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Quantum transport anomalies in dispersionless quantum states
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Dispersionless quantum states (“flat bands”) are counterintuitive: with the electron velocity vanishing, our
conventional notions of quasiparticle transport are no longer valid. While the standard Drude-Sommerfeld
theory predicts vanishing conductivity in trivial dispersionless bands, in the dispersionless topological bands
the electronic wave functions entangle leading to unconventional (non-Drude) quantum transport. We here
research the quantum transport in topological flat bands, and find that the quantum-geometric (entanglement)
contribution gives rise to several quantum transport anomalies. We highlight structurally similar expressions for
strong anomalies in thermoelectric response and superfluid flow in the flat bands. The thermopower anomaly in
topological flat bands is reaching values of the quantum unit of thermopower ( kB

e ln 2 ≈ 60 µV/k)—the behavior
commensurate with the thermopower anomalies in twisted bilayer graphene at the magic angle [Nat. Phys. 18,
290 (2022)].

DOI: 10.1103/PhysRevB.107.L241102

Introduction. The Drude-Sommerfeld model describes the
conductivity σ of dispersive electrons in a metal through the
notion of effective mass m,

σ dispersive
xx = ne2τ

m
, (1)

where e is electronic charge, τ is the scattering time, and n
is electronic density. The larger is the mass, the lower is the
conductivity. More importantly, the Sommerfeld model pre-
dicts, correctly, that in most materials at low temperature the
thermopower—the material quality responsible for converting
heat into electricity—remains very low, namely

�dispersive � kB

e
. (2)

In this regard, the recent observation of the giant thermopower
in twisted bilayer graphene � ∼ kB

e in Ref. [1] presents a
conceptual challenge.

The larger is the effective mass, the flatter is the electronic
band. Within the band theory, the dispersionless electronic
states (“flat bands”) are counterintuitive since the effective
electronic mass becomes infinite, the quasiparticle velocity
vanishes, and the conventional notions of electron trans-
port fail. The perfectly flat electronic bands is a change of
paradigm in condensed matter physics. With the discovery
of the twisted bilayer graphene [2,3], we know that the dis-
persionless electronic states are emerging at the magic angle
1.05◦ [4–7]. It was further understood that the magic-angle
flat bands are topological, and host a number of unconven-
tional phases, characterized by strange metallicity [8–10],
unconventional superconductivity [3,11], fractional Hall con-
ductance [12], and giant thermopower [1]—untypical for
conventional electronic systems.

Together with anomalies in longitudinal and Hall transport,
and unconventional superconductivity, the large thermopower

in the flat bands of twisted bilayer graphene can be another
indicator of unconventional transport mechanism, in partic-
ular through quantum geometry. Superconductivity in the
topological flat bands is enhanced through the nontriviality
of Wannier orbitals [13,14], quantified through the quantum
geometric tensor [15,16]

G
(n)
i j = 〈

∂ki unk
∣∣[1 − |unk〉〈unk|]

∣∣∂k j unk
〉
, (3)

where unk is the associated Bloch state of the nth elec-
tronic band, which may or may not be flat. The real part
of Gi j = ReGi j is the Fubini-Study metrics describing the
geometry of the bands, while the imaginary part Fi j =
−2ImGi j is Berry curvature reflecting the topology of the
Bloch states. In fact, one encounters quantum geometry in
different quantum transport anomalies, ranging from quantum
noise, optical conductivity, anomalous Hall effect, uncon-
ventional superconductivity, and adjacent topics [14,17–26].
The quantum-geometric superconductivity [14] has a par-
ticular important role in twisted bilayer graphene, where it
has been shown that the quantum-geometric contribution to
the superfluid weight is key at the magic angle [27–30].
There is experimental evidence [31] supporting the theory for
quantum-geometric superconductivity in the flat bands; the
experiment has been performed on the high-quality sample of
twisted bilayer graphene (TBG) with vF ≈ 103 m/s compared
to vF ≈ 106 m/s of the original monolayer graphene. Yet
other anomalies in the topological flat bands,—such as, e.g.,
giant thermoelectric power at the magic angle [1]—remain to
be revisited from the quantum geometric perspective as well.

In this paper we assume the topological bands with per-
fect flatness (as, e.g., in Ref. [5]), in such case the quantum
metrics of dispersionless electronic bands saturates the “trace
condition” [32–35]

TrGflat
i j (k) = ∣∣Fflat

xy (k)
∣∣. (4)
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Nontrivial flat band

Trivial flat band

FIG. 1. (Top) In trivial flat bands, electrons are strongly localized
(Wannier orbitals sharp) and electronic transport is forbidden; the
system is in the insulating phase. (Bottom) In nontrivial flat bands
(e.g., Chern bands), the Wannier orbitals cannot be exponentially
localized; electrons do not move in the classical sense. Under ap-
plication of external fields, electrons tunnel between overlapping
Wannier orbitals, resulting in unconventional conductivity without
electron velocities.

