we also have
principal Hugoniot data that are still in the ε phase [as shown
in Fig. 3(b)], but we lack highly constraining and consistent
fixed-T isotherm data. For densities above 12.75 g/cm3, we
have neither constraining DAC data nor Hugoniot data for
ε-phase final states [71]. However, the NIF ramp-compression
data [42], which are ostensibly in the ε phase, are available
for pressures up to 14 Mbar (and densities up to ∼20 g/cm3).
We constrain to these data by assuming that they lie on the
principal isentrope of Fe; since this isentrope should be very
close to the 300-K isotherm in ρ–P space, it serves mainly as
a constraint for the Fcold(ρ) of ε.

Figure 4(b) shows the NIF ramp-compression data up to
P = 14 Mbar, along with the isentrope of our ε-phase free-
energy model after suitable constraints have been applied.
Above this pressure, we have no (quasi-)isentropic data for
Fe at the time of this writing. We must therefore appeal to
the predictions of ab initio electronic-structure calculations
for EOS information at larger compressions, which we do
by referring to the ε-phase cold curve as computed [175]
by an all-electron DFT method using the Perdew–Burke–
Ernzerhof (PBE) exchange–correlation functional [165,166].
For ρ > 100 g/cm3 we morph the ε-phase Fcold(ρ) into that
of PURGATORIO, as we do for the liquid, described above in
Sec. II B.

Figure 5(a) shows the cold energies of the α and ε phases
from our EOS (along with those of the other phases; see
the discussions below), near ambient density. Note that the
large 
ρ between the minima of Fα

cold(ρ) (solid blue curve)
and F ε

cold(ρ) (dashed-dotted black curve) reflects the sizable
volume change seen in the α −→ ε transition that is discussed
in the study by Boettger and Wallace [130] and references
therein. Additionally, we see that the resulting minima of
F liquid

cold (ρ), F γ

cold(ρ), and F δ
cold(ρ) are each far closer to that of

α than to that of ε, as required by the thermal-expansion data
[1–3,172] in Fig. 2(a).

The discussion thus far pertains primarily to our constraint
of Fcold(ρ) for all ρ, together with our constraint of γion(ρ) for
ρ < 12.5 g/cm3, both for the ε phase. We must still choose
the ionic Grüneisen parameter at higher densities, followed
by θ (ρ) at some value of ρ [from which the full ρ-dependent
curve will then follow, according to Eq. (5)]. For the latter, we
appeal to the fact that the α −→ ε phase transition occurs at
P ∼ 0.13 Mbar (Fig. 4), and this transition pressure decreases
slowly as T is increased [130]. Figure 5(b) shows the θ (ρ)
for each phase after this fitting (and the fitting described in
subsequent sections, for other phases) has been performed.
Note that θα (ρ) is relatively close to θε (ρ), a consequence of
the relative independence of the α −→ ε transition pressure
on T . The precise relationship, showing crossings at around
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(a) (b)

FIG. 5. (a) Phase-dependent cold energy curves, Fcold (ρ ), for our multiphase Fe EOS in the neighborhood of ambient density. (b) Density-
dependent Debye temperatures θ (ρ ) for four out of the five phases (excluding the δ phase) over a slightly wider range of density than shown
in (a). The liquid θ (ρ ) is the lowest, owing to that phase’s largest entropy, followed by θγ (ρ ).

12 g/cm3, is needed to reproduce the experimentally deter-
mined α–ε phase line in detail, given the specific Fα

cold(ρ)
and F ε

cold(ρ) we have employed. Additional comparisons to
our DFT–MD predictions of P(ρ, T ) in the ε phase (see Ap-
pendix A) informs our choice of γion(ρ) for ρ > 12.5 g/cm3,
completing our specification of the free-energy model of this
phase, though small tweaks to our F ε

cold(ρ) and θε (ρ) func-
tions were made subsequent to the application of the above
constraints, to appease agreement with the ε–γ phase line.

C. γ (fcc)

The γ phase of Fe is observed to be thermodynamically
stable below about 1 Mbar [Figs. 1(a) and 1(b)], and Fe is
believed to melt out of this phase in this pressure range. Like
in the case of the α phase, we use the 1-bar S(T ) and ρ(T )
data of Refs. [4,172] as constraints for the lowest-ρ portions
of Fcold(ρ) and θ (ρ) [Figs. 2(a) and 2(b)]. Additional con-
straints on the ρ dependence of these functions are supplied
by experimental data on the α − γ and ε − γ phase lines
[18]. The principal Hugoniot (i.e., the Hugoniot starting in
the normal ambient conditions, in the α phase) has no final
states within the stability field of the γ phase, meaning that
it misses that phase entirely. The only way to shock into γ is
therefore to shock from a preheated initial state, and this was
accomplished by Chen and Ahrens in 1997 in their attempt
to characterize the γ -phase EOS for planetary-science appli-
cations [69]. Their Hugoniot points, starting from a (P = 0,
T = 1573 K) initial state, are shown in Fig. 6(a), along with
the same Hugoniot as rendered by our γ -phase free-energy
model, after (admittedly imperfect) agreement with these data
is achieved by bending the higher-ρ portions of our Fcold(ρ)
and γion(ρ) functions appropriately.

For experimental confirmation on the lower-P portion of
our γ -phase free-energy model, we turn to the shock–release
measurements of Zhernokletov et al. [68], in which releases
to various lower-stress states were observed after shocking
to ∼1.5 Mbar. Figure 6(b) shows these points in the plane of

pressure versus particle velocity (up; blue symbols). Assum-
ing the release to be isentropic, we compare to the isentrope
(dashed curve) of our EOS that intersects the 1.5 Mbar shock
state, as determined by the Hugoniot of our model (solid
curve). We note that we did not use the points of Fig. 6(b)
as constraints in our fitting, yet the agreement is excellent.
Since the lowest three (P < 0.5 Mbar) of these measured
release points reside within the γ phase, this provides a strong
confirmation of the accuracy of the low-P portion of our γ

free-energy model.

D. δ (high-T bcc)

The δ phase occupies an exceedingly small range of pres-
sure and temperature in the Fe phase diagram [see Ref. [18],
also shown in Fig. 1(a)]; this phase covers an approximate
T –P range of P < 0.05 Mbar, and T between 1650 and
1811 K. As such, it is unnecessary (and impossible, from
experimental data) to construct Fcold(ρ) and θ (ρ) functions
pertaining to it which cover a substantial range of ρ. The
comprehensive thermal-expansion data of Abdullaev et al. [3]
provides us with the means to determine the product of γion

and the bulk modulus (given the specific heat), and the entropy
data in the NIST heat-capacity database [4] [see Fig. 2(b)]
provides a suitable constraint on θ . The position of δ relative
to γ and liquid in the phase diagram then yields a unique
determination of the difference between the cold curve of δ

and that of the other phases at the relevant densities.

E. Liquid

The liquid is the only phase that is stable over the full
range of compression (since as we mentioned in Sec. I,
what we refer to as the liquid includes all fluid phases en-
compassed by our EOS), and we must represent its free
energy at temperatures in the range from T ∈ [Tmelt (ρ),∞)
at each ρ. The mandate that the liquid EOS reaches the
ideal-gas EOS at sufficiently high T is satisfied by our
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(b)(a)

FIG. 6. (a) Hugoniot for a liquid initial state at ambient pressure and T0 = 1573 K. Symbols correspond to experimental measurements [69],
and the dashed curve is from the EOS. The final states represented by these data are believed to reside within the γ phase. (b) Shock–release
data in the P–up plane (blue symbols) [68] along with our EOS model’s principal Hugoniot (solid curve) and assumed isentropic release
(dashed curve) from a given shock state at about 1.5 Mbar. The lowest-P release states (P < 0.5 Mbar) should reside within the γ field of
stability.

