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Quantum Hall Bogoliubov interferometer
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A quantum Hall interferometer containing a grounded superconducting terminal is proposed. This geometry
allows to control the Andreev and normal scattering amplitudes of subgap Bogoliubov quasiparticles with the
Aharonov-Bohm phase, as well as with the constrictions defining the interferometer loop. The conductance
matrix of such a three-terminal NSN interference device exhibits a much richer behavior as compared to its
two-terminal Fabry-Pérot counterpart, which is illustrated by nontrivial behavior of nonlocal charge and heat
responses. A single-edge version of the interferometer enables full on-demand control of the electron-hole
superposition, including resonant enhancement of arbitrary small Andreev reflection probability up to 1, and
can be used as a building block in future more complex interference setups.
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Chiral one-dimensional transport of quasiparticles along
the boundary of a gapped two-dimensional electron sys-
tem (2DES) is a fundamental aspect of the quantum Hall
effect [1,2]. A combination of phase-coherent ballistic prop-
agation over large distances together with a controllable
backscattering by gate-defined constrictions result in a
plethora of quasiparticle interference phenomena in quantum
Hall edge channels [3]. Matching these unique capabilities
with a superconducting proximity effect may greatly advance
the research in semiconductor-superconductor hybrids.

A semi-classical transport of Bogoliubov quasiparticles
by skipping orbits along 2DES-superconductor interface
has been realized in Refs. [4–6]. In this low magnetic
field range the Andreev reflection process, which is con-
strained by momentum conservation, is allowed for scattering
between different edge modes or in the presence of disor-
der [7–9]. More recently, the experiments extended towards
the physics of chiral Andreev edge states in the quantum
Hall regime [10–13]. Observations of a small but finite
cross-Andreev signals in nonlocal conductance measurements
evidence the Andreev reflection within a single chiral edge
mode in graphene [14,15], that may result from peculari-
ties of a valley spectrum at the edge [16] or, most likely,
from strong disorder scattering inherent to real supercon-
ductors [17]. Quantum interference effects play an important
role in quasiparticle transport along the 2DES-superconductor
interface [9,14,18,19]. Two-particle interference effects were
discussed in devices combining quantum Hall edge channels
and superconductivity [20,21].

In this work, I propose a quantum Hall Bogoliubov in-
terferometer, that is a modification of a Fabry-Pérot type
interferometer [22,23] with a superconducting terminal inside.
This geometry enables a fine tuning of the local and nonlocal
normal and Andreev scattering amplitudes by means of the
Aharonov-Bohm (AB) phase and constrictions defining the
interferometer loop. The proposed interferometer represents
a versatile three-terminal NSN device that enables full con-
trol over the nonlocal charge and heat quasiparticle transport,

including a resonant enhancement of an arbitrarily small An-
dreev reflection probability up to 1.

A sketch of the Bogoliubov interferometer is depicted in
Fig. 1(a). The light-gray rectangle represents a mesa of the
2DES, which is divided in three regions separated by two
gate-defined constrictions (schematized by pairs of dark-gray
vertical rectangles). The inner region is a Fabry-Pérot-like
interferometer for the chiral edge channels, an essential novel
part of which is the grounded superconducting terminal S
(dark-red). The outer regions on either side of the inter-
ferometer contain normal terminals N1 and N2, which are
assumed to be ideally coupled to the chiral edge channels. The
edge channels propagating downstream the normal terminals
contain normal quasiparticles and are shown in black. Pass-
ing the S-terminal, quasiparticles experience both Andreev
and normal scattering and become coherent superpositions of
the electron-like and hole-like excitations (Bogoliubov quasi-
particles), as illustrated by the blue-red color. The whole
structure is placed in a quantizing perpendicular magnetic
field corresponding to the filling factor ν = 2 (the lowest
spin-degenerate Landau level filled). The phase � is tuned by
the AB flux through the interferometer.

Following Ref. [17], below I assume spin-degeneracy of
the chiral edge states and neglect possible edge reconstruction.
Hence, all scattering matrices are spin-degenerate and the
spin index is suppressed for brevity. The calculations are per-
formed at zero energy, that is for quasiparticles at the chemical
potential of the S terminal, well inside the bulk and supercon-
ductor gaps. The wave-function of a Bogoliubov quasiparticle
is a two-component vector (ae ah)T, where ae, ah are the
amplitudes of the electron-like and hole-like components,
respectively. The propagation around the interferometer is de-
scribed by 2 × 2 matrix that takes the sum of the amplitudes of
all possible trajectories. For example, the transmission matrix
corresponding to the entrance via constriction 1 and a sin-
gle full-turn around the interferometer, is expressed as M̂0T̂1,
where M̂0 = R̂′

