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Polynomial sign problem and topological Mott insulator in twisted bilayer graphene
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We show that for the magic-angle twisted bilayer graphene (TBG) away from the charge neutrality point,
although quantum Monte Carlo (QMC) simulations suffer from the sign problem, the computational complexity
is at most polynomial at integer fillings of the flat-band limit. For even-integer fillings, the polynomial complexity
survives even if an extra intervalley attractive interaction is introduced. This observation allows us to simulate
magic-angle TBG and to obtain an accurate phase diagram and dynamical properties. At the chiral limit and
filling ν = 1, the simulations reveal a thermodynamic transition separating the metallic state and a C = 1
correlated Chern insulator—topological Mott insulator (TMI)—and the pseudogap spectrum slightly above the
transition temperature. The ground state excitation spectra of the TMI exhibit a spin-valley U(4) Goldstone mode
and a time-reversal restoring excitonic gap smaller than the single-particle gap. These results are qualitatively
consistent with recent experimental findings at zero-field and ν = 1 filling in h-BN nonaligned TBG devices.
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Introduction. Magic-angle twisted bilayer graphene (TBG)
has attracted great attention in recent years, as it hosts a
variety of nontrivial phases beyond semiclassical or band-
theory description [1–41]. To theoretically characterize these
flat bands and correlated quantum phases, tight-binding [2,5]
and continuous Bistritzer-MacDonald (BM) [3] models have
been developed. In this Letter, we focus on the continuous-
model approach, which avoids the challenge to construct
localized orbitals that preserve all the symmetries [34,42–
46]. By projecting long-range Coulomb interactions onto the
moiré flat bands with a quantum metric, such a projected
Hamiltonian has been studied using mean-field approxima-
tions [20,31,47,48]. At certain limits, an exact analytical
solution has also been obtained [49–53]. On the numerical
side, the charge neutrality point has been studied using sign-
problem-free momentum-space quantum Monte Carlo (QMC)
simulations [54–56]. However, away from the charge neutral-
ity point, due to the emerging sign problem, such simulations
have not yet been performed.

Although the sign problem often implies exponential com-
putational complexity, it is worthwhile to emphasize that not
all sign problems cause such severe damage. Very recently,
a much milder type of sign problem has been demonstrated,
where the computational complexity scales as a polynomial
function of the system size, known as the polynomial sign
problem [57–59].
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In this Letter, we study the sign problem in TBG at the
flat-band limit (the interaction effect will be overestimated
which will cause a quantitative difference for a gapped insu-
lator ground state). Utilizing the sign bound theory [58], we
prove that TBG flat bands at even-integer fillings, or arbitrary
integer fillings in the chiral limit, exhibit (at most) a polyno-
mial sign problem. This observation allows us to utilize QMC
methods to study TBG systems with fillings away from charge
neutrality, away from the chiral limit, and/or in the presence
of extra attractive interactions with phononic or topological
origins [18,21,60,61] on top of the Coulomb repulsion.

To demonstrate this approach, we performed large-scale
QMC simulations to examine the chiral limit at filling ν = 1
(we denote the fully empty/filled flat bands as ν = −4/ + 4
and charge neutrality as ν = 0). At T = 0, this model can
be solved exactly [50,52,55], and the exact solution reveals
that at T → 0, the system is a correlated Chern insulator—
a topological Mott insulator (TMI) [62–67]—with a Chern
number C = 1. Upon raising the temperature, our QMC simu-
lations observe three different phases/states: (1) a metal phase
with time-reversal symmetry at high temperature T > T �,
(2) a time-reversal invariant pseudogap phase at intermediate
temperature Tc < T < T �, and (3) a low-temperature TMI
phase at T < Tc. Here, T � is a crossover temperature scale
and Tc is the critical temperature below which the time-
reversal symmetry is spontaneously broken. We further show
that in the TMI phase spins remain disordered due to ther-
mal excitations of gapless spin fluctuations. This absence of
spin order/polarization is in direct contrast to quantum Hall
systems where electron spins are polarized due to Zeeman
splitting and thus spin fluctuations are gapped.
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BM model and projected interaction. We utilize the BM
model and project interactions between fermions to the moiré
flat bands. The BM model Hamiltonian [3] for the τ valley
takes the following form,