F liquid
ion (ρ, T ) and Felectron(ρ, T ) models of Eqs. (6)–(9); how-

ever, we must additionally determine suitable F liquid
cold (ρ) and

θ liquid(ρ) functions to attain agreement with a host of liquid
phase ambient-pressure thermal-expansion and entropy data,
as well as high-pressure shock data. Unlike for the α and ε

phases, we lack isothermal constraints from DAC; in their
stead, we have the important constraint of a prescribed melt
curve Tmelt (P), and it is here that we are forced to choose
which of the recent experimentally determined melt curves to
assume. Below P = 3 Mbar, there are two distinctly different
Tmelt (P) curves motivated by DAC studies, which we label
“higher-Tmelt” (see, e.g., Ref. [29]) and “lower-Tmelt” (see,
e.g., Refs. [14,26]). We choose the higher-Tmelt values as the
constraint to our EOS model, largely because we deem them
to be in better agreement with shock-melt data [71]. However,
we will present in Sec. V A our variation to the present Fe
EOS (which we name low-Tmelt-DAC, as indicated in Table I),
appeasing agreement with the lower-Tmelt inferences [14,26]
while sacrificing shock-melt agreement. Likewise, there is
still uncertainty in Tmelt (P) for P > 3 Mbar, despite the fact
that recent shock–ramp in situ x-ray diffraction experiments
have provided important new constraints in the 5 Mbar <

P < 10 Mbar range. We discuss our use of these data in
Secs. IV E 1 and V B, in the context of the two baseline EOS
models and our Kraus-Tmelt-SRX EOS model variation.

We divide our discussion on the baseline liquid model into
the following two subsections, depending on whether we are
interested in densities indicative of compression or expansion.
The focus of the latter subsection on the expansion region is
the liquid–vapor dome, which is important for applications
like Earth-core vaporization due to giant impacts [41].

1. Compression region

First, we address the single-phase liquid Fe EOS data at
near-ambient densities, including measurements of ρ(T ) and

S(T ) at ambient pressure. We fit the ρ(T ) data [1–3] in the
usual way, by constraining the near-ambient-ρ portions of
both Fcold(ρ) and γion(ρ) (though the absolute scale of Fcold

must be set in relation to the other phases’ cold energies,
through our matching to Tmelt; see below). The result of this
fitting has been shown in Fig. 2(a). For the S(T ) entropy
constraint, the NIST data [4] contains several experimentally
inferred points just above Tmelt (P = 1 bar) [see the red points
in Fig. 2(b)], and then another at the boiling point roughly
1000 K higher in temperature. In these NIST tables, more
points than just these four in the liquid regime are presented,
but it is our understanding that the intervening values are
derived from an assumed low-pressure liquid EOS model.
Thus, we restrict our fitting to just these few points, shown in
Fig. 2(b). This allows us to constrain the Debye temperature
θ (ρ) of the liquid independently of the melt curve Tmelt (P) at
low densities.

Most of the available data pertaining to the liquid in the
compression region lie at intermediate densities in the range
up to about 22 g/cm3 along the principal Hugoniot. Through
an iterative process, we simultaneously fit Fcold(ρ) and γion(ρ)
of the liquid to the following set of data that reside in this
range:

(1) The liquid branch of the principal Hugoniot, which
starts at a pressure of about 2.6 Mbar [71] and is depicted in
Figs. 3(c) and 3(d).

(2) As apparent from Figs. 3(c) and 3(d), there are sig-
nificant regions that are notably devoid of Hugoniot data.
In some of the regions that are sparse in data (particularly
14 g/cm3 < ρ < 15.2 g/cm3, and 16 g/cm3 < ρ < 18
g/cm3), we use our own DFT–MD simulations presented in
Sec. III and Appendix A to help constrain the EOS. In ad-
dition, we consider the general insight of Wallace [139] that
for elemental metals, 
Smelt is ∼0.8 kB/atom. This finding
has been used in the construction of other multiphase, high-
pressure EOS models [141,155], and we use it to guide our
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EOS development as well, along with the constraint from the
reported ambient-pressure 
Smelt value [4] of 1.04 kB/atom.
To be clear, the DFT–MD simulations and this rule-of-thumb
from Wallace are not hard constraints that we follow precisely;
rather, they provide starting points from which we began our
liquid EOS construction, and have helped to guide us as we
gradually refine the model through the iterative process.

(3) For P < 1.6 Mbar, we fit to the DAC Tmelt (P) mea-
surements of Anzellini et al. [29], which lie on the higher
Tmelt (P) end. Considering Figs. 5(a) and 5(b) together, note
that the difference, F liquid

cold (ρ) − F ε
cold(ρ), together with the

log-ratio, 3kBln[θ liquid(ρ)/θε (ρ)], represent the internal en-
ergy difference and entropy difference, respectively, needed
for the Tmelt (P) curve of our EOS to agree with our choice of
Anzellini et al. [29] for P < 1.6 Mbar.

(4) For the intermediate pressures of 2–3 Mbar, there is
an additional experimental constraint from the shock-melt
measurements of Nguyen and Holmes [71].

(5) For 4 Mbar < P < 10 Mbar, we use the recent exper-
iments of Kraus et al. [85] to inform our choice of Tmelt. As
described in more detail below, we use the phase identifica-
tions of Kraus et al. determined by in situ time-resolved x-ray
diffraction as input for this choice.

Once Fcold(ρ) and γion(ρ) in this intermediate density range
are established in an iterative manner to agree with these data,
we perform a numerical interpolation to connect these func-
tions to their values at the near-ambient densities described in
the preceding paragraph. We now take the next few paragraphs
to explain in more detail how we have used some of the
constraints listed above to determine Fcold(ρ) and γion(ρ) of
the liquid for ρ < 22 g/cm3, and then proceed to a discussion
of how we determine Fcold(ρ) and γion(ρ) of this phase at
extreme densities up toward 103 g/cm3.

By measuring the abrupt changes in Lagrangian sound
speed on the Hugoniot and associating said changes with
the loss of strength in the liquid, Nguyen and Holmes [71]
determined the intersection between the Hugoniot and solidus
to be at 2.25 ± 0.03 Mbar, and the intersection with the liq-
uidus to be at 2.60 ± 0.03 Mbar. These intersections provide
tight constraints on the relationship between the four func-
tions F ε

cold(ρ), F liquid
cold (ρ), θε (ρ), and θ liquid(ρ) in this restricted

range. Figure 1(b) shows the results of this fitting, over the
larger range of 0 < P < 4 Mbar. Tmelt (P) is indicated by
the boundary between gray (ε) and orange (liquid) regions.
The dashed red curve shows our model’s prediction of the
principal Hugoniot in T vs P, while the vertical red lines
mark the pressures of intersection with solidus and liquidus
boundaries as determined by Nguyen and Holmes (including
their experimentally reported uncertainties) [71]. Too small or
too large values of 
Vmelt and 
Smelt at Tmelt would give rise
to a solid–liquid mixed-phase region on the Hugoniot that is
either substantially smaller or larger than our present value.
In the above analysis, we have assumed that a discontinuity in
the slope of the experimentally determined longitudinal sound
speed, dCL(P)/dP, is exactly coincident with the pressure at
which the Hugoniot intersects Tmelt (P). This may not be true
in all cases, as argued by Beason et al. in recent work on other
materials [176]. Likewise, recent work on shock melting by
Turneaure et al. [82] using in situ x-ray diffraction supports

a more complex picture [which is perhaps not surprising,
given that detecting the inception of melting (where the phase
fraction of liquid is very small) or completion of melting
(very small phase fraction of solid) using x-ray techniques
that probe the surface of a sample is a difficult task], where
the width of the hcp–liquid, two-phase region on the principal
Hugoniot is reported to be only 0.05 Mbar, which is signif-
icantly narrower than the 0.35 Mbar width observed from
Nguyen and Holmes [71], and the approximately 0.24 Mbar
width from DFT simulations. Although it is encouraging that
the two-phase region from Turneaure et al. resides within
the middle of the 2.25 to 2.60 Mbar two-phase region from
Nguyen and Holmes, suggesting at least some consistency
between the two studies, we do not use Turneaure et al. results
to construct our EOS since they imply a rather small 
Vmelt

(and correspondingly small 
Smelt) that we do not expect
Fe to exhibit. Brown and McQueen [52] also report shock-
melting data along the principal Hugoniot. Their two-phase
region resides within that of Nguyen and Holmes, though
it is wider than the two-phase region reported by Turneaure
et al. [82]. But the sample involved in Brown and McQueen
is actually a high-purity (∼99% Fe) steel, and not pure Fe
like in Nguyen and Holmes. Although the steel sample is
likely to behave similarly to pure Fe, the possible effect of the
impurities on melting has not been well characterized above
ambient pressure (although the melt temperature of the steel at
ambient pressure is known to be lower than that of pure Fe),
which is again we why have chosen Nguyen and Holmes to
anchor the baseline versions of our EOS.