1ĈR̂2B̂ŜÂ. Using the scattering amplitudes
I express Â = diag(eiφA , e−iφA ) (and similar for B̂, Ĉ) and
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FIG. 1. Sketch of the Bogoliubov interferometer. A light-gray
rectangle depicts a mesa of the 2DES, with two normal terminals
one the sides and a superconducting terminal in the middle, marked,
respectively, by N1, N2, and S. The edge channel forms a loop of
the interferometer with the help of two constrictions; its chirality is
shown by arrows. Magnified views of the constrictions 1 and 2 are
given on the left- and right-hand sides. The transmission matrices
used in the calculation are shown nearby the corresponding scattering
regions.

R̂i = diag(ri, r∗
i ); T̂i = diag(ti, t∗

i ) (and similar for R̂′
i, T̂ ′

i ).
Matrices Â, B̂ and Ĉ describe a free propagation along the
edge that results only in a phase accumulation. Matrices R̂i

and T̂i describe a reflection and transmission of a quasiparticle
incident on the ith constriction from the lower edge. R̂′

i and T̂ ′
i

describe the same processes for a quasiparticle incident from
the upper edge (cf. Fig. 1). R̂i, T̂i, R̂′

i, and T̂ ′
i are 2 × 2 blocks

of the total 4 × 4 scattering matrix of the ith constriction and
are constrained by its unitarity [24]. Therefore, |ri| = |r′

i | =√
Ri, |ti| = |t ′

i | = √
Ti, r∗

i t ′
i = −r′

i t
∗
i , where Ti and Ri are, re-

spectively, the transmission and reflection probabilities and
Ti + Ri = 1. Finally, the only nondiagonal matrix Ŝ describes
a propagation along the 2DES-superconductor boundary. Its
nondiagonal elements generate rotations in the electron-hole
basis owing to the Andreev scattering:

Ŝ =
(

tee teh

the thh

)
; thh = t∗

ee; teh = −t∗
he.

A detailed microscopic analysis of the matrix Ŝ was re-
cently performed in Ref. [17]. In the following I neglect
possible quasiparticle loss in the superconductor, so that
|tee|2 + |teh|2 = 1. The full scattering amplitudes are con-
tained in the blocks ̂i → j:

̂i → j ≡
(

see
ji seh

ji

she
ji shh

ji

)
,

where i, j ∈ 1, 2 label the N terminals and sαβ
ji represents a

scattering amplitude of a quasiparticle of the type β from
terminal Ni to a quasiparticle of the type α in the terminal
N j (α, β ∈ e, h), see Ref. [25]. For example,

̂1 → 2 = T̂2B̂ŜÂ(1 − M̂0)−1T̂1,

where (1 − M̂0)−1 = (1 + M̂0 + M̂0
2 + · · · ). Without the loss

of generality, the phases accumulated by a quasiparticle before
entering the interferometer and after leaving it are assumed
zero, so that the corresponding evolution is given by identity
matrices.

FIG. 2. Nonlocal charge and heat responses. (a)–(c) Color-scale
plots of nonlocal electrical and thermal conductances G12, G21, and
Gth, normalized, respectively, by G0 and G0

th, as a function of re-
flection probabilities of the constrictions and the AB phase. The
colorbar is common for all panels. (d) Cross–cuts along the dashed
lines in panels (a)–(c), corresponding to R1 = R2 = 0.25. All data for
|tee|2 = |teh|2 = 1/2.

The transmission coefficients, defined as T αβ
i j = |sαβ

i j |2, are
used to calculate the conductance matrix Gi j ≡ ∂Ii/∂Vj . Here,
Ii is the electric current flowing in the device through ter-
minal Ni and Vj is the voltage bias on terminal N j . Gi j =
G0(δi j − T ee

i j + T eh
i j ) [25], where δi j is the Kronecker δ symbol

and G0 = 2e2/h (here 2 stands for the spin degeneracy):

Ĝ = G0 T1T2

D

(
1 −1

−1 1

)
+ G0 2|teh|2

D2

(
T 2

1 R2 T1T2R1R2

T1T2 T 2
2 R1

)
,

D ≡ 1 + R1R2 − 2
√

R1R2|tee| cos �, (1)

where � = φA + φB + φC + arg(r′
1r2tee), is the phase accu-

mulated by an electron during one full turn around the
interferometer. The increment of the AB phase is related to
change of a magnetic field δB by δ� = 2πδBA/�0, where A
is the area enclosed by the interferometer and �0 = h/e is the
flux quantum.