H τ
k,k′ =

(
h̄vF (k − K1) · σδk,k′ V

V † h̄vF (k − K2) · σδk,k′

)
,

(1)

where K1 and K2 mark the two Dirac points in the τ

valley from layers 1 and 2, respectively. V = U0δk,k′ +
U1δk,k′−G1 + U2δk,k′−G1−G2 and V † = U †

0 δk,k′ + U †
1 δk,k′+G1 +

U †
2 δk,k′+G1+G2 are the interlayer tunnelings with matrix

Un =
(

u0 u1e−i 2π
3 n

u1ei 2π
3 n u0

)
, (2)

where u0 and u1 are the intra- and intersublattice inter-
layer tunneling amplitudes. G1 = (−1/2,−√

3/2), G2 =
(1, 0) are the reciprocal vectors of the moiré Bril-
louin zone (mBZ), and K1 = (0, 1/2

√
3)|G1,2|, K2 =

(0,−1/2
√

3)|G1,2|. For parameters, we set (θ, h̄vF /a0,

u0, u1) = (1.08◦, 2.377 45 eV, 0 eV, 0.11 eV) for the chiral
limit, and for nonchiral model, we set u0 = 0.06 eV following
Refs. [49,54,56,68]. Here, θ is the twisting angle and a0 is the
lattice constant of monolayer graphene.

For interactions, in addition to the Coulomb repulsion, here
we have the option to include one more interaction term and
the sign problem will still remain polynomial:

HI = 1

2�

∑
q

[V1(q)δρ1,qδρ1,−q + V2(q)δρ2,qδρ2,−q],

δρ1,q =
∑

k,α,τ,s

(
c†

k,α,τ,sck+q,α,τ,s − ν + 4

8
δq,0

)
,

δρ2,q =
∑
k,α,s

(c†
k,α,τ,sck+q,α,τ,s − c†

k,α,−τ,sck+q,α,−τ,s). (3)

The first term in HI (V1 > 0) is the Coulomb interactions, and
the second term V2 � 0 introduces repulsive interactions for
fermions in the same valley and attractions between the two
valleys, which is a phenomenological term describing inter-
valley attractions [18,21,60,61,69–73]. At V2 = 0, this model
recovers the standard TBG model with Coulomb repulsion.
When V2 is turned on, the intervalley attraction favors interval-
ley pairing and could stabilize a superconducting ground state.
The normalization factor in HI is � = L2

√
3

2 a2
M with L and aM

being the linear system size of the system and the moiré unit
cell length. k and q cover the whole momentum space, ν is the
filling factor, and α, τ, s represent the layer/sublattice, valley,
and spin indices, respectively. The momentum dependence
for non-negative V1 and V2 is unimportant to the polynomial
sign problem. Here, for simplicity, we set V2 = γV1 with γ

being a non-negative constant and for V1, we use a Coulomb
interaction screened by a single gate V1(q) = e2

4πε

∫
d2r( 1

r −
1√

r2+d2 )eiq·r = e2

2ε
1
|q| (1 − e−|q|d ), where d

2 = 20 nm is the dis-
tance between the graphene layer and single gate, and ε = 7ε0

is the dielectric constant. We then project the interactions HI

to the moiré flat bands [see Supplemental Material (SM) [74]]

and use the projected Hamiltonian to carry out a sign bound
analysis and QMC simulations.

Polynomial sign bounds. In the QMC simulations, the ex-
pectation value of a physical observable Ô is measured as
〈Ô〉 = ∑

l Wl〈Ô〉l , where Wl and 〈Ô〉l are the weight and the
expectation value for the configuration l [74,75]. In sign-
problem-free QMC simulations, Wl � 0 for all l and an
accurate expectation value can be obtained by only sampling
a small number of configurations, the importance sampling,
and this number scales as a power-law function of the system
size. However, for many quantum systems, Wl can be negative
or even complex, and thus to obtain an accurate expectation
value, it requires sampling a large number of configurations,
which usually scales as an exponential function of the system
size [75,76].

