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Magnetic breakdown and chiral magnetic effect at Weyl-semimetal tunnel junctions
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We investigate magnetotransport across an interface between two Weyl semimetals whose Weyl nodes project
onto different interface momenta. Such an interface generically hosts Fermi arcs that connect Weyl nodes of
identical chirality in different Weyl semimetals (homochiral connectivity)—in contrast to surface Fermi arcs that
connect opposite-chirality Weyl nodes within the same Weyl semimetal (heterochiral connectivity). We show
that electron transport along homochiral-connectivity Fermi arcs, in the presence of a longitudinal magnetic
field, results in a universal longitudinal magnetoconductance of e2/h per magnetic flux quantum. Furthermore,
a weak tunnel coupling can result in a close encounter of two homochiral-connectivity Fermi arcs, enabling
magnetic breakdown. Above the breakdown field the interface Fermi arc connectivity is effectively heterochiral,
leading to a saturation of the conductance.
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Introduction. Weyl semimetals (WSMs) are a class of
three-dimensional semimetals characterized by pairs of
opposite-chirality Weyl fermions instantiated as topologically
protected gapless points in the bulk Brillouin zone (BZ)
[1–11]. Individual Weyl fermions exhibit the chiral anomaly
[12,13]—a violation of particle-number conservation in the
presence of parallel electric and magnetic fields. The chiral
anomaly manifests as spectral flow on chiral zeroth Landau
levels, which disperse either parallel or antiparallel to an ap-
plied magnetic field depending on the chirality of the Weyl
fermions [14]. In a finite system, the reconnection of this
spectral flow necessitates the existence of gapless Fermi-arc
surface states, which connect Weyl nodes of opposite chirality.

One of the most striking transport phenomena associated
with the chiral anomaly is the chiral magnetic effect (CME),
which results in a positive longitudinal magnetoconductance
[9,15,16]. In the ballistic (also called ultra-quantum) limit
where transport is governed solely by the chiral lowest Landau
level, the longitudinal conductance is predicted to show a
universal linear dependence on the magnetic field [17]. Ex-
perimental evidence of the chiral anomaly by way of the CME
has, however, turned out to be challenging because of various
extrinsic effects [18,19]. Moreover, since the Weyl nodes of-
ten do not reside exactly at the Fermi energy, the ballistic-limit
CME is only achieved at large nonuniversal field strengths.

In this paper, we show that in tunnel junctions between
two WSMs both the CME and the Fermi arcs combine to
give alternative magnetoconductance signatures of the chiral
anomaly. We consider WSMs with Weyl nodes whose trans-
verse momenta are displaced with respect to one another.
Previous work has focused on the tunnel conductance across
interfaces where the Fermi pockets of the two WSMs overlap
[20–24]. We instead consider nonoverlapping Fermi pockets,
which, in the absence of further ingredients, would simply
result in a vanishing tunnel conductance. We, however, show
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that upon adding a magnetic field normal to the interface, the
chiral Landau levels can transmit across the interface via the
interface Fermi arcs while higher Landau levels are reflected.
In contrast to bulk realisations, the ballistic-limit CME across
the tunnel junction (characterised by a universal, linear in field
conductance) occurs around zero magnetic field irrespective
of whether the Weyl nodes are at exactly the Fermi energy.

We further show that magnetotransport across the tunnel
junction allows for the exploration of the phenomenon of
magnetic breakdown—magnetic-field induced quantum tun-
neling between disjoint equienergy contours [25–28]. In bulk
materials, level separation is typically too large for magnetic
breakdown to manifest at realistic magnetic field strengths
[27,29]. In a tunnel junction, however, the level repulsion
between Fermi arcs can be made small by weakening the cou-
pling [30] at the interface. The onset of magnetic breakdown
causes an effective switch between topologically distinct
Fermi-arc connectivities at the interface (see below), signified
by a saturation of the magnetoconductance above a charac-
teristic magnetic-breakdown field, which is controlled by the
tunneling amplitude.

In the following, we begin by deriving the conductance
from topological arguments. We then generalize the result so
as to account for the possibility of magnetic breakdown. Fi-
nally, we confirm our predictions by numerical computations
for a concrete lattice model for a WSM.

Tunnel-junction CME. We consider electron transport
through a tunnel junction of two Weyl semimetals in the
presence of a magnetic field of magnitude B normal to the
interface. We assume that the projection onto the interface BZ
of the Fermi surfaces of the Weyl nodes from different sides of
the interface are separated by lattice momentum much larger
than the inverse magnetic length l−1

B = √
eB/h̄. This prevents

direct scattering across the interface between the bulk Weyl
nodes.