At the time of this writing, there is only one set of
experimental data pertaining specifically to the Fe melt
curve for P > 4 Mbar: In a 2022 study by Kraus et al.
[85], samples of high-purity Fe were shocked to pressures
between approximately 2 and 3 Mbar, and were then (fol-
lowing a brief release) ramp compressed to peak stresses
between 5 and 10 Mbar. In each of the seven reported shots,
in situ time-resolved x-ray diffraction was obtained during
the ramp compression, and phase information was returned.
Figures 7(a) and 7(b) display the final stresses (x axis) reached
after the shock–ramp compression, indicated by the symbols.
Attached to each is a dashed curve representing the isentrope
corresponding to the ramp-compression path, as computed
from our EOS. In the figure’s key, the phase identification
at the peak stress from the x-ray diffraction [85] is listed,
with “hcp”, “L”, and “mix” indicating pure-phase hcp, pure-
phase liquid, and an hcp–liquid mixed phase, respectively. We
have chosen here to interpret these particular phase identifica-
tions as representing thermodynamic equilibrium information
[177], and this then prompts us to locate our model’s melt
line to be that shown as the solid black curve in Fig. 7. It
is crucial to stress that this constitutes a particular assump-
tion regarding their measurements. That is, we have assumed
that the solidification kinetics is sufficiently fast that the melt
boundary, so determined, is not representative of a metastable
(i.e., overdriven) extension of the liquid phase. While ar-
guments put forth in Kraus et al. indicate that exceedingly
rapid solidification is a distinct possibility, one may have to
reassess this aspect of our multiphase EOS if further informa-
tion inconsistent with this equilibrium assumption becomes
available. (The melt curve would have to be shifted to higher
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(a) (b)

FIG. 7. (a) Principal Hugoniot (red curve), isentropes (dotted curves), and melt line (black curve) from our min-Tmelt-SRX model together
with the melt line inferred in a recent 2022 study by Kraus et al. [85] (orange curve). Here, we have analyzed five sets of shock–ramp
experiments from their study. The pressures listed next to the labels for each isentrope (2.23–3.04 Mbar) indicate the pressures along the
Hugoniot where each isentrope (i.e., the ramp portion of the experiments) was initiated. The open symbols represent the final stresses (5.48–
9.90 Mbar) reached in the shock–ramp experiments, and they are colored to match those of their corresponding isentropes. Furthermore, the
shapes of these symbols are such that the squares (�), circles (©), and pentagon (�) denote final experimentally accessed states that Kraus
et al. determined via in situ x-ray diffraction to be in the hcp, liquid, and mixed (hcp + liquid) phases, respectively. The temperatures at
which they cross the isentropes are determined by the min-Tmelt-SRX version of our EOS model. (b) Magnified view of (a), concentrating on
5 Mbar < P < 11 Mbar.

temperatures in that case.) Under this equilibrium assump-
tion, Kraus et al. additionally developed models to obtain
estimates of the temperature/entropy along the melt curve
and along the various shock–release paths. Their result-
ing Tmelt (P) curve, which is shown as the orange curve in
Fig. 7, is still nevertheless different from our melt curve—
even though we have used their experimental diffraction
data on the phase identifications—because their underlying
assumptions/models in estimating the melt temperatures are
different from those of the free-energy models in our mul-
tiphase EOS. We discuss this in greater depth below in
Sec. V B, where we construct model variations in an attempt to
better understand these differences. The results of this analysis
lead to EOS model uncertainties, which allow for a range of
acceptable Tmelt (P) for P > 5 Mbar (see Fig. 13) and our two
different EOS baseline models that capture this range.

At elevated pressures, there is a paucity of temperature
measurements with which we can validate the thermal compo-
nents of our Fe EOS. In recent years, however, experimental
techniques have emerged to address this, and while they are
still in development, we now present comparisons with these
data (many of which pertain to the solid phases discussed
above; we include these comparisons in this section because
some pertain to the liquid phase). Figure 8 shows the Yoo
et al. optical pyrometry-derived Hugoniot temperature [67]
(right-facing triangles), the Brantley et al. optical pyrometry
data (open squares) [83], and EXAFS (extended x-ray ab-
sorption fine structure; upward-facing triangles) data points
along the principal Hugoniot (red), as well as various reshock
states (blue). In the latter, in situ identification of the hcp
crystal structure was also obtained. Note that while the EX-
AFS measurements on the Hugoniot [75], the solid-phase
Hugoniot pyrometry data [83], and the liquid-phase pyrom-

etry measurements of Yoo et al. [67] are all in good accord
with our model’s T (P) Hugoniot, the optical pyrometry point
from Brantley et al. [83] (open square at P ∼ 2.3 Mbar) in

FIG. 8. Melt curve of our EOS (black line) together with that
model’s principal Hugoniot (red line). Also shown are DAC mea-
surements of Tmelt (P) from Anzellini et al. [29], fits of Tmelt (P) from
the shock-melt inference of Li et al. [129] (blue + symbols), the
shock–ramp melt inference reported in Kraus et al. [85] (orange
dashed line), and Hugoniot temperature measurements from Yoo
et al. [67] (gray and cyan right-pointing triangles). EXAFS (extended
x-ray absorption fine structure) [75] and optical pyrometry [83] on
Hugoniot and reshock states are represented by the upward-pointing
triangular and square symbols, respectively, along with their reported
error bars.
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the liquid (also ostensibly on the principal Hugoniot) is in
disagreement with our model. We do not have an explanation
for the discrepancy at this time; we have chosen to keep our
liquid free-energy model as-is despite this, due to our agree-
ment with other experimental data in this range and DFT–MD
predictions (Sec. III and Appendix A). In contrast, the lower-
P pyrometry point from Brantley et al., which lies at P ∼
0.95 Mbar in the ε phase, is quite close to our T (P) Hugoniot,
while the solid-phase Hugoniot temperature measurements of
Yoo et al. [67] (gray right-facing triangles) are in marked
disagreement with our model and other measurements
[75,83]. Another high-T , high-P experimental inference is the
entropy along the Fe Hugoniot as determined in a 2015 study
by Kraus et al. [41], in which the authors connected ambient-
pressure measurements of entropy at the vaporization point to
a point on the Hugoniot at P ∼ 5 Mbar through an assumed
isentropic release. The entropy along the principal Hugoniot
from our EOS, which was not fit to agree with this entropy
inference, happens to go right through this point, providing
further validation for our liquid Fe free-energy model. This
experimental entropy point is lower than the values reported
in the more recent 2022 study by Kraus et al. [85], which is re-
flected in the fact that our EOS yields lower melt temperatures
than those inferred in the 2022 study, as illustrated in Fig. 7.
Kraus et al. attribute the discrepancy in the 2015 and 2022
results to a difference in the reference entropy at a pressure of
about 2.6 Mbar along the Hugoniot.

No experimental data on the thermophysical properties
of Fe exist at the time of this writing for ρ > 22 g/cm3

(maximum density of the available principal Hugoniot data).
We mentioned in Secs. II B and IV B that our liquid and
solid Fcold(ρ) functions asymptote to that of the PURGATO-
RIO model [138] of Fe at high ρ, by construction, and that
limρ−→∞γion(ρ) is taken to be equal [159] to 1/2. These we
deem to be proper choices. An approach to the prediction
of the ionic-excitation contribution of Fe at ultrahigh com-
pressions that is consistent with these choices is the work of
Swift et al. [128], which used an extension [150] of the IN-
FERNO model [137] to compute the density-dependent ionic
Grüneisen parameter of Fe by invoking an Einstein vibrational
model [139] within a spherical-atom-in-jellium context. We
use these ab initio electronic-structure predictions of γion(ρ)
to constrain our liquid (and ε phase) γion(ρ) functions for
ρ > 150 g/cm3. This, together with an application of a Linde-
mann melt hypothesis [178] to set the trajectory of Tmelt (ρ) at
these highest ρ, guarantees that our model’s Tmelt (P) is of the
same order of magnitude as the prediction of Swift et al. [128]
in the many-TPa regime. Our Fcold(ρ) and γion(ρ) functions
from below 22 g/cm3 are connected to their values in this
ultrahigh-density regime (ρ > 150 g/cm3) through numerical
interpolation.