It is worthwhile to emphasize that the sign problem does
not always lead to an exponentially high computational cost.
The average sign 〈sign〉 = ∑

l Wl/
∑

l |Re(Wl )| between 0
and 1 is usually used to measure the severity of the sign
problem. 〈sign〉 = 1 means that the system is sign problem
free, while smaller 〈sign〉 means a more severe sign prob-
lem. In a d-dimensional quantum system that suffers from
the sign problem, 〈sign〉 ∼ exp(−βLd ) where β = 1/T , the
inverse temperature, indicates that the number of configura-
tions needed in QMC simulations scales as an exponential
function of the space-time volume [75,76]. For a polynomial
sign problem, although 〈sign〉 < 1 (i.e., the system does suffer
from the sign problem), 1/〈sign〉 is a polynomial function of
the system size and thus the number of configurations needed
only scales as a power-law function of the system size.

Although the average sign can be easily measured in QMC
simulations, it usually does not have a simple analytic for-
mula. To estimate the numerical cost of overcoming the sign
problem, we utilize the sign bound 〈sign〉b defined in Ref. [58]
in which 〈sign〉b is proved to be the lower bound of 〈sign〉 (i.e.,
〈sign〉b � 〈sign〉). Thus, if the sign bound scale is a power-law
function of the system size, the sign problem is (at most) poly-
nomial. Remarkably, the low-temperature sign bound in moiré
flat bands can be easily calculated by counting the ground
state degeneracy, which can be obtained using the SU(4) and
SU(2) Young diagrams as employed in Refs. [49,50,55] (see
SM for details [74]).

At charge neutrality (ν = 0), moiré flat bands with
Coulomb interactions (γ = 0) are known to be sign problem
free [54,55], and thus the sign bound is 1. Here, we further
prove that adding intervalley attractions (γ > 0) to the chiral
system does not cause a sign problem (〈sign〉b = 1). Away
from charge neutrality, a sign problem arises, but it is polyno-
mial at most integer fillings. For Coulomb repulsion (γ = 0),
the sign problem is polynomial at any (even) integer fillings
at (away from) the chiral limit. When intervalley attractions
are introduced (γ > 0), even-integer fillings at the chiral limit
also have a polynomial sign bound. A finite band dispersion
can be included in the QMC simulation in principle, but there
is no obvious theory to promise there is no general exponential
sign problem.

To further verify the polynomial sign problem summarized
in Table I, we directly calculate 〈sign〉 and 〈sign〉b in QMC
simulations at various fillings ν, and compare them with the
exact formula of the sign bound obtained at integer fillings. As
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TABLE I. Scaling of the sign bound 〈sign〉b at low temperature
and large moiré lattice size N = L2. A power-law function of N
indicates that the sign problem is (at most) polynomial. ✗ indicates
the sign bound decays to zero exponentially.

Filling (ν) Chiral (γ = 0) Nonchiral (γ = 0) Chiral (γ > 0)

0 1 1 1
±1 N−1 ✗ ✗

±2 N−2 N−1 N−2

±3 N−5 ✗ ✗

±4 N−8 N−4 N−4

shown in Fig. 1, 〈sign〉 is always larger than or equal to 〈sign〉b

as expected, and the sign bound at integer filling indeed con-
verges to the exact solution. The peak in 〈sign〉 at integer
(or even-integer) fillings indicates that the sign problem is
less severe and QMC simulations have a faster convergence
at these fillings, and the locations of these peaks are fully
consistent with the polynomial sign problem summarized in
Table I.
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FIG. 1. (a), (c), (e) 〈sign〉 vs filling ν and (b), (d), (f) 〈sign〉b

