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In this work, we investigate the interplay between dissipation and symmetry-protected topological order. We
considered the one-dimensional spin-1 Affleck-Kennedy-Lieb-Tasaki model interacting with an environment
where the dissipative dynamics are described by the Lindladian master equation. The Markovian dynamics is
solved by the implementation of a tensor network algorithm for mixed states in the thermodynamic limit. We
observe that, for time-reversal symmetric dissipation, the resulting steady state has topological signatures even if
being a mixed state. This is seen in finite string-order parameters as well as in the degeneracy pattern of singular
values in the tensor network decomposition of the reduced density matrix. We also show that such features do not
appear for nonsymmetric dissipation. Our work opens the way toward a generalized and more practical definition
of symmetry-protected topological order for mixed states induced by dissipation.
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Introduction. Topological phases of matter [1,2] are dis-
tinct quantum phases with short-range entanglement and
signature patterns in entanglement spectrum [3]. Some of
such phases are also protected by existing symmetries in
the system, thus being called symmetry-protected topological
(SPT) phases. An archetypal example is the 1D Affleck-
Kennedy-Lieb-Tasaki(AKLT) model [4], where Z2 ⊗ Z2 and
time-reversal symmetries protect the structure of entangle-
ment giving rise to nonzero string-order parameters [5],
spin-1/2 edge modes [3], and topological degeneracy of the
entanglement spectrum [6], which survive under the action
of symmetry-preserving perturbations [7,8]. The presence of
edge modes prevents such topological phases from being con-
tinuously deformed into a topologically trivial phase without
going through a quantum phase transition, where the edge
modes penetrate the bulk and the energy gap of the system
closes.

An important problem that has gained attention in recent
years is how to effectively combine topological order and
dissipation [9–12]. This is due to the emerging huge poten-
tial of dissipative effects in quantum computing [12,13] and
material science [14,15]. Recently, a definition of topolog-
ical phases of matter for mixedstate was proposed [16] in
the light of fast dissipative evolution with local and time-
independent symmetric Lindbladians. With that definition, the
authors demonstrate that SPT order is destroyed under dissi-
pation. Another recent work [17] introduces the conditions to
preserve the SPT order under specific types of dissipations.
The so-called strong symmetry condition for dissipative dy-
namics is satisfied when the local jump operators commute
with the operators composing the projective representation of
the symmetry group of interest and also with the Hamiltonian
of the system. This condition guarantees the preservation of
the string order for SPT under dissipation satisfying the strong
symmetry condition [17].

In this work, we address the interplay between dissipa-
tion and SPT order from a different angle. In particular, we
consider the action of symmetric dissipation on a 1d SPT
phase and evaluate it in terms of mathematical quantities such
as the degeneracy of the Schmidt coefficients of the tensor
network representation of the mixed state. In the case of pure
states, such Schmidt coefficients relate directly to the entan-
glement spectrum of the state. In mixed states, however, such
coefficients do not have such a straightforward physical inter-
pretation, but as we shall see, also offer a valid mathematical
tool to assess long-range patterns of correlations (classical and
quantum) in the mixed state.

In particular, we consider the 1D AKLT model interact-
ing with an environment, where the Markovian dynamics is
given by the Lindblad master equation. The dissipation op-
erators are chosen in order to preserve (symmetric) or break
(nonsymmetric) time-reversal symmetry. We show, via nu-
merical tensor network simulations, how these two cases lead
to steady states with very different properties in terms of
long-range correlations and other typical signatures of SPT
order.

Model and method. In order to investigate the effects of
symmetric and nonsymmetric dissipation on SPT order, we
considered an interacting quantum spin model given by the
Spin-1 AKLT Hamiltonian,

H =
∑

i

�Si · �Si+1 + 1

3
(�Si · �Si+1)2, (1)

where �S represents the three-component spin-1 operator �S =
(Sx, Sy, Sz ), for an infinite chain with open boundary con-
ditions. The above Hamiltonian has SU (2) symmetry, and
the ground state is given by the so-called AKLT state. Such
order has a structure of entanglement protected by Z2 ⊗ Z2

symmetry [4,18], and defines a topological Haldane phase.
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Our strategy here is to couple the AKLT model to an envi-
ronment, time-evolve the new physical system until reaching
the steady state, and assess the signatures of topological order.
The dissipative evolution follows a master equation of the type

ρ̇ = L[ρ] = −i[H, ρ] + γ
∑

μ

(
LμρL†

μ − 1

2
{L†

μLμ, ρ}
)

,

(2)

where ρ is the density matrix of the system, H the Hamil-
tonian of the model, γ the coupling between the quantum
system and the environment, and the pair {Lμ, L†

μ} are Lind-
blad jump operators. We will focus on different local choices
of operators Lμ, either preserving symmetries or not, and their
effect on SPT order in the resulting steady state.