The nontrivial quantum geometry comes at cost such that the
electronic Wannier orbitals have a large cross-section [36].
In case of perfectly flat Chern bands (4), the Wannier orbital
cross section r2

0 experiences Lifshitz-Onsager-like quantiza-
tion [35] with

r2
0 = a2

∫
dkTrGi j (k) = a2

∫
d2kFxy(k) = Ca2. (5)

In other words, the dispersionless electronic states are spread
over the atomic lattice, overlapping with C neighboring elec-
tronic orbitals, hence allowing quantum tunneling even in the
absence of kinetic terms (Fig. 1).

First, we bring to the common denominator different quan-
tum transport anomalies in flat bands before going to the
particular discussion on thermopower (since it is calculated
through a combination of different quantum transport proper-
ties). We show that a generic quantum transport property Li j

(here i, j = x, y) in the flat band material can be expressed
through the multiorbital quantum metrics:

Lflat
i j =

∑
nm,k

Inm(k) ReGnm
i j (k) + Jnm(k) ImGnm

i j (k),

where Gnm
i j (k) ≡ 〈∂ki unk|umk〉〈umk|∂k j unk〉 is the generalized

quantum-geometric tensor (defined further in text), and
Inm(k) and Jnm(k) are the material structural tensors ex-
pressed through quasiparticle propagators further. Note that
neither the quasiparticle velocities nor bandwidth enter this
expression; this flat-band transport is purely quantum, with
its origin in Wannier orbital overlap (Fig. 1). The quan-
tum transport anomalies in Lflat

i j have no Drude-Sommerfeld
counterpart.

Quantum transport formalism for perfectly flat bands. In
what follows below we consider a weakly-dispersive Chern
band and then set the bandwidth (and hence the Fermi ve-
locity) to exact zero [37]. The main result is illustrated for
the perfectly flat Chern bands, however, it also applies to
all geometrically-nontrivial flat bands (Wannier function are

not exponentially localized), thus, including those in twisted
bilayer graphene and similar materials.

The derivation of the polarization tensor is rather conven-
tional and can be obtained in several ways. A disciplined way
to derive it is through using the current-current correlators in
Matsubara framework [38]. The quantum transport properties
are computed through imaginary-time Matsubara correlators

Lαβ
i j (τ, τ ′) = −〈

Tτ Jα
i (τ )Qβ

j (τ ′)
〉
, (6)

where Qα is the generalized “charge” operator (we denote
α = 1 for electric charge, α′ = 2 for heat transfer), i, j = x, y,
and Jα is the generalized current. For example, for the electric
current of charge e, one writes [38]

J = e

h̄

∑
k

c†
k

∂Hk

∂k
ck. (7)

To calculate the response functions Li j , we introduced the
auxiliary current-current correlators

�
αβ
i j (τ ) = −〈

Tτ Jα
i (τ )Jβ

j (0)
〉
, (8)

so in the frequency representation one has Li j (iωn) =
1

iωn
[�i j (iωn) − �i j (0)]. To calculate the transport properties

(such as conductance σi j = L11
i j ), we further proceed to ana-

lytical continuation of �i j (iωn) and then take the DC limit:

Lαβ
i j ≡ lim

ω→0

�
αβ
i j (ω) − �

αβ
i j (0)

iω
. (9)

The Onsager coefficients Lαβ
i j fully describe the transport

properties of an electronic system. Experimentally, the trans-
port measurements across the sample are performed by
electric and heat measurements [39,40]. We compute electric
conductivity σi j = L11

i j , thermal conductivity κi j = β(L22
i j −

[L12
i j ]2/L11

i j ), and thermoelectric power (Seebeck coefficient)
� = βL12

ii /L11
ii in the dispersionless electronic bands; here

β = 1/T ; e is included in the definition of electric current,
Eq. (7). A similar response structure to vector potential A
will imply the finite superfluid weight DS in the dispersionless
bands [41,42].