In the presence of the magnetic field, each Weyl node has
an imbalance in the number of left and right movers because
of the N (B)–fold degenerate chiral lowest Landau level where
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FIG. 1. Spectral flow at the interface between two Weyl semimet-
als with a longitudinal magnetic field. (a) Interface Fermi arcs with
homochiral connectivity (orange lines) lead to a full transmission
of the chiral zeroth Landau level across the interface (indicated by
thick red/blue arrows going from/to the Landau-level spectrum)
while the higher Landau levels are reflected. (b) Same as (a) but for
heterochiral connectivity of Fermi arcs (green lines), in which case
the chiral Landau levels are reflected.

N (B) is the number of magnetic flux quanta through the inter-
face [31]. As the surplus spectral flow from the chiral modes
cannot terminate at the interface, there must exist a continuous
chain of states (the interface Fermi arcs) that reconnects the
interface projection of one Weyl node to that of another, as
illustrated in Fig. 1. This follows from particle conservation
and the observation that an infinitesimal field only couples
states that are infinitesimally close in transverse momenta.

Consequently, two such types of Fermi arcs are possible—
those that connect projections of opposite-chirality Weyl
nodes in the same WSM and those which connect same-
chirality nodes in WSMs on opposite sides of the interface
[32–37]. We term the two connectivities heterochiral and
homochiral, respectively. While the connectivity of the inter-
face Fermi arcs is a topological property (see Supplemental
Material, SM, for an alternative topological argument [38]),
their shape is nonuniversal and depends on system details
such as boundary potentials and the tunneling amplitude. The
tunnel conductance, however, does not depend on the specific
Fermi-arc shape but only on the topological connectivity and
the presence/absence of close encounters of different Fermi
arcs.

We first consider the situation without encounters, i.e., the
interface Fermi arcs being separated by lattice momenta much
larger than �−1

B . In this case, a pair of homochiral Fermi arcs
perfectly transmit the incoming mode across the interface,
while a pair of heterochiral Fermi arcs are totally reflected.
Following a Landauer approach (see SM [38] for details), the
conductance is given by

G = nhoN (B)
e2

h
, (1)

where nho is the number of homochiral Fermi arcs and N (B)
is the number of incoming modes per unit area. Note that
the conductance is independent of the occupation of higher
Landau levels, which are perfectly reflected. This results in a
universal conductance that is insensitive to material-specific
details such as the energies of the Weyl nodes and velocities.

FIG. 2. (a) The interface of two WSMs with crossing Fermi arcs
whose hybridization leads to a connectivity switch from heterochiral
to homochiral. (b) The close encounter of interface Fermi arcs for a
weak tunnel coupling.

Magnetic breakdown. The derivation of Eq. (1) breaks
down once the magnetic field is large enough to enable
backscattering via the interface Fermi arcs. This, however,
only happens once �−1

B ≈ 0.004 Å−1
√

B[T] (with B in Teslas)
approaches the reciprocal space separation between the two
chiral modes. Realistic magnetic fields can thus only cou-
ple modes whose separation is small compared to the size
of the surface BZ, resulting in the phenomena of magnetic
breakdown being considered rather exotic [27]. However, in
our setup, a close encounter of interface Fermi arcs can be
achieved by a weak tunnel coupling of two WSMs whose
Fermi arcs cross in the decoupled limit, as illustrated in
Fig. 2(a).

Near a close encounter of two Fermi arcs, the linearized
interface Hamiltonian reads

Hint (k⊥) = (vz�/2)σx + vykyσz + vzkz, (2)

where k⊥ is the transverse momentum measured from the
midpoint of the smallest separation between contours [see
Fig. 2(b)], the Pauli matrices correspond to the two Fermi arcs
from the decoupled system, the velocities vy and vz are fixed
by the specific dispersion of the Fermi arcs, and � quantifies
the hybridization strength, which depends on the tunneling
amplitude. The shortest distance between the Fermi arcs is
then given by |�| and θ = tan−1(vz/vy) is half the angle of
the Fermi arc intersection, as shown in Fig. 2(b).