Equation (1) shows how the Andreev amplitude teh impacts
the conductance matrix of the Bogoliubov interferometer. For
teh = 0 the current in the superconductor vanishes and the
usual result for a Fabry-Pérot interferometer is recovered. In
this case, the current conservation constraints Ĝ so that all
conductances have the same absolute value, see the first term
in Eq. (1). In the presence of Andreev scattering the S terminal
comes into play and the Bogoliubov interferometer becomes
a versatile three-terminal NSN device. This can be observed
via �-controlled nonlocal charge and heat transport illustrated
in Fig. 2. Here, apart from G12 and G21, another quan-
tity of interest is plotted, namely, the finite temperature (T)
thermal conductance Gth/G0

th ≡ T ee
12 + T eh

12 = T1T2/D, where
G0

th = LTG0 and L is the Lorenz number. Figures 2(a)–2(c)
show the color-scale plots of the normalized G12, G21, and Gth

as a function of reflection probabilities R of the constrictions
(assumed identical) and �, for the case of |teh|2 = 1/2. All
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FIG. 3. Bogoliubov interferometer coupled to a single edge.
(a) A sketch of the interferometer. (b) Enhancement of a cross-
Andreev reflection probability to 1 for T = T opt (see text). Light-
gray (dark-red) lines indicate scattering at the constriction (at the
2DES-superconductor interface). Blue (red) lines are the interfering
paths for the electron (hole) wave function components. (c) Color-
scale plot of G21 on the �-R plane for |teh|2 = 0.1. (d) Cross-cut
along the dashed line in panel (c) at R = 0.5 that demonstrates a
resonant enhancement of the nonlocal conductance. (e) Color-scale
plot of G21 on resonance (� = 0) as a function of transmission prob-
ability of the contriction and the Andreev amplitude. (f) Cross-cut
along the dashed line in panel (e) at T = 0.3. The colorbar in units
of 2e2/h is common for panels (c) and (e).

three nonlocal responses demonstrate pronounced AB oscilla-
tions with the amplitude controlled by R. Figure 2(d) details
the �-dependencies for R = 0.25 [see the dashed lines in
Figs. 2(a)–2(c)]. Zeros of G21(�) are accompanied by finite
Gth and manifest the AB phase tuned nonlocal charge-heat
separation [26,27]. In addition, the setup of Fig. 1 can be
used to generate entanglement via Cooper pair splitting in the
bias regime V1 = V2 > 0, achieving the splitting efficiency of
50% for R1 = R2 → 0. Finally, an intriguing feature of the
interferometer is that the magnitude of the AB oscillations
is determined by the normal scattering amplitude |tee|, see
Eq. (1), and vanishes in the limit of ideal Andreev reflection.

Bogoliubov interferometer also enables a resonant en-
hancement of an arbitrarily small Andreev reflection probabil-
ity. I demonstrate this with a slightly different setup, depicted
in Fig. 3(a). Here, the interferometer is formed by just one
constriction, that encircles the bottom edge channel near the S

lead. This is a slightly modified version of the setup of Fig. 1
obtained by pinching-off the constriction 2 and moving the
terminal N2 on the left-hand side upstream the terminal N1.
Hence, the only nontrivial coefficients T αβ

21 are equal to T αβ

11
for the previous setup in the limit R2 = 1:

T eh(he)
21 = 1 − T ee(hh)

21 =
(

T |teh|
1 + R − 2

√
R|tee| cos �

)2

,

where R and T are, respectively, the reflection and transmis-
sion probabilities of the constriction.

Figure 3(c) shows a color-scale plot of G21 in dependence
of R and the AB phase. Here, a relatively weak Andreev re-
flection is chosen |teh|2 = 0.1. The dependence G21(�) along
the horizontal cross-cut is shown in Fig. 3(d). A sharp reso-
nant enhancement of the nonlocal conductance up to G21 =
2e2/h, the value that corresponds to T eh(he)

21 = 1 is evident.
In Fig. 3(e), G21 is plotted as a function of |teh| and T on
resonance (� = 0). The most striking is the possibility to
observe G21 = 2e2/h for arbitrary small Andreev amplitude
|teh|, see the dark-red region outgoing from the origin. The
dependence G21(|teh|) along the horizontal cross-cut of this
plot at T = 0.3 is shown in Fig. 3(f), with maximum attained
at |teh| ≈ 0.2. More rigorously, the optimum of T eh(he)

21 = 1
occurs for T opt = 2|teh|/(1 + |teh|), and Fig. 3(b) qualitatively
explains the role of the interference in this effect. For T =
T opt, the cross-Andreev amplitudes interfere constructively
that results in |she