We start from the electric conductivity, for which we calcu-
late the electric polarization tensor �i j (ω) (here we drop the
superscripts αβ for brevity); for convenience, below we use
�i j (ω) = e2

h̄2 �̃i j (ω). Evaluating the current-current correlator
(8) with (7) in Matsubara representation gives [43]

�̃±
i j (iω0) = 1

2β

∑
k

∑
iω′

n

TrGk(iω′
n)

∂Hk

∂ki
Gk(iω′

n ± iω0)
∂Hk

∂k j
,

where Gk(iω′) is the Matsubara transform of the (renormal-
ized) Green function Gk(τ, τ ′) = −〈Tτ c†

k(τ )ck(τ ′)〉, where
expectation value is taken over the interacting vacuum at
temperature T . Here Matsubara frequencies iω′

n are fermionic
and iω0 is bosonic.

The influence of the quantum-geometric tensor can be
demonstrated in the following way. The position operator in
the Bloch basis is [44]

r̂mn = i∂kδnm + 〈unk| i∂k umk〉. (10)
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It follows that the generalized velocity in this basis is given by
[18,44] [

1

h̄

∂Hk

∂k

]
nm

= vnkδnm + ωnm,k 〈unk|∂kumk〉, (11)

where vnk = ∂εnk
∂ h̄k is the quasiparticle velocity in the band

(“Fermi velocity”) and ωnm,k = εnk − εmk are transition fre-
quencies of the multiorbital system (the second term is
called “anomalous velocity” [18]). With the velocity op-
erator (11), the polarization tensor (10) have two terms:
the first proportional to the Fermi velocities O(v2

nk ), and
the second being independent of the band dispersion itself.
For illustrative purpose, it is useful to write down the first
contribution which has a generic form for the nth band
σ dispersive = e2

h̄

∑
n

∑
k

∂εnk
∂ki

∂εnk
∂ki

Sn(k) = 0; refer to Eq. (1). The
conventional (Drude) conductivity vanishes exactly since the
electronic band is perfectly flat, as witnessed in zero Fermi
velocity ∂kεnk ≡ 0 in all the Brillouin zone. This is where our
conventional intuition comes to an edge.

In contrast, by using Eqs. (9)–(11), we find that there is a
quantum-geometric contribution to the DC transport even in
the case of perfectly flat bands,

σ flat
i j = e2

h̄

∑
k

∑
nm

Inm(k) ReGnm
i j (k) + Jnm(k) ImGnm

i j (k),

(12)

where we have introduced the generalized geometric tensor
for a multiorbital system [16,45]

Gnm
i j (k) ≡ 〈

∂ki unk
∣∣umk

〉〈
umk

∣∣∂k j unk
〉
; (13)

note that
∑

m �=n G
nm
i j = G

(n)
i j , with G

(n)
i j , given by formula (3).

The structural tensors Inm(k) and Jnm(k) are fully determined
by the quasiparticle propagators; they are defined in the sym-
metrized form as (see the SM [46])

Inm(k) = −2ω2
nm,k

∫ +∞

−∞

dω

2π
f ′(ω) ImGR

nk(ω)ImGR
mk(ω),

Jnm(k) = 8 ω2
nm,k

∫∫ +∞

−∞

dωdω′

(2π )2

f (ω) ImGR
nk(ω′)ImGR

mk(ω)

(ω − ω′)2
,

with ωnm,k = εnk − εmk, and f (w) is the Fermi-Dirac distri-
bution function. Generically, the structural tensors Inm and
Jnm are nonzero and depend on the nature of quasiparticles in
the system, described by causal propagators GR

mk(ω). Formula
(12) is working for the many-body interacting propagators
with well-defined quasiparticle poles; the quasiparticle energy
bands εnk may or may not have dispersion as such.

Quantum Hall effect. In this key example we focus on the
transverse response associated with the perfectly flat Chern
bands. The transverse (Hall) conductivity determined through
quasiparticle propagators is given by Eq. (12) at T = 0 as

σ flat
xy = 8e2

h̄

∑
k

∑
nm

′
∫∫ +∞

−∞

dωdω′

(2π )2

ImGR
nk(ω′)ImGR

mk(ω)

(ω − ω′)2

×ω2
nm,k ImGnm

xy (k); (14)

the summation index n runs over the occupied bands (be-
low Fermi level εF ). In the limit when the quasiparticles
are well defined, one may use ImGR

nk(ω) = δnk/[(ω − ωnk +

iδnk )(ω − ωnk − iδnk )]; the expression (14) contains inte-
grands with pole singularities and we can resort to residue
theorem to evaluate integrals for arbitrary δnk, δmk (see
the SM [46]). By choosing an appropriate contour, we

obtain
∫∫ +∞

−∞
ImGR

nk (ω′ )ImGR
mk (ω)

(ω−ω′ )2 dωdω′ 
 π2[ωnk − ωmk]−2[1 +
O(δ2)] ≈ π2/ω2

nm,k. Using this expression for formula (14), in
the limit of well-resolved energy bands (δnk, δmk � �, where
� is the band gap), we obtain the established quantum Hall
conductance