In order to study the dissipation effects on the steady states,
we compute quantities such as the string order parameter Oα

S ,

Oα
S = lim

|r|→∞
〈
Sα

i eiπ
∑ j−1

l=1 Sα
l Sα

j

〉
, (3)

with Sα the α component of spin variable (α = x, y, z) and
r = i − j. In addition, the entanglement spectrum [6,8] and its
degeneracy are also important indicators of 1D SPT phases. In
the nondissipative case, this can be assessed by checking the
degeneracy of the Schmidt values in a Matrix Product State
(MPS) decomposition of the pure state, or equivalently, the de-
generacy of the entanglement energies ξα ≡ −2 log(λα ), with
λα the Schmidt coefficients of sequential Schmidt decompo-
sitions of the MPS. In the case of pure states, such Schmidt
coefficients have a clear interpretation in terms of the eigen-
values of the reduced density matrix of half an infinite system
and are therefore directly related to the quantum entanglement
present in the pure state. However, in the dissipative case,
the situation is slightly different. As we shall see, we shall
represent the mixed state of the system using a Matrix Product
Operator (MPO). Such MPO also admits a representation in
terms of sequential singular value decompositions (equivalent
to the Schmidt decompositions in the case of pure states),
which in fact is nothing but the canonical form of the 1D
tensor network [19], see Fig. 1. The corresponding Schmidt
coefficients in the dissipative case do not represent formally
the quantum entanglement in the system since classical and
quantum correlations are intertwined in this case. But we
can say, however, that they represent the relevant correlation
parameters of the MPO tensor network, even if their physical
interpretation is not so straightforward as in the pure state
case. We will see in what follows that the degeneracy patterns
of these dissipative Schmidt coefficients are also relevant to
assess possible signatures of long-range correlations in mixed
states.

We have performed numerical calculations using tensor
network methods, which we now briefly describe. In re-
cent years, we have witnessed a fast development of tensor
networks [20–22] for simulations of quantum many-body
systems. Methods such as time-evolving block decimation
(TEBD) [19,23,24] and density matrix renormalization group
(DMRG) [21,25] allow exploration of ground state properties
of 1D systems using MPS representations of quantum states,
even in the thermodynamic limit. Extensions of tensor net-
work methods for open quantum systems have recently been

FIG. 1. Tensor network diagrams for a 1D system with a 1-site
unit cell: (a) MPS for a pure state |�〉, (b) MPO for a mixed state ρ,
and (c) vectorized MPO (following Choi’s isomorphism) for vector-
ized mixed state |ρ〉	. In the diagrams, shapes represent tensors, and
lines represent indices in the tensors. Lines from one shape to another
represent contracted common indices between tensors. The diagonal
λ tensors correspond to the (real and positive) Schmidt coefficients
of sequential bipartitions of the tensor network and are the ones
associated with the spectrum ξα = −2 log(λα ), which amounts to the
entanglement spectrum in the pure-state case represented in (a).

presented [26,27]. People have introduced relevant concepts,
such as matrix product operators (MPO), extending the notion
of MPS from pure states to mixed states in the case of 1D
systems. Along these lines, the primordial work of Zwolak
and Vidal [28] extended the TEBD algorithm to effectively
simulate the dynamics of mixed states, by solving the Lind-
blad master equation in vectorized form. This method was
also recently implemented for two-dimensional systems [29]
with success. Additionally, other recent strategies [30] pro-
pose variational methods as well hybrid algorithms combining
real and imaginary time for Lindblad evolutions [31] in order
to find dissipative steady states.