The essential requirement for our setup is a crossing of
interface Fermi arcs in the decoupled limit. At finite tunneling,
such a crossing turns into a close encounter, unless protected
by a symmetry deriving from the symmetries of the WSMs.
Explicitly, this must forbid mass terms proportional to both σx

and σy in Eq. (2). Such a protection, however, requires a lattice
symmetry; which, though it may hold for interfaces between
a pair of highly symmetric Weyl node configurations, would
not hold for generic interfaces. The close encounter described
above is thus generic so long as the decoupled Fermi arcs
exhibit a crossing.
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At a finite but small �, a longitudinal magnetic field B
enables quantum tunneling between the two Fermi arcs when
�−1

B � �. To quantify this magnetic breakdown, we deploy
an analytical description following the standard formalism of
Refs. [25,27,28,39]. Using the semiclassical wavefunctions of
the Fermi arcs away from the encounter as scattering states
that move along the arcs in accordance with the Lorentz
force, we calculate the transition probability across the gap
by matching the scattering states with the exact solutions of
Hint . The resulting probability of tunneling between the arcs
is given by [40]

P = e−B0/B, B0 = π

4
�2|tan θ |. (3)

A particle passing a single encounter thus experiences a
heterochiral connectivity—and is therefore reflected—with
probability P, so that the probability of transmission across the
interface is given by 1 − P. The conductance is thus obtained
by weighing Eq. (1) by a factor of 1 − P, so that

G = N (B)
e2

h

nho∑

i=1

(
1 − e−B0,i/B

)
, (4)

where the sum runs over all homochiral connectivities and B0,i

are the corresponding breakdown fields. For B � B0,i, Eq. (1)
is recovered, while for B � B0,i, the conductance saturates at
(e2/h)N (B0,i ). In the latter limit, the transmission probability
approaches zero as 1/B (rendering the connectivity effectively
heterochiral) but as N (B) is linear in B, the conductance satu-
rates to a constant value.

If we further increase the magnetic field, it couples Weyl
nodes of the same chirality on opposite sides of the interface.
In this case, the modes can transmit across the interface di-
rectly (skipping the Fermi arc) so the transmission is no longer
bounded from above by N (B). The conductance then becomes
nonuniversal: it depends on the number of occupied Landau
levels. If the field is strong enough to couple opposite chirality
nodes, then the WSM phase is effectively destroyed [41].

Lattice simulation. We test the above predictions by numer-
ical and semianalytical calculations on a WSM lattice model.
We consider Hamiltonians of the form [42]

H(k) = Hx(kx ) + ηy(k⊥)τ y + ηz(k⊥)τ z, (5)

where Hx(kx ) = sin kxτ
x + (1 − cos kx )τ z and the Pauli ma-

trices τ a represent a pseudospin degree of freedom. The
hopping strength along x and the lattice constant are set to
one, and ηy,z(k⊥) are functions of the transverse momentum
k⊥ ≡ (ky, kz ). For ηz(k⊥) > −2, the model hosts Weyl nodes
in the kx = 0 plane at k⊥ satisfying ηy(k⊥) = ηz(k⊥) = 0. At
a boundary normal to x, the Fermi arcs lie along ηy(k⊥) = 0
for ηz(k⊥) < 0 [42].

We consider an interface between two WSMs with

η±
y (k⊥) = 1

sin b
[± sin bz sin ky + sin by sin kz],

η±
z (k⊥) = cos by + cos bz − cos ky − cos kz, (6)

where the superscript ± refers to the left/right WSM. The
corresponding Weyl nodes with chirality χ lie at k⊥ = χb,
where b = (by, bz ) = b(sin θ̃ , cos θ̃ ). The tunnel junction be-
tween these two WSMs is modelled by a reduced hopping

FIG. 3. Conductance, in units of the saturation value
(e2/h)N (B0), as a function of the magnetic field in units of
the breakdown field B0. The numerical computation is performed
for model parameters b = π/2, energy E = 0.1, and various values
of θ and κ . The analytical result (black dashed curve) are in good
agreement with the numerical results, with increasing deviations
close to the field’s upper bound (see below). The straight dashed
lines indicate the predicted asymptotic low- and high-field behavior.
For the numerical data, the upper bound on the magnetic field is set
by the smallest magnetic length �B = 3.1 lattice units—since smaller
�B results in a trivial breakdown of WSM physics—while the lower
bound is set to 13.8 lattice units. Data points corresponding to a
smaller (larger) breakdown field B0 [for smaller (larger) κ] thus span
a range of fields at higher (lower) values of B/B0. The inset shows
a close-up at small fields; highlighting the deviation from perfect
transmission caused by the onset of magnetic breakdown.

0 � κ � 1 along x at the interface. The conductance for this
lattice model for various values of θ , computed numerically
using the Kwant package [43], are plotted in Fig. 3.