σ flat
xy =e2

h̄

∑
n

′ ∑
k

F (n)
xy (k) = e2

h

∑
n

′Cn, (15)

where F (n)
xy is the Berry curvature of the nth band. Thus we

obtain the quantum Hall conductance in the form of TKNN in-
variant [47]. Note that the quantized nature of (14) holds in the
presence of moderate interactions, provided the renormalized
propagators have well-defined quasiparticle poles. Note also,
that when the Fermi level is within the flat band, we obtain the
(intrinsic) anomalous Hall effect similar to Refs. [18,48]. The
influence of quantum geometry on fractional Hall transport in
the topological flat bands are detailed in Ref. [34].

Longitudinal conductance. For storytelling, consider the
Haldane model [49] on NN and NNN hoppings (� = 2),

H0 =
∑

i

t0c†
i ci +

∑
〈i j〉

tNN
i j c†

i c†
j +

∑
〈〈i j〉〉

tNNN
i j c†

i c†
j , (16)

where we fix tNN
i j as real, and tNNN

i j = t ′ei�i j . Clearly, for
�i j = ±π/2, the spectrum becomes particlehole symmetric
[49]. This yields, upon transformation (1), two perfectly flat
bands positioned at E = ±E0 [35]. The resulting Hflat

0 be-
comes nonlocal (�′ = ∞), though it is possible to truncate it
and make the band arbitrarily flat by choosing a correspond-
ing truncation �′ and minimizing bandwidth (Refs. [17,35]).
Hence, by allowing further hopping terms to (16), this model
features two dispersionless Chern bands with C = ±1. By
using the flat band Green’s function matrix 1/(ω − Hflat

0 )
and introducing level broadening iδ, we use Eq. (12) to
calculate σxx.

The longitudinal conductance σxx of the flat bands demon-
strates a weak anomaly in temperature dependence: We find
that quite generically the σxx conductance has inverse temper-
ature scaling (Fig. 2),

σ flat
xx (T ) ∝ δ

T

∑
k

TrGi j (k) ∼ δ

T
. (17)

This T −1 scaling is quite universal, and while the particular
numbers depend on the values of δ [Fig. 2(a)], the σ−1

xx ∼ T
scaling is seen both for high temperatures (T � �) and high
temperatures (T � �), [Figs. 3(d) and 3(e)]. Note however,
that the overall slope is slightly different for high temperature
and low temperature limits. The weak anomaly (17) might or
might not be related to observed effects in Refs. [8–10]. How-
ever, the anomaly (17) is hidden for dispersive bands, as the
Drude terms (1) happen to be stronger (∼1/δ). Importantly,
in the Quantum Hall systems the residual σ flat

xx ∼ e2

h̄ O(δ1) is

typically very weak compared to σ flat
xy ∼ e2

h̄ O(δ0).
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FIG. 2. Conductivity in topological flat bands. (a) Schematic of a two-level system with two topological flat bands of C = ±1. (b) Lon-
gitudinal conductance as function of level broadening calculated here for the band gap � = 0.5 meV and temperature T = � (≈6 K); here,
δ1,2 ≡ δ. (c) Longitudinal conductance as function of temperature, calculated at � = 0.5 meV, δ1,2 = 0.01 meV. (d), (e) Inverse longitudinal
conductance (for the same parameters) shows T-linear scaling both for high temperatures (T � �) and low temperatures (T � �); T -slopes
in different regimes (d) and (e) are slightly different.

Thermal and thermoelectric response. We further report
that the thermoelectric and thermal response have quantum-
geometric (entanglement) contributions. In particular, the

FIG. 3. Strong thermopower anomaly in topological flat bands.
(a) Schematic of a two-level system with two topological flat bands
of C = ±1. (b) Thermoelectric power � as function of level broad-
ening calculated here for the band gap � = 0.5 meV and temperature
T = � (≈6 K); here, δ1,2 ≡ δ. (c) Thermoelectric power as a func-
tion of temperature, plotted here for � = 0.5 meV and δ1,2 = 0.01.
Here thermopower develops a pronounced peak at T∗ ≈ �/2, reach-
ing for some parameters the quantum unit of thermopower kB

e ln 2.
Similar thermopower anomalies had been reported for the magic-
angle twisted bilayer graphene [1], where the system features narrow
topological bands. Anomaly-free behavior would be described by
Eq. (2).

longitudinal thermal conductance is

κflat
xx = 1

T

∑
nm,k

I (2)
nm (k) ReGnm

i j (k)

− 1

T

[ ∑
nm,k I (1)

nm (k) ReGnm
i j (k)

]2

[ ∑
nm,k I

(0)
nm (k) ReGnm

i j (k)
] , (18)

and thermoelectric power (Seebeck coefficient) is

�flat
xx = β

e

∑
nm,k I (1)

nm (k) ReGnm
i j (k)∑

nm,k I
(0)
nm (k) ReGnm

i j (k)
, (19)

where we have introduced thermoelectric transport tensors

I (α)
nm (k) = −2ω2

nm,k

∫
dω

2π
ωα f ′(ω) ImGnk(ω)ImGmk(ω).