21| = 1. At the same time, the normal scat-
tering amplitude (r) for the shortest path that did not enter
the interferometer is exactly canceled by all other paths (−r),
so that see

21 = 0. The observed resonant effect bares similar-
ity with nearly quantized nontopological zero-bias peaks in
Majorana-like nanowire devices [28]. However, possible ap-
plications of the setup of Fig. 3(a) are much wider than this.
In essence, Figs. 3(e) and 3(f) demonstrate complete tuning of
the electron-hole superposition that makes single-edge inter-
fetometer an on-demand source of downstream Bogoliubov
quasiparticles and can be implemented, e.g., in two-particle
interference devices [20,21]. Note, that without a supercon-
ductor a single-edge interferometer has no effect, |see(hh)

21 | ≡
1 [29].

A possibility of fine tuning of the normal and Andreev
scattering by the AB phase makes the proposed Bogoliubov
interferometer a novel class of three-terminal NSN devices,
that continue to gain interest in Cooper pair splitting [30–35],
in Majorana research [36–39], and in charge-heat separa-
tion [26,27]. Below I schematize the main factors limiting
the performance of the Bogoliubov interferometer. Dephasing
by various inelastic processes is similar to other quantum
Hall interferometers, implying that experiments should be
performed at the lowest possible temperature with mini-
mized bias voltages and environmental noises. In addition, the
Bogoliubov interferometer relies on a coherence between the
electron and hole components of the wave-function. Hence,
the bath temperature and the bias voltage should be kept below
h̄/(Nτ ), where τ is the time of flight around the interferometer
and N ≈ 1/(T1 + T2) is the number of turns, that is a factor of
N below the level spacing.

Realistic quantum Hall experiments are conducted in a
Tesla-range magnetic fields. The major concern in such high
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fields is a quasiparticle loss, most likely mediated by vor-
tices in the s-wave type-II superconductor usually employed
for contacting in a planar geometry in strong magnetic
fields [17,40]. The vortex cores serve as subgap reservoirs
for quasiparticles, that makes the matrix Ŝ nonunitary and
should drastically suppress the visibility in the same way as
the suppression of the mesoscopic conductance fluctuations
analyzed in Ref. [17]. The fact that such fluctuations in a
recent experiment [14] were at least two orders of magnitude
smaller than 2e2/h indicates a very strong quasiparticle loss.
The effect of vortices can be potentially overcome by keeping
the bias and temperature inside the mini-gap in the spectrum
of the Caroli–de Gennes–Matricon states in the vortex core.
Remaining in the planar geometry one could minimize the
loss using type-II superconductors with the shortest possible
coherence length (e.g., strongly disordered). This guaranties
the smallest radius of the vortex core and the largest mini-
gap. Alternatively, one could go out of the plane with a few
nanometer thin type-I superconductor film deposited on a
cleaved edge of a conventional III–V heterostructure. This
may serve as a vortex-free S-terminal in strong magnetic fields
directed along the film [41] but perpendicular to the 2DES.

A so-far ignored Coulomb interaction is another key player
in quantum Hall interferometry, see Ref. [3] for a recent
review. Charging effects [23], which dominate the AB os-
cillations pattern in small-area Fabry-Pérot devices [42], are
not so important in the present case, thanks to the S-terminal
providing a charge sink. More intriguing is quasiparticle

fractionalization, an effect associated with the interplay of
two modes of collective excitations at the ν = 2 quantum Hall
edge [43–46]. In analogy to the usual quantum Hall interfer-
ometers [47,48], I expect a separation of the faster moving
charge-mode from the slower moving spin-mode to impact
the visibility of the AB oscillations in the Bogoliubov inter-
ferometer beyond the zero temperature/zero bias limit. This
and other intriguing related effects [49], however, may be less
pronounced in graphene, where Coulomb edge reconstruction
is much weaker as compared to conventional 2DESs [50].

In summary, I proposed a Bogoliubov interferometer con-
sisting of a superconducting terminal and a chiral edge
channel encircled by one or two constrictions. The charge
and heat responses of such a three-terminal NSN interference
device exhibit versatile tunability via reflection probabilities
of the constrictions and the Aharonov-Bohm phase. A single-
edge version of the interferometer enables full on-demand
tuning of the electron-hole superposition and can serve as a
building block in more complex future interference devices.
Overall, such an interferometer may turn an attractive direc-
tion in superconductor—quantum Hall research.
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I. V. Gornyi, V. D. Kurilovich, A. S. Melnikov, E. V. Shpag-
ina, and E. S. Tikhonov. I am especially grateful to V. D.
Kurilovich for pointing out a mistake in the first version of the
manuscript. The work is financially supported by RSF Project
No. 22-12-00342.
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