It is interesting to note that the Cell model [136,157] por-
tion of our liquid free energy, described in Sec. II B, legislates
a particular manner in which the ideal-gas limit is approached.
More specifically, the precise evolution of Eion(ρ, T ) and
Pion(ρ, T ) as T is raised above Tmelt (P) depends on our choice
of θ liquid(ρ). We previously examined this for the case of
elemental Be [136] by comparing to high-T Kohn–Sham
DFT–MD predictions of EOS. We hope to conduct a similar
study for Fe in the future, to fully assess the implications of

our choices in this paper, vis a vis high-T liquid EOS. For now,
we are at least satisfied that the shock data at all compressions
is fit quite well by our liquid free-energy model, and that the
T −→ ∞ limit of our model is correct for both E (ρ, T ) and
P(ρ, T ).

2. Expansion region: Liquid–vapor transition

For the low-ρ portion of our liquid EOS model, we con-
struct a liquid–vapor transition region, as was also done by
Kerley [133] and Medvedev [134] for their Fe EOS models.
We choose to fit to the recent DFT–MD predictions of Li
et al. [129], where the critical point was predicted to lie
between 9000–9325 K in temperature and between 1.85–
2.40 g/cm3 in density. To affect a liquid–vapor dome, we
first join our previously constrained F liquid

cold (ρ) at higher densi-
ties to the form shown as the dashed line in Fig. 9(a). This
creates a situation in which the energy of homogeneously
expanded Fe in the dilute limit of an ideal gas becomes ρ

independent, as required, and where the energy difference
between F liquid

cold (ρ −→ 0) and Fcold(ρ0) (≡ E0) is related to
the cohesive energy. Such a cold internal-energy isotherm,
otherwise uncorrected, would violate thermodynamic stabil-
ity [139], because the resulting free energy would have the
property, (∂2F/∂V 2)T < 0. However, adding on a sensible
thermal contribution and then requiring convexity of the to-
tal free energy leads to the familiar liquid–vapor transition
[133,134,139,145,160].

The result of this construction for the low-ρ portion of
Fliquid(ρ, T ), prior to enforcing convexity, is depicted in
Fig. 9(b), showing pressure isotherms in the region of interest.
The highest-T isotherm displayed (red curve) is one very near
the critical isotherm; the precise (ρ, T )-location of the critical
point was set by carefully adjusting the curvature of F liquid

cold (ρ)
[Fig. 9(a)] in concert with the behavior of γ

liquid
ion (ρ) in this

regime.
In closing this Sec. IV E on the liquid, which is the

last phase covered by our discussion on the EOS, we note
that Appendix B contains parameters needed to construct
analytic representations to portions of our phase-dependent
free-energy models.

V. EOS MODEL VERSIONS MOTIVATED
BY UNCERTAINTIES IN THE MELT DATA

A. Variation for P < 3 Mbar that addresses
DAC melt uncertainties

As we have indicated variously throughout this paper, we
choose to produce a variation to our multiphase Fe, which,
unlike our baseline versions, respects agreement with the
lower-Tmelt (P) values of Boehler et al. [26] and Sinmyo et al.
[14]. Figure 10 shows the phase diagram of this variation of
our EOS, which we refer to as low-Tmelt-DAC, where we fol-
lowed a nearly identical procedure to that outlined above, but
with a different assumption for Tmelt (P). This phase diagram
may be compared with that of our min-Tmelt-SRX baseline
model, which is shown in Fig. 1 and is fit to the higher Tmelt (P)
inference from Anzellini et al. [29] for P < 3 Mbar.
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(a) (b)

FIG. 9. (a) Cold curve, Fcold (ρ ) for the liquid in expansion. The vertical distance between the two red horizontal dashed lines indicates the
cohesive (i.e., atomization) energy Ecoh. (b) Pressure isotherms from the EOS, prior to a Maxwell construction, in the liquid–vapor transition
regime. This nonconvex version of the EOS is required by many of the continuum, multiphysics codes [179–181] that are ubiquitous in
high-energy-density science. In regions where the EOS returns a negative pressure, material damage/spall models in these codes come into
play and override the EOS, thereby avoiding thermodynamic-stability issues that would otherwise be encountered. The convex version of the
EOS, which can be obtained through a Maxwell construction, generates the liquid–vapor dome and the critical point, which are necessary for
some of the applications discussed in Sec. VI.

Relative to the min-Tmelt-SRX baseline model, the solid-
phase free energies of the low-Tmelt-DAC variation are very
nearly the same, while the liquid model is more dissimilar.
This is seen in Figs. 11(a) and 11(b), which present cold
curves and Debye temperatures for the hcp and liquid phases
of each EOS version. At the time of this writing, we have
been unable to find a lower-Tmelt parametrization, which pre-
serves agreement with the Nguyen and Holmes shock-melt
data [71], as illustrated in Fig. 10(b). Because we deem the
Nguyen and Holmes data to be an important and reliable
set of constraints, we have chosen our two baseline models
(min-Tmelt-SRX and max-Tmelt-SRX; see Table I) to satisfy the
high-T DAC melt line [29] so that they can also be consistent

with Nguyen and Holmes, and it is these two baseline versions
that we recommend for use in planetary-modeling efforts. We
designate our low-Tmelt-DAC variation to represent an alter-
native scenario where one instead follows the DAC-derived
melt line from Boehler et al. [26] and Sinmyo et al. [14]
at the expense of not satisfying Nguyen and Holmes. We
note, however, that the full swath of P vs ρ shock Hugoniot
data points (as presented in Fig. 3) are fit equally well by
both versions, given that these Hugoniot curves are essentially
the same, as shown in Fig. 11(c). This reflects the fact that
melt curves (and phase boundaries in general) tend to be
more sensitive to free-energy variations than are Hugoniot
curves.

(a) (b)

FIG. 10. Fe phase diagram for the low-Tmelt-DAC variation of our multiphase EOS for pressures up to: (a) 2 Mbar, and (b) 4 Mbar.
Blue indicates α, gray indicates ε, cyan indicates γ , and orange indicates the liquid. Also displayed are various points from experimental
determinations of the melt curve.
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(a) (b)

(c)

FIG. 11. Comparison of our baseline EOS (min-Tmelt-SRX, which uses high-T DAC melt data) with our low-Tmelt-DAC variation: (a) cold
curves Fcold (ρ ) for the hcp (ε) and liquid phases; (b) Debye temperatures θ (ρ ) for the hcp and liquid phases of both EOS versions; (c) P vs ρ

along the principal Hugoniot.

B. Variations and baseline models that address melt-curve
uncertainties at P > 5 Mbar in shock–ramp

recrystallization experiments

In the discussion surrounding Fig. 7, we described the man-
ner in which we used the Kraus et al. [85] in situ x-ray phase
identification of Fe in their shock–ramp experiments to con-
strain the inputs to our liquid free-energy model in the 5 Mbar
< P < 10 Mbar range. And while that discussion concerned
the fitting of our baseline EOSs, it is clear that the nature of
these data admit the possibility of a family of EOS models that
all lead to similar agreement with these experimental phase
identifications. In this section, we explore the space spanned
by this family of EOSs (resulting in the baseline models:
min-Tmelt-SRX and max-Tmelt-SRX), and create an additional
EOS model variation (Kraus-Tmelt-SRX) that exactly follows
the Kraus et al. melt curve.