For numerical purposes, we operate with the same flat band
model as discussed below Eq. (16), containing two flat Chern
bands of band gap � and generic level broadening δ1, δ2

[Fig. 3(a)]. The thermopower is further calculated via (19)
and the dimensional units (kB, h̄) are restored. We plot the
temperature dependence of thermopower for representative
parameters parameters δ1,2 � � in Fig. 3 (additional plots
with different parameters are listed in the SM [46]). The first
observation is that the thermopower at the fixed tempera-
ture T ∼ � is nearly independent of δ [Fig. 2(b)], and thus
presents a robust quantum transport observable (in this regard,
see also [50] for thermopower in the SYK flat band). This is
in contrast to the flat band conductance (Fig. 2), for which we
have found σxx ∝ δ, and hence being parameter-dependent.
The second observation, is that the thermopower is nonmono-
tonic: it starts nearly linear at low T, but develops a large
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local maximum �∗, placed at T∗ ∼ �. The local maximum
presents a “giant” thermopower ∼50 − 60 µV/K, unexpected
for a narrow Bloch band [1]. Above T∗ ∼ �, the thermopower
drops to significantly lower values.

In the limit when the level broadening is much smaller than
the bandgap, the thermopower associated with dispersionless
electronic bands with nontrivial quantum geometry has strong
anomaly reaching values

�flat
∗ 
 kB

e
ln 2. (20)

Compare this thermopower anomaly (20) with the regular
dispersive band thermopower (2).

Even a deeper analogy stems here to another case of
topological flat bands: in Landau levels [51,52] the value of
kB
e ln 2 ≈ 60 µV/K sets the quantum unit for thermopower

[53]. As thermopower reflects entropy per quasiparticle, the
quantum unit kB

e ln 2 reflects fermionic entropy of kB ln 2 per
electron [54,55], even that there is formally no Planck con-
stant in Eq. (20).

Discussion. In the absence of magnetic fields, ther-
mopower in graphene-based systems remains relatively low
(� kB/e) unless thermally excited to room temperatures
[56,57]. In this regard, observation of thermopower anomaly
∼kB/e in the flat bands of magic-angle twisted bilayer
graphene [1] without magnetic fields was unexpected, not
captured by conventional theory, and hence attributed to vari-
ous interaction effects. However, we remark that two slightly
gapped flat bands in TBG at the magic angle can be ap-
proximated with Landau level wave functions [5]. Therefore
the estimates drawn in this paper for flat band thermopower
should qualitatively hold for flat bands in TBG as well. In par-
ticular, the observed thermopower anomalies in experiments

[1] are consistent with flat band thermopower kB
e ln 2 (and tak-

ing into account the number of flat-band electrons per moiré
cell). Moreover, the temperature dependence of thermopower
in TBG (Fig. 3(c) in [1]) is consistent with temperature de-
pendence stemming from quantum geometry (Fig. 3).

It is interesting that the superconductivity in perfectly flat
Chern bands [13,14] takes origin from the nontrivial quantum
metrics as well. In fact, the superfluid weight DS (defined as
a response to external vector potential A) has a similar linear
response structure through current-current correlators [20,41],
with a difference that k → 0, ω → 0 limits should be taken be
with special care [58,59]. In this case, one finds [13]

Dflat
S ∼ �S

∑
k

ReGii(k), (21)

where �S is the superfluid gap associated with Bogoliubov-
de-Gennes model and its variations [14,20,60]. After a
relevant analysis, the result (21) has been applied to twisted
bilayer graphene, see Refs. [27–30,61] and Ref.[31], where
the quantum geometric contribution to superfluid weight, and
hence the TBKT ∼ h̄2

e2 DS (T = 0) [62], is argued to be signifi-
cant. Typically, this mechanism gives TBKT ∼ 1 K in TBG.

It would be interesting to build a self-consistent model
including both quantum-geometric superconductivity and
strange metallicity [63] with both of them stemming from
nontrivial

∑
k ReGi j (k).
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