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Superconductivity in doped triangular Mott insulators: The roles of parent spin backgrounds
and charge kinetic energy
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We study the prerequisites for realizing superconductivity in doped triangular-lattice Mott insulators by
considering three distinct parent spin backgrounds, i.e., 120◦ antiferromagnets, quantum spin liquid, and stripy
antiferromagnets, and all possible sign combinations (τ1, τ2) of nearest-neighbor hopping and next-nearest-
neighbor hopping (t1, t2). Based on density matrix renormalization group calculations, we find that, with
finite t2 and specific sign combinations (τ1, τ2), the quasi-long-range superconductivity order can always be
achieved, regardless of the nature of the parent spin backgrounds. Besides specific hopping signs (τ1, τ2), these
superconductivity phases in triangular lattices are commonly characterized by short-ranged spin correlations and
two charges per stripe. In the robust superconductivity phase realized at larger t2/t1, flipping the signs τ2 and
τ1 gives rise to the stripe phase without strong pairing and a pseudogaplike phase without Cooper-pair phase
coherence, respectively. Interestingly, the roles of the two hopping signs are switched at smaller t2/t1. Moreover,
different sign combinations (τ1, τ2) would stabilize distinct phases including superconductivity, charge density
waves, spin density waves, and pseudogaplike phases accordingly. Our findings suggest the important role of
charge kinetic energy in realizing superconductivity in doped triangular-lattice Mott insulators.
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Introduction. Understanding the superconductivity (SC)
that emerges from doping Mott insulators has been a
long-standing issue in physics. Unlike the conventional
Bardeen-Cooper-Schrieffer (BCS) superconductivity [1], the
prerequisites for achieving superconductivity in doped Mott
insulators remain elusive [2–17]. The general understanding
originates from doping quantum spin liquids (QSLs) [18–22],
which is composed of condensed spin resonating-valence-
bond pairs such that doped charges have an energetic incentive
to pair [2,6,9]. The superconductivity arises when those pairs
achieve long-range phase coherence. However, besides QSL,
the parent spin backgrounds usually