First, we stress that when we attempt to exactly follow
the Tmelt (P) reported by Kraus et al. [85], we obtain an
EOS model that predicts final states for two of their shock–
(assumed isentropic) ramp experiments that are inconsistent

with their x-ray diffraction phase identifications. This is il-
lustrated in Fig. 12, where the orange dashed line (which is
nearly coincident with the solid black line) shows Tmelt (P)
from Kraus et al., and the red and green dashed lines show
our model’s isentropes emanating from shocked states with
pressures of 2.62 Mbar and 2.75 Mbar, respectively. The
open symbols with the corresponding colors indicate the final
ramped pressures in these two shock–ramp experiments. The
green pentagon is located within the solid–liquid mixed-phase
region for any reasonable choice of EOS model inputs that
are consistent with both our functional forms assumed in
Sec. II, and the remaining thermophysical data for Fe that
we have employed throughout Sec. IV. However, this final
state was determined by the experiments to reside solely in
the liquid [85]. Likewise, the red square is located in a pure
(hcp) solid-phase region in our modeling, while the diffrac-
tion data showed clear signatures of an hcp–liquid mixed
phase. It is for this reason that we are forced to explore a
range of Tmelt (P) curves that deviate from the one reported by
Kraus et al.
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(a) (b)

FIG. 12. (a) Principal Hugoniot (red curve), isentropes (dotted curves), and melt line (black curve) from our Kraus-Tmelt-SRX model, which
is the particular variation of our EOS that is designed to reproduce Tmelt (P) from Kraus et al. (the latter is depicted by the orange dashed curve).
The open symbols located on each isentrope represent the final stresses (x axis) reached in various shock–ramp experiments reported in Kraus
et al. [85]. The temperatures at which they cross the isentropes are determined by the Kraus-Tmelt-SRX variation of our EOS. (b) Magnified view
of (a).

Our strategy will be to identify, within the rubric of our
free-energy models, both the highest and the lowest Tmelt (P)
curves that are consistent with the x-ray-determined phase
identifications reported by Kraus et al. [85], and in so doing,
produce the EOS models described in Sec. IV: min-Tmelt-SRX
and max-Tmelt-SRX. Starting from these baseline models,
this assessment involves making the smallest possible mod-
ifications to F liquid

cold (ρ), θ liquid(ρ), F ε
cold(ρ), and θε (ρ) such

that (1) the 9.90 Mbar final state (which is achieved by
ramp compression from a 2.56 Mbar Hugoniot state) lies
just within the pure ε (hcp) phase (min-Tmelt version), and
(2) the 9.57 Mbar final state (3.04 Mbar Hugoniot state)
lies just within the pure liquid phase (max-Tmelt version). In
both limiting cases, as with all intermediate model choices,
the 5.84 Mbar final state (2.62 Mbar Hugoniot state) is
mandated to lie within the ε–liquid mixed-phase region,
and the 5.56 Mbar final state (2.75 Mbar Hugoniot state)
is constrained to lie in the pure liquid phase. These lim-
iting cases are displayed, in a manner identical to that of
Fig. 7, in Fig. 13(a) for min-Tmelt-SRX and Fig. 13(b) for
max-Tmelt-SRX. Combining these limiting Tmelt (P) curves
from our analysis with the Tmelt (P) determination and error
estimates reported in Kraus et al. [85], we arrive at the plot
shown in Fig. 14. The Kraus et al. melt curve lies above that
from our max-Tmelt-SRX model above 4 Mbar (both curves
by design agree with Anzellini et al. [29] below this pressure
range). However, we note that our max-Tmelt does partly lie
in the uncertainty estimates presented by Kraus et al. [85],
which is indicated by the fact that the gray shaded region
between our max-Tmelt and min-Tmelt possesses a small, but
notable overlap with the magenta shaded region between the
dashed curves in Fig. 14.

The fact that there is an overlap in our respective Tmelt (P)
uncertainty estimates is encouraging. However, the fact that
these regions are mostly nonoverlapping (for P > 6 Mbar),
despite both analyses utilizing the same shock–(assumed
isentropic) ramp experiments, highlights the substantive dif-
ferences in the two approaches when translating these

final-state pressures to final-state temperatures. The assump-
tions leading to our final-state temperature predictions are
embodied in the free-energy models that we have employed
(see Sec. II), together with the phase-dependent fitting of
these models (see Secs. IV B and IV E) using a host of ex-
perimental data, including the x-ray diffraction data from
Kraus et al. As described in the Supplemental Material that
accompanies their paper [85], Kraus et al. infer Tmelt (P)
by employing a model that utilizes several experimentally
constrained/inferred quantities of the liquid phase: the heat
capacity CV , Grüneisen parameter γ , adiabatic sound speed
CS on the Hugoniot, principal Hugoniot P(ρ) and T (ρ), and
principal isentrope P(ρ). They use their model to perform
a thermodynamic integration to arrive at melt temperatures.
It is therefore insightful to exhibit these same quantities as
rendered in our EOS model in an effort to understand why our
melt temperatures tend to be lower than theirs.

Figure 15 illustrates these relevant quantities. We see from
Fig. 15(a) that our thermodynamic Grüneisen parameter γ

is smaller than that of Kraus et al. [85]. The figure also
includes direct experimental inferences on γ from two studies.
The red squares represent results in the liquid from Brown
and McQueen [52], while the black squares are a reanaly-
sis performed by Anderson and Ahrens [182] on the Brown
and McQueen results. To the extent of our knowledge, these
are the only direct experimental inferences that have been
reported on liquid γ in the relevant density range. We note
that γ in our EOS is a function of temperature (as well as
density) because of the contribution from the electron-thermal
term, but the temperature dependence is fairly weak for the
conditions shown in Fig. 15(a) so that our γ curve at 10 000 K
is only slightly above the 6000 K γ curve depicted in the fig-
ure. Kraus et al. constrain their Grüneisen parameter—which
they treat as a function of density only—with sound-speed
Cs measurements from Nguyen and Holmes [71] and the
pressure–density relation along the principal Hugoniot re-
ported by Brown et al. [57], Fig. 15(b) reveals that our EOS
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(a) (b)

FIG. 13. (a) Principal Hugoniot (red curve), isentropes (dashed curves), and melt line (black curve) from our min-Tmelt-SRX model. The
open symbols located on each isentrope represent the final stresses (x axis) reached in various shock–ramp experiments reported in Kraus et al.
[85]. The temperatures at which they cross the isentropes are determined by the min-Tmelt-SRX version of our EOS model. (b) Same as (a), but
for the max-Tmelt-SRX version of our EOS.

also agrees well with Cs from Nguyen and Holmes. It is worth
pointing out that these Cs data were not used as constraints
to our free-energy models, and so the good agreement gives
some confidence in the true predictive capabilities of our EOS.
(For completeness, we note that Brown and McQueen also
report CS data along the Hugoniot, but we have not included
their results in the figure because the material involved in
their study is actually a high-purity steel, and not pure Fe like
in Nguyen and Holmes, as we have mentioned earlier.) We

FIG. 14. Lower-bound (solid black) and upper-bound (solid red)
melt curves from our EOS models, where we have colored the region
between these two curves in gray. These curves come from our
min-Tmelt-SRX and max-Tmelt-SRX models, respectively. Analytical
fits of the melt curves from these two models to the Simon–Glatzel
equation in the range 0–15 Mbar are given in Appendix B. They
are plotted alongside the Tmelt (P) curve reported by Kraus et al. [85]
(solid magenta) and the uncertainty bounds on Tmelt (P) presented in
that work (dashed magenta curves that envelope the magenta shaded
region).