vs filling ν at low temperature T = 1 meV. The fillings of ν < 0
are symmetric with respect to ν = 0 via the particle-hole symmetry.
(a) and (b) are the chiral limit γ = 0 cases, (c) and (d) are the nonchi-
ral γ = 0 cases where we take u0 = 0.06 eV, and (e) and (f) are the
chiral limit γ = 4 cases. (a), (c), (d) are the average sign 〈sign〉 for
L = 3 (N = 9) and L = 4 (N = 16) measured from QMC for filling
from ν = 0 to ν = 4. (b), (d), (f) are the sign bounds 〈sign〉b for
L = 3 (N = 9) and L = 4 (N = 16) measured from QMC (solid line)
and derived from exact solution (ES) at the low-temperature limit for
filling ν = 1, 2 (dashed line values).
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FIG. 2. (a) Chern band polarization correlation function S vs T .
At low temperature, the Chern number approaches 1. (b) 2D Ising
universality class crossing to determine the phase transition point at
Tc ∼ 1.82 ± 0.05 meV, denoted by the dashed line.

Chiral limit at ν = 1 and γ = 0. With the polynomial sign
bound obtained, we discuss the QMC results as a function
of temperature for the chiral limit ν = 1 filling. In the QMC
simulation, we observe a thermal phase transition with a
pseudogap spectrum and spontaneous time-reversal symmetry
breaking, which is of immediate relevance to the recent ex-
perimental finding of correlated Chern insulators at zero-field
and ν = 1 filling in h-BN nonaligned TBG devices and its
relatively high Curie temperature of Tc ∼ 4.5 K [41].

At the low-temperature limit for ν = 1, an exact solution
at T = 0 expects degenerate ground states with Chern num-
bers C = ±1 and ±3 [50,52,55]. In the large system size
limit N → ∞, the number of ground states scales as N7 for
C = ±1 and N3 for C = ±3 [74]. Due to the higher number
of ground state degeneracies, thermal fluctuations shall stabi-
lize the C = ±1 state as the thermal equilibrium state at low
temperature via the order by disorder mechanism [77]. This
low-temperature state breaks spontaneously the time-reversal
symmetry, but this symmetry breaking process as a function
of temperature is unknown.

Our QMC simulation at finite temperature reveals this pro-
cess. To probe the time-reversal symmetry breaking, we use
the Chern band polarization as the order parameter, 〈N̂+ −
N̂−〉/N , where N̂± are the fermion occupation number op-
erators of ± Chern bands. The correlation function of this
order parameter is plotted in Fig. 2, S ≡ 〈(N̂+ − N̂−)2〉/N2,
and a scaling analysis reveals a second-order phase transi-
tion at Tc ∼ 1.82 ± 0.05 meV, below which the time-reversal
symmetry is spontaneously broken, similar to what was ob-
served at ν = 3 with real-space effective models [59,63,64].
At low temperature, S approaches 1, indicating that the Chern
number is C = ±1, instead of ±3. In Fig. 2(b), we rescale
the data as S × L2β/ν using the two-dimensional (2D) Ising
exponents β = 1/8 and ν = 1, and the cross point at Tc ∼
1.82 ± 0.05 meV marks the critical temperature. We note that
our Tc is higher than the experimental results in Ref. [41], and
this is because the real material is not at the chiral limit and
finite u0 would reduce the Tc [78].

Such a spontaneously generated Chern insulator is of both
theoretical and experimental interest as in the temperature
range of 0 < T < Tc, it only breaks the time-reversal sym-
metry but not the spin-valley U(4) continuous symmetry. In
contrast to quantum Hall states, where fermion spins are po-
larized due to Zeeman splitting, spin degrees of freedom do
not form any order in this TMI phase and the spin SU(2)
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FIG. 3. (a) Analytical excitation spectra along a high-symmetry
path in mBZ. The red line labels the single-particle excitations. Blue
lines show the ten lowest charge-neutral excitons between bands
with the same Chern number. The yellow lines label the ten lowest
charge-neutral excitons between opposite Chern bands, which are
responsible for the restoration of time-reversal symmetry. (b)–(d) Lo-
cal density of states N (ω), and the single-particle spectra A(�,ω)
and A(M, ω) obtained from the QMC-SAC scheme as a function of
T . Different lines are lifted in the y direction with the amount of
�β = �(1/T ) for clarity. Between the high-temperature metal-like
phase and the low-temperature TMI phase, pseudogap behavior can
be found at T � ∼ 2 meV above Tc ∼ 1.82 ± 0.05 meV.