In this work, we implement the technique proposed by
Zwolak and Vidal [28] based on MPOs, in the thermodynamic
limit. The method allows us to simulate the time evolution
driven by the master equation, and to evaluate the prop-
erties of the steady state. The algorithm consists of using,
essentially, the TEBD algorithm for real-time simulation of
Markovian dynamics, representing the mixed state ρ as a
pure state |ρ〉	 via Choi isomorphism ρ = ∑

i pi |�i〉 〈�i| →
|ρ〉	 = ∑

i pi |�i〉 ⊗ |�i〉, see Fig. 1. We can then obtain the
vectorized form of the Lindbladian superoperator as

L	 ≡ −(H ⊗ I − I ⊗ HT )

+
∑

μ

(
Lμ ⊗ L∗

μ − 1

2
L†

μLμ ⊗ I − 1

2
I ⊗ L∗

μLT
μ

)
. (4)

The solution of the master equation can then be written as
|ρ(T )〉	 = eTL	 |ρ(0)〉, and the steady state of the system is
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given by |ρs〉	 ≡ limT →∞ |ρ(T )〉	. The density matrix |ρs〉	 is
also the eigenvector of L	 corresponding to zero eigenvalue,
so that L	 |ρs〉	 = 0. In our case, the Lindbladian super-
operator can be written as a sum of local nearest-neighbor
terms L[ρ] = ∑

i Li,i+1[ρ] so that we can implement the
infinite-TEBD algorithm [19,24] via a Trotter-Suzuki de-
composition of the time evolution operator driven by the
Lindbladian superoperator.

In the present study, we consider the bond-dimension χ =
10 in preparation of the initial pure state |�〉. The MPO
density matrix ρ was computed with four-rank � tensors
and dimensions (χ2, d, χ2, d ), with d the local Hilbert space
dimension. The vectorized MPO density matrix |ρ〉	 was writ-
ten as a MPS with three-rank � tensors with dimensions
(χ2, d2, χ2). Also, we implemented a second-order Trotter-
Suzuki decomposition of the time-evolution operator with
time steps as small as dt = 10−2 up to maximum time evo-
lution T = 300. The above setup was sufficiently accurate,
allowing us to obtain the steady state in the thermodynamic
limit. We used the quantity � ≡ 	 〈ρs|L	 |ρs〉	 as convergence
criterion which should tend to zero in time, meaning that we
approach the steady state. We obtained values close enough
to zero, with negligible imaginary part Im(�) and real part
Re(�) smaller than 10−4. Furthermore, to assess the validity
of our simulations we also computed the negative eigenvalues
of the n site reduced density matrix ρn, since the method
itself does not guarantee a completely positive density matrix.
To be more precise, we computed the sum of the negative
eigenvalues of ρn and explicitly tested that this was always
very close to zero.

Results. We investigate the effects of dissipation on 1D
SPT order by computing the Markovian dynamics of the
AKLT model with Lindbladian jump operators Lμ that may
respect, or not, the relevant symmetries protecting the SPT
Haldane phase. In the symmetric case, we consider a dissi-
pation represented by local jump operators Li which satisfy
the strong symmetry conditions discussed in Ref. [17]. On the
other hand, the nonsymmetric case does not satisfy the sym-
metry condition. We consider two cases of dissipation; first,
we implement the nonsymmetric dissipation Lμ = Sz, which
breaks time-reversal symmetry in the Liouvillian. Second, we
consider the symmetric dissipation Lμ = S2

z , which preserves
time-reversal symmetry. In both cases, we compute the steady
state of the system for different dissipation strengths γ , and
evaluate the string order parameter Oα

S , the purity of the mixed
state of n consecutive sites �n ≡ tr(ρ2

n ) (<1 for mixed states),
and the degeneracies present in the spectrum ξα of the Schmidt
coefficients of steady state |ρs〉	.

In the case of symmetry-breaking dissipation, Lμ = Sz, we
start from the AKLT state and compute the steady state under
dissipation for γ up to 0.05 which, as we shall see, is already
sufficiently large for our purposes. The string order parameter
Oα

S for α = x, y, z, z2 and purity �n are shown in Fig. 2.
In the plots, we see that magnetic and string order decays
quickly with the dissipation strength, and becomes negligible
for γ > 0.02, signaling that the SPT order initially present
in the Haldane phase of the AKLT state does not remain
under this type of dissipation. In fact, our calculations are
also compatible with a pure steady state, since the purity also
goes to one quickly. Additionally, the spectrum ξα is shown in

FIG. 2. (a) String order parameters Oα
S and (b) purities �n for

nonsymmetric dissipation Lμ = Sz, for different values of strength
dissipation γ .