have utilized data from Brown et al. [57], as well as many
other sources, to constrain the liquid-phase EOS, as shown
in Fig. 3(c) and 3(d). Switching our focus now to the heat
capacity CV , Fig. 15(c) indicates that our CV is generally
higher than the value of 4.2 kB/atom (with uncertainties of
±1.0 kB/atom) Kraus et al. used to perform their analysis.
Interestingly, despite the somewhat large differences in CV ,
our relative entropy along the Hugoniot agrees well with
what Kraus et al. have obtained [Fig. 15(d)], and there are
not dramatic differences in the relative entropies along the
liquidus and solidus curves either [Fig. 15(e)]. Nevertheless,
the higher CV in our case is consistent with our arrival at
lower melt temperatures, and we again point the reader to
Fig. 8, which demonstrates that our EOS accurately predicts
Hugoniot temperatures since the data in the figure serve as
holdouts that were not fit to our EOS. In order to infer the melt
temperature from their experimental data, Kraus et al. follow
a two-step thermodynamic path in which one of these steps
involves performing a thermodynamic integration over an
isentrope. More specifically, this step involves integration of
the liquid-phase γ , which is an isentropic logarithmic deriva-
tive of temperature with respect to density, along an isentrope
where the two limits of integration are (1) the ∼12.5 g/cm3

density at the liquidus/Hugoniot intersection point and (2)
the density of the point along the liquidus whose Tmelt we
are trying to determine. The latter is where Fig. 15(f), which
compares the P–ρ behavior along the liquidus in our EOS
with that assumed by Kraus et al., comes into play. One can
see from the figure that our liquidus has a lower ρ for a given
P (i.e., is stiffer). Therefore, if the same thermodynamic inte-
gration procedure as in Kraus et al. were performed but with
quantities computed from our EOS instead, one would end up
integrating smaller values of γ over a narrower density range
and would thus arrive at a lower Tmelt than that reported in their
study. In summary, the smaller γ and liquidus density, along
with the higher CV , are the main reasons why our Tmelt (P)
tends to lie below Tmelt (P) from Kraus et al., as portrayed in
Fig. 14.
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(a) (b)

(c) (d)

(e) (f)

FIG. 15. Liquid-phase quantities of interest in determining Tmelt (P): (a) Thermodynamic Grüneisen parameter γ from our EOS (along
the 6000 K isotherm) compared with γ of the Kraus et al. model [85] and representative experimental data [57,182]. (b) Sound speed CS

data reported by Nguyen and Holmes [71] vs predictions in the liquid from our EOS. (c) Heat capacity CV from our EOS minus the 4.2
kB/atom value assumed by Kraus et al. [85]. (d) Entropy along the principal Hugoniot, which is plotted relative to the entropy value at the
solidus/Hugoniot intersection point (which occurs at around 2.25 Mbar) [71]. An earlier value reported by Kraus et al. [41] in 2015 is also
included. (e) Entropy along the Hugoniot, liquidus (Tml), and solidus (Tms) in our min-Tmelt-SRX model, all of which are depicted by dashed
curves, compared against those same curves from Kraus et al. (see the solid lines), which we have shifted by −1.08 kB/atom to align with our
EOS at 2.6 Mbar (where the liquidus intersects the principal Hugoniot), as well as the two shock–ramp data points (with error bars) reported
by Kraus et al. that provide the strongest constraints on the melt curve. (f) P vs ρ along the liquidus in our EOS and Kraus’ model, the latter
of which involves adding a 0.6 Mbar pressure correction to the ramp-compression curve of Smith et al. [42].
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FIG. 16. Pressure-vs-density isentropes for the Earth’s ICB from
the Preliminary Earth Reference Model (PREM) study [112] (black)
and from our EOS (blue).

VI. INITIAL GEOPHYSICAL AND PLANETARY-SCIENCE
APPLICATIONS OF THE EOS

As we stated at the outset, precise knowledge of the
multiphase Fe EOS is needed for the modeling of plane-
tary interiors, particularly those which are broadly similar
to Earth in size. One topic of perennial interest is a more
accurate and nuanced understanding of the nature of Earth’s
core, and specifically the thermodynamic conditions of the
inner-core boundary (ICB). In a recent experimental work,
Li et al. [81] attempted to infer the temperature at the ICB
from measurements of the shock-melt temperature of Fe using
in situ optical pyrometry during dynamic compression with
a two-stage gas gun. After a lengthy analysis, they arrived
at the estimate Tmelt (PICB = 3.28 Mbar) = 5990 K, largely in
agreement with the DAC inference of Anzellini et al. [29] and
the gas-gun + pyrometry work of Yoo et al. [67], but in dis-
agreement with the more recent pyrometry work of Brantley
et al. [83], in which a much higher shock temperature was
inferred. The min-Tmelt-SRX baseline model gives Tmelt (P =
3.28 Mbar) = 5975 K, quite close to the Li et al. work. We
therefore submit that the present Fe EOS will likely be of use
to planetary scientists aimed at exploring questions pertaining
to Earth’s interior, provided that they are interested in doing so
while respecting some of these recent experimental inferences
[29,81].

Also of interest is the density at the ICB and the associated
density difference 
ρ ≡ ρIC − ρOC between Earth’s inner and
outer cores, which are primarily composed of solid and liq-
uid Fe, respectively. Figure 16 shows isentropes from our
EOS model (blue), which exhibits a liquid −→ hcp transi-
tion as ρ is increased. The black curve shows the inferences
of these same IC and OC densities from the PREM (Pre-
liminary Reference Earth Model) study [112], in which the
density determinations were made after careful examination
of seismic data. Both black and blue isentropes have the

FIG. 17. Entropy along three different loci of shock Hugoniots,
each corresponding to a different initial condition. Solid curves in-
dicate the results of our min-Tmelt-SRX baseline EOS model, while
dashed curves indicate the results of our low-Tmelt-DAC variation.
The horizontal dotted blue line marks the entropy of vaporization
[41].

transition pressure at 3.28 Mbar (by design), but there is
a notable disagreement in both the value of 
ρ (PREM’s
0.6 g/cm3 vs our baseline model’s 0.154 g/cm3), and the
absolute density values. This has been discussed before in the
context of other Fe EOS models, and is known as the density
deficit. If this deficit is sizable, as it is in the case of the
comparison between our EOS model and PREM, it strongly
suggests that the composition of Earth’s core should have sig-
nificant contributions from lighter elements (such as Ni, S, Si,
O, C, H) [112]. Indeed, the larger density deficit exhibited by
the outer core could indicate that these lighter impurities are
more soluble in the liquid than in the solid. Further analysis
with our family of Fe EOS models, as employed in studies of
the EOSs of mixtures of Fe with other elements and the asso-
ciated phase-equilibria calculations (such as those performed
in one of our recent studies [183]) may prove enlightening
in this regard. In such cases, it may be necessary to consider
the possibility of a thermodynamically stable high-pressure
bcc phase, if such an allotrope is established to be favored for
cases of Fe mixed with other elements.

Finally, the Fe EOS is central to the study of Earth-core va-
porization due to giant impacts, such as might have occurred
to create our Moon [184]. In modeling this phenomenon, it
is crucial for the Fe EOS to contain a description of the
liquid–vapor transition (as ours does; see Sec. IV E 2), and it
is of interest to examine the pressure at which Fe vaporiza-
tion occurs, from which one can then predict how much Fe
vapor is likely to be released from the core during a given
impact event. Figure 17 shows the entropy along the shock
Hugoniots, as computed from our EOS model, from several
different initial conditions, as discussed in the planetary-
collision scenarios considered in Li et al. [81]. In Fig. 17,
we have taken the vaporization entropy to be ∼15 kB/atom;
this leads to specific vaporization pressures represented by
the crossings (∼2 Mbar, 3.5 Mbar, and 4.5 Mbar) for the
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(a) (b)

(c) (d)

FIG. 18. Comparisons between DFT–MD and our (baseline) EOS model for the ε (hcp) phase: (a) P(ρ, T ), (b) E (ρ, P). Open squares are
the DFT–MD predictions for the hcp phase, and the dashed lines are from the hcp EOS model. Comparisons between DFT–MD and the EOS
model for the liquid phase: (c) P(ρ, T ), (d) E (ρ, P). Squares are the DFT–MD predictions for the liquid phase, and the solid lines are from the
liquid EOS model.

different scenarios. It is also worth noting that the two high-
Tmelt-DAC models (i.e., the two baseline versions) and the
low-Tmelt-DAC variation of our Fe EOS all possess nearly
the same shock-vaporization pressures, as shown in Fig. 17.
We suspect that our Fe EOS models will prove useful in future
planetary-impact studies.