symmetry is preserved. To better demonstrate this point, we
follow the method in Ref. [51] and analytically compute
the spectrum of single-particle and charge-neutral excitonic
excitations at T = 0. As shown in Fig. 3(a), single-particle
excitations (red stars) are fully gapped, indicating an insulat-
ing state. To restore the time-reversal symmetry, it requires
moving fermions from + Chern bands to − Chern bands (or
vice versa). However, such particle-hole excitations are fully
gapped [yellow stars in Fig. 3(a)], and thus thermal fluctua-
tions at low T cannot restore the time-reversal symmetry. In
contrast, particle-hole excitations between spin-valley bands
with the same Chern number (blue starts) are gapless. These
excitons describe spin-valley SU(4) fluctuations, and any spin
or spin-valley order would be destroyed by these gapless ex-
citations at any finite temperature.

We note that the energy scale of the single-particle gap
is larger than the gap of time-reversal-restoring excitons
[Fig. 3(a)], indicating that time-reversal symmetry breaking
is probably more vulnerable to thermal fluctuations in com-
parison to single-particle excitations. To probe this physics,
we employ the stochastic analytic continuation (SAC) method
upon the QMC imaginary time data of the Green’s func-
tion to extract the real-frequency single-particle spectra
[54,56,72,79–91].

The obtained local density of states (LDOS) N (ω) and
the single-particle spectral functions A(�,ω) and A(M, ω) are
shown in Figs. 3(b)–3(d), respectively. From them, one sees
that slightly above the Tc ∼ 1.82 ± 0.05 meV, at T � = 2 meV,

the spectra indeed develop a pseudogap shape at both mo-
menta and N (ω). Below Tc, the spectra are fully gapped and
the system is an interaction-driven topological Mott insulator
[62–64] with no spin polarization and Chern number C = 1.
The pseudogap behavior at Tc < T < T � is certainly beyond
the mean-field description of the system, which would re-
quire the gap to open exactly at the transition, and is the
manifestation of the intricate competition between the single-
particle, collective excitations (such as the excitons), and
thermal fluctuations in the moiré system. Our LDOS results
at low temperature with asymmetric spectral weights are also
consistent with the scanning tunneling microscopy (STM)
experiment at ν = 1 [11].

Discussion. The experimental observation of the zero-field
Chern insulators in TBG, at ν = 1 and with C = 1 [41],
clearly poses the question that how to understand the rich
physics in pristine TBG systems, but it is known that the
model level computations, taking into account the strong
interaction and topological ingredient of the flat-band wave
functions at finite temperature, are notoriously challenging.
Here, we find the way out by using the fermion sign bound
theory [58], upon which we prove for Coulomb interac-
tions and chemical potentials projected on the flat-band TBG
model, that all integer fillings at chiral and even-integer
fillings at nonchiral cases have either no sign problem or
polynomial sign bounds in their QMC simulations. Similar
behavior is also retained when a projected effective attraction
is introduced for chiral even-integer fillings.

This approach allows us to unbiasedly compute the phys-
ical properties of the model at finite temperature. For ν = 1,
the numerical results are fully consistent with experimental
observations, including spontaneous time-reversal symmetry
breaking, Chern number C = 1, and the asymmetry in LDOS.
For Tc < T < T �, the simulation reveals a pseudogap phase.
This result is consistent with the observation of insulatinglike
behavior at T > Tc [11]. This pseudogap phase would be an
interesting subject for further experimental studies, which will
help us better understand the phase transition and mechanism
that drives the time-reversal symmetry breaking in moiré flat
bands.
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