Fig. 3 for the different values of dissipation strength γ . As we
can see in the figure, the spectrum does not show the typical
degeneracy patterns of SPT order for any value of γ . All these
observations show that SPT order is destroyed by this type
of nonsymmetric dissipation. This result is in agreement with
previous investigations of the stability of symmetry-protected
topological phases for noninteracting topological insulators
coupled to a time-reversal breaking environment [32].

Next, we consider the case of symmetric dissipation
Lμ = S2

z . The results for string order parameters and purity are
shown in Fig. 4. As we can see in the plot, string orders Ox

S and
Oy

S drop equally to zero, whereas string orders Oz
S and Oz2

S in-
crease with the dissipation strength up to their maximum value
one for strong dissipation γ > 0.02. The nonzero value of
these string order parameters signals the presence of nontrivial
long-range behavior in the steady state, in agreement with

FIG. 3. Lowest part of the spectrum ξα for nonsymmetric dissi-
pation Lμ = Sz, as a function of strength dissipation γ .
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FIG. 4. (a) String order parameters Oα
S and (b) purities �n for

symmetric dissipation Lμ = S2
z , for different values of strength dissi-

pation γ .

recent discussions on the resilience of certain types of topo-
logical order for mixed states [17]. It’s important to mention
the value of Oz

S at the nonequilibrium steady state is different
for the typical Oα

S = 4
9 for pure AKLT state, which indicates

that this type o symmetric dissipation Lμ = S2
z leads to a dif-

ferent type of SPT order. In addition, we can see that the purity
flows toward 0.5 for strong dissipation, meaning that we have
mixed steady states. The overall picture is completed by as-
sessing the spectrum ξα , which we show in Fig. 5. Importantly,
the spectrum, in this case, is always organized in terms of
doublets, no matter the strength of the dissipation, in analogy
to the typical degeneracy of the entanglement spectrum of the
Haldane SPT phase in the pure-sate case. In combination with
the nonzero value of some string-order parameters, we take
this as an indication that the symmetry-preserving dissipation
indeed keeps some kind of long-range correlation order in the
mixed steady state, being this the mixed-state analogous of
SPT order in pure states. For all practical purposes, we can
consider this as a realization of 1D dissipative SPT order,
and it admits the same mathematical treatment as 1D SPT
order for pure states in terms of irreducible representations of
projective symmetry groups in the underlying tensor network.

Conclusions and outlook. In this paper we have studied
the effects of different types of dissipation on 1D SPT order.

FIG. 5. Lowest part of the spectrum ξα for symmetric dissipation
Lμ = S2

z , as a function of strength dissipation γ . The spectrum is
organized in doublets, no matter the dissipation strength.

In particular, we have analyzed the steady states obtained by
acting with time-reversal breaking and nonbreaking dissipa-
tion on the Haldane phase of the 1D AKLT model. We have
seen that non-symmetric dissipation breaks all SPT signatures
already for very small values of the dissipation strength, re-
sulting in reduced density matrices representing pure local
states. It would be interesting to check if this effect remains
for more general multisite Lindblad operators. Symmetric
dissipation induces a long-range correlation order in the
mixed steady state, that is analogous to the 1D SPT order
in pure states. This has been assessed by the nonzero values
of some string order parameters, as well as by the degen-
eracy of the spectrum of Schmidt coefficients in the MPO
representation of the mixed state, akin to the degeneracy of
the entanglement spectrum in 1D SPT phases. Our results
point toward a broad concept of 1D dissipative SPT order,
which can have the same mathematical treatment as 1D SPT
order for pure states, in terms of irreducible representations
of projective symmetry groups. This opens the possibility to
investigate new dissipative phases of quantum matter, where
nonlocal patterns of long-range order are at play, and which
can be naturally described and characterized using the tensor
network language, probably even beyond 1D systems. Diving
into such an analysis is a topic for future works.
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