VII. CONCLUSIONS

We have presented the construction of a wide-ranged,
five-phase equation of state for elemental iron, in which
ambient-pressure, low-pressure, and static as well as dynamic
high-pressure experimental data were used to fit our phase-
specific free-energy models. We have designed this Fe EOS to
be accurate for planetary-science and high-pressure applica-
tions, including those relevant to ICB conditions and planetary
evolution and collision scenarios [41]. To achieve this goal,
we focus our EOS development on five key areas: (1) com-
pressibility, (2) shock-and-release behavior, (3) high-pressure

melting, (4) thermal expansion, and (5) vaporization with a
sensible liquid–vapor dome region. The resulting multiphase
EOS is designed to fit a diverse and carefully selected set
of data that span several orders of magnitude in temperature
and density. Furthermore, the EOS also demonstrates strong
predictive capability by providing excellent agreement with
certain holdout data not used in the EOS fitting. Specifically,
we have demonstrated good agreement with (1) solid-phase
[75,83] and liquid-phase [67] Hugoniot temperature measure-
ments (Fig. 8); (2) liquid sound-speed measurements [71]
along the principal Hugoniot [Fig. 15(b)]; and (3) isentropic
release-wave profiles from an elevated temperature condition
[Fig. 6(b)], all of which further demonstrate the fidelity of our
models.

Construction of the EOS requires addressing EOS data for
certain key properties that have been the subject of persistent
(and sometimes contentious) disagreement in the literature. In
particular, there are disagreements in: (1) the DAC Tmelt (P),
and (2) the presence or absence of a stable high-pressure bcc
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FIG. 19. Comparison with DFT–MD for the total energy of both
hcp and the liquid along isochores that collectively span a range of
12–18 g/cm3. Symbols are the DFT–MD predictions, and solid lines
are from the EOS model. See text for details.

phase. We have responded to the first of these disagreements
by constructing separate variations to appease the two melt
scenarios while keeping EOS constraints that are deemed
reasonably accurate unchanged (see Table II). This enables
us to asses the likelihood of each scenario by analyzing how
well the different EOS versions agree with other high-fidelity
experimental data or observations. Using this EOS-variation-
consistency approach, we conclude that the high-Tmelt-DAC
curve [29,81] is more likely to be correct because it is only this
branch that is consistent with shock-melting measurements
[71]. It is for this reason that the high-Tmelt-DAC data are
selected and incorporated into our baseline models.

At higher pressures, we have paid special attention to the
results of the recent multi-Mbar shock–ramp measurements
(SRX) published by Kraus et al. [85] in which solidification
was detected using x-ray diffraction techniques at pressures
between 5–10 Mbar. Since the temperature along the SRX
compression path was not directly measured, Kraus et al. em-
ployed a thermodynamic model to infer the melt temperature
from their data [85]. We have analyzed all seven of their SRX
shots and have found that above 6 Mbar, there is significant
ambiguity associated with the possible melt temperatures:
namely, there exists not one, but a family of EOS models—
whose melt curves are bounded by the min-Tmelt-SRX and
max-Tmelt-SRX versions depicted in Fig. 14—that all satisfy
the required agreement with SRX recrystallization phase ob-
servations. We find that our resulting melt curves must end
up being lower than that of Kraus et al., although these melt
curves do overlap partly with the uncertainty bounds reported
in their study. We anticipate that there will be many SRX ex-
periments in the future aimed at providing further constraints
on the melt above 6 Mbar, and one recommendation we make
for such studies is to take x-ray images around 9.5 Mbar for
a series of closely spaced ramp-compression paths initiated
from shocked states near where the two-phase region along

the principal Hugoniot is thought to reside (say, between 2.55–
2.75 Mbar).

In the mean time, it is our hope that our multiphase EOS
will be useful in addressing the sensitivities and uncertainties
for various planetary-science applications like further improv-
ing our understanding of the interior structure, evolution, and
formation of Earth and super-Earth planets. Furthermore, in
addition to applications in planetary science, our Fe EOS can
be used to construct EOS models for other iron-rich materials
of industrial relevance, such as stainless steels.
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APPENDIX A: DFT–MD RESULTS FOR THE EOS
OF HIGH-PRESSURE Fe

Here we present our VASP (16-valence-electron) PAW
pseudopotential DFT–MD results [161–168] (see Tables III
and IV), computed according to the specifications outlined
in Sec. III. Figures 18(a) and 18(b) show P vs ρ along three
isotherms, and E vs P along five isochores, both for the hcp
phase. Points indicate DFT–MD predictions, while the curves
display the results of our EOS model. Agreement is quite
good overall, though there are systematic discrepancies at the
lowest temperature (for P), and at the higher densities (and
lower E ) for the E (P) relationship. Figures 18(c) and 18(d)
show plots of the same quantities, but for the liquid phase.
Figure 19 portrays the internal energy of our multiphase EOS
model as a function of T for five isochores, along with the
DFT–MD predictions for both hcp (open squares) and the
liquid (filled squares). The signatures of the melt transition
in both the ab initio predictions and the EOS model are quite
apparent, manifesting in jumps in E as T is increased. We em-
phasize that direct input from ab initio predictions of Tmelt (P)
and (
Vmelt,
Smelt ) was avoided in the creation of the EOS
model; for instance, we let the width of the shock–melt region
as determined experimentally by Nguyen and Holmes [71]
dictate the magnitudes of 
Vmelt and 
Smelt in our EOS.
Rather, as mentioned in Secs. IV E and III, we have used the
ab initio simulations to provide starting points from which we
began our liquid-phase EOS construction and to help guide the
further refinement of our multiphase EOS in certain regions of
thermodynamic state space where available data are absent.

APPENDIX B: EOS PARAMETERS

Here, we present parameters and associated functional
forms which describe our underlying free-energy models.
Table V shows the parameters of a localized fit of our cold
energy and cold pressure near the ambient density ρ0 to em-
pirical model forms (Vinet or AP2), where E0, B0, and B′ are
the energy, bulk modulus, and pressure derivative of the bulk
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TABLE III. DFT–MD isochores for hcp (ε-phase) Fe. See
Sec. III for details regarding the computational methodology and
associated parameters.

ρ (g/cm3) T (K) P (GPa) E (kJ/g)

12.0 1000.0 150.96 −14.24
12.0 2000.0 159.69 −13.73
12.0 3000.0 169.61 −13.15
12.0 4000.0 180.84 −12.49
12.0 5000.0 193.40 −11.76
13.0 1000.0 230.45 −13.02
13.0 2000.0 239.43 −12.53
13.0 3000.0 249.41 −11.97
13.0 4000.0 260.63 −11.34
13.0 5000.0 272.84 −10.66
13.0 6000.0 286.42 −9.90
14.0 1000.0 325.90 −11.51
14.0 2000.0 335.20 −11.02
14.0 3000.0 345.39 −10.47
14.0 4000.0 356.65 −9.87
14.0 5000.0 368.98 −9.20
14.0 6000.0 382.19 −8.49
14.0 7000.0 396.60 −7.72
14.0 8000.0 412.47 −6.88
15.0 1000.0 438.52 −9.69
15.0 2000.0 447.96 −9.20
15.0 3000.0 458.28 −8.67
15.0 4000.0 469.58 −8.08
15.0 5000.0 481.92 −7.44
15.0 6000.0 496.17 −6.71
15.0 7000.0 510.26 −5.97
15.0 8000.0 525.08 −5.20
15.0 9000.0 540.29 −4.41
16.0 1000.0 569.05 −7.59
16.0 2000.0 578.37 −7.11
16.0 3000.0 588.55 −6.59
16.0 4000.0 599.82 −6.02
16.0 5000.0 612.23 −5.39
16.0 6000.0 625.46 −4.73
16.0 7000.0 640.81 −3.96
16.0 8000.0 654.45 −3.27
16.0 9000.0 670.37 −2.46
16.0 10 000.0 687.02 −1.63
17.0 1000.0 718.08 −5.23
17.0 2000.0 727.08 −4.75
17.0 3000.0 737.02 −4.24
17.0 4000.0 748.13 −3.69
17.0 5000.0 760.42 −3.08
17.0 6000.0 773.78 −2.43
17.0 7000.0 789.03 −1.68
17.0 8000.0 804.96 −0.90
17.0 9000.0 819.37 −0.19
17.0 10 000.0 835.64 0.60
17.0 11 000.0 852.63 1.43
17.0 12 000.0 869.47 2.25
18.0 1000.0 884.30 −2.61
18.0 2000.0 893.36 −2.14
18.0 3000.0 903.29 −1.64
18.0 5000.0 926.73 −0.50
18.0 6000.0 940.02 0.13
18.0 7000.0 955.17 0.86

TABLE III. (Continued.)