To compare the numerical results to the analytics with-
out any fitting parameters, we derive the breakdown field of
Eq. (3) from the lattice model parameters. To this end, we need
to determine the intersection angle θ of the Fermi arcs in the
decoupled limit (κ = 0) as well as the minimum separation �

between the hybridized (κ �= 0) Fermi arcs [cf. Fig. 2(b)]. The
Fermi arcs in the decoupled limit are given by η±

y (k⊥) = 0.
Linearizing η±

y around k⊥ = 0, we get

tan θ = sin by

sin bz
= sin(b sin θ̃ )

sin(b cos θ̃ )
. (7)

We next derive the interface Fermi arcs at a finite coupling κ

using a transfer-matrix approach [42,44], as described in the
SM [38]. To leading order in κ � 1, the minimum separation
is given by

� = 2κβ(2 + β )
sin b

sin bz
, (8)

where β = cos by + cos bz − 2. The breakdown field can then
be determined by Eqs. (3), (7), and (8). The conductance com-
puted using (4), with the analytically computed breakdown
field, shows excellent agreement with the numerical results
so long as the magnetic length is much larger than the lattice
spacing, as shown in Fig. 3.
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Discussion and conclusions. In this article, we consider
magnetoconductance across a tunnel barrier between two
WSMs arranged such that the projection of their Weyl node’s
Fermi surfaces onto the interface BZ are well separated and
thereby not coupled by a magnetic field. At generic tun-
nel coupling, the interface Fermi arcs, which come in two
topologically distinct connectivity types (heterochiral and ho-
mochiral), will typically also be well separated. In this regime,
the system displays a universal tunnel magnetoconductance of
(e2/h) N (B) [where N (B) is the number of flux quanta through
the interface] for each pair of homochiral-connectivity Fermi
arcs. While the CME of a bulk WSM in the ballistic limit is
also characterised by a universal magnetoconductance, where
the number of homochiral Fermi-arc pairs is replaced by the
number of Weyl-node pairs, it requires a minimal magnetic-
field strength whose scale is set by the energy of the Weyl
nodes and by diffusion properties [9,17]. Similarly nonuni-
versal is the conductance across interfaces with overlapping
projections of Weyl Fermi pockets [20–23,35].

In contrast, the tunnel conductance considered here is
independent of such details because the interface behaves
as a filter, each Fermi arc transmitting exactly one N (B)-
degenerate mode, while additional modes are reflected. A bulk
system that displays a similar extension of the ballistic-limit
CME down to zero magnetic field, independent of system
details, is the Fermi-arc metal [45], recently predicted by
Brouwer and one of us.

We have also shown that such interfaces can be used to
realize the rare phenomena of magnetic breakdown. This re-
quires a close encounter of two Fermi arcs so as to enable
magnetic-field-induced quantum tunneling between them.
Such an encounter is generic between WSMs whose interface
Fermi arcs cross in the decoupled limit. The magnetic break-
down leads to a suppression of the transmission probability
for field strengths above a characteristic breakdown field B0

(set by the coupling strength). Since magnetic breakdown
effectively turns a homochiral connectivity into a heterochi-
ral one, one might expect the conductance to drop to zero
above B0. The increased probability of experiencing a het-
erochiral connectivity at higher fields is, however, balanced
by the increased degeneracy of transmitted modes, leading
to a saturation of the conductance at a finite value of (e2/h)
N (B0).

As for material realizations of the tunnel-junction CME,
one could use WSM interfaces, for which the separation be-
tween projections of Fermi pockets from opposite sides of
the interface is larger than the inverse magnetic length. The
inverse magnetic length (at realistic magnetic field strengths)
and the size of Fermi-pocket projections in many existing
WSMs are sufficiently small to realize an interface without
an overlap of bulk states. Otherwise, overlapping bulk states
will produce additional conducting channels that will add to
the universal Fermi-arc conductance. Moreover, the universal
tunnel conductance is robust with respect to the presence of
additional, nontopological surface states since it only depends
on the Fermi-arc connectivity, which is robust against hy-
bridization with other surface states. The presence of surface
disorder and phonons could modify the transmission behavior
by introducing scattering between counterpropagating states
separated in the in-plane momentum. For weak disorder and
low temperatures this effect is of subleading order in the
corresponding scattering amplitude and becomes negligible
for long-ranged potentials and well-separated Fermi arcs since
countermovers are then not continuously connected [46]. For
material realizations of the magnetic-breakdown effect, one
could use a tunnel junction between identical WSMs rotated
with respect to one another by a small angle. Materials with
curved Fermi arcs, such as those of the TaAs and RhSi
families, will then typically host Fermi arc crossings (in the
decoupled limit) for which a weak tunnel coupling would lead
to a close encounter.

A possible future avenue would be to harness the magnetic-
breakdown induced splitting of quasiparticle trajectories to
enable interference between different interface trajectories.
Such interference effects have a rich history of providing ex-
perimental access to the Fermiology of bulk materials [29,47–
50]; the magnetic breakdown of interface Fermi arcs that we
predict may play a similar role in the Fermiology of Fermi-arc
surface states.
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