ρ (g/cm3) T (K) P (GPa) E (kJ/g)

18.0 8000.0 970.69 1.60
18.0 9000.0 986.39 2.35
18.0 10 000.0 1002.33 3.10
18.0 11 000.0 1019.42 3.91
18.0 12 000.0 1036.61 4.71

TABLE IV. DFT–MD isochores for liquid Fe. See Sec. III for
details regarding the computational methodology and associated
parameters.

ρ (g/cm3) T (K) P (GPa) E (kJ/g)

12.0 4000.0 201.91 −11.60
12.0 5000.0 213.41 −10.92
12.0 6000.0 225.46 −10.22
12.0 7000.0 237.22 −9.50
12.0 8000.0 248.82 −8.79
13.0 4000.0 284.37 −10.35
13.0 5000.0 296.78 −9.66
13.0 6000.0 311.09 −8.88
13.0 7000.0 322.74 −8.19
13.0 8000.0 335.10 −7.48
14.0 5000.0 395.30 −8.11
14.0 6000.0 410.01 −7.34
14.0 7000.0 422.77 −6.64
14.0 8000.0 436.59 −5.89
14.0 9000.0 449.65 −5.16
14.0 10 000.0 462.71 −4.43
14.0 11 000.0 474.81 −3.73
14.0 12 000.0 488.67 −2.96
15.0 6000.0 525.66 −5.51
15.0 7000.0 540.70 −4.73
15.0 8000.0 554.75 −4.00
15.0 9000.0 568.31 −3.28
15.0 10 000.0 582.18 −2.53
15.0 11 000.0 595.80 −1.82
15.0 12 000.0 609.25 −1.07
16.0 8000.0 689.23 −1.86
16.0 9000.0 704.10 −1.11
16.0 10 000.0 718.66 −0.37
16.0 11 000.0 733.11 0.37
16.0 12 000.0 747.98 1.09
17.0 8000.0 840.35 0.51
17.0 9000.0 856.75 1.29
17.0 10 000.0 872.25 2.04
17.0 11 000.0 884.06 2.67
17.0 12 000.0 902.67 3.49
18.0 10 000.0 1042.40 4.66
18.0 11 000.0 1058.85 5.43
18.0 12 000.0 1074.28 6.15
18.0 13 000.0 1091.03 6.90
18.0 14 000.0 1106.19 7.65
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TABLE V. Parameters for the fits of the cold curve of different phases in our EOS to the Vinet and Holzapfel AP2 [185] models at
near-ambient pressures.

Phase Model E0 (meV/atom) B0 (GPa) B′ ρ0 (g/cm3) Fitting Range

bcc (α) Vinet 0 164.8 5.55 7.927 7.5–8.5 g/cm3

fcc (γ ) Vinet 69.5 152.7 6.81 8.018 7.5–8.5 g/cm3

bcc (δ) Vinet 79.7 153.2 6.52 7.949 7.5–8.5 g/cm3

hcp (ε) AP2 40.3 180.7 5.28 8.373 7.5–9.5 g/cm3

liquid AP2 160.5 147.6 7.82 8.027 7.5–8.5 g/cm3

modulus, respectively, at ρ0 (or V0 = 1/ρ0). Table VI presents
a fit of the Debye temperature to a polynomial in the specified
density range. The Holzapfel AP2 model [185] employs the
following form for the cold pressure as a function of volume:

Pcold,AP2(x) = 3B0

(
1 − x

x5

)
exp [a0(1 − x)][1 + a2x(1 − x)],

(B1)

where x = (V/V0)1/3, a0 = − ln(3B0/PFGr ), a2 = (3/2)(B′ −
3) − a0, PFGr = aFG(Z/V0)5/3, Z is the atomic number, and the
Fermi gas parameter aFG = 0.02337 × 10−25 (erg/cm3) cm5.
The corresponding expression for the cold energy [186] as a
function of volume is

Fcold,AP2(x) = E0 + 9V0B0

2x2
exp [a0(1 − x)]

×
[

1 −
(

a0 + 2 − 2a2
2 + a0

a0

)
xFE(a0x)

− 2x
a2

a0
(2 − x)

]
, (B2)

where FE(y) is defined as the following product of an expo-
nential integral with an exponential function,

FE(y) = 1 − y exp(y)
∫ 100

y

exp(−z)

z
dz, (B3)

which Holzapfel approximates as

FE(y) ≈ (y2 + 2.334733y + 0.250621)

(y2 + 3.330657y + 1.681534)
. (B4)

The functional form for the Vinet model is

Fcold,Vinet (V ) = E0 + 4V0B0

(B′
0 − 1)2

[1 − (1 + X ) exp(−X )],

(B5)
in which X = (3/2)(B′

0 − 1)[(V/V0)1/3 − 1]. Table VII
presents our Simon–Glatzel fit to the melt curves for our two
baseline models. These melt curves are depicted in Fig. 14.

APPENDIX C: EOS TABLE DETAILS

Our four multiphase Fe EOS models (the two baseline
versions and two variations), are each defined over the range:
10−5 g/cm3 < ρ < 103 g/cm3, and 100 K < T < 109 K. Ta-
bles of discrete points in (ρ, T ) are provided for the total
internal energy E , the total pressure P, and the total entropy
S. The ρ and T grid points are spaced logarithmically. The

TABLE VI. Debye temperature as a function of density for five considered Fe phases, fitted over a limited range by polynomials: θ (ρ ) =∑n
k=0 ckρ

k , with the coefficients ck listed here.

Phase c0 c1 c2 c3 c4 Fitting Range

bcc (α) −3076.38 781.433 −44.6498 −0.453593 0.0827836 8–12.0 g/cm3

fcc (γ ) 6616.4 −2346.05 305.114 −16.2672 0.307302 8–12.0 g/cm3

bcc (δ) 14275.9 −5140.78 621.6 −24.6657 0 8–9.0 g/cm3

hcp (ε) 5038 −1899 267.9 −15.54 0.3294 8–14.0 g/cm3

liquid 8734.78 −3297.18 457.758 −26.8967 0.579952 8–14.0 g/cm3
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TABLE VII. Melt curve for our two baseline Fe EOS models,
min-Tmelt-SRX and max-Tmelt-SRX, fitted over a limited range by the
Simon–Glatzel equation: Tmelt (P) = T ref

melt (
P−Pref

a + 1)b exp[−c(P −
Pref )], with the fit parameters listed here. Here, P is the pressure in
units of Mbar. The three solid phases that span the pressure range
indicated in the table are δ (high-temperature bcc), γ (fcc), and ε

(hcp). These melt curves are also illustrated graphically in Fig. 14.

Model T ref
melt Pref a b c Fitting range

min-Tmelt-SRX 1811.0 0.0 0.2121 0.4308 0.0 0–15.0 Mbar
max-Tmelt-SRX 1811.0 0.0 0.1764 0.3759 −0.0244 0–15.0 Mbar

resolution of the (ρ, T ) grid is sufficiently fine to represent
mixed-phase regions. Thermodynamic consistency, arising
from the equality of mixed partial derivatives of the free
energy [e.g., (∂P/∂T )ρ = −(ρ2/mFe)(∂S/∂ρ)T ], is assessed
by using BIMOND interpolation [187] and finite-difference
computations of the derivatives; we calculate that such condi-
tions are accurately satisfied on all points with the exception
of those in close proximity to phase transitions. This is to be
expected, and we find that our tabular Fe EOS models are
similar to other multiphase EOS tables we have recently made
in this regard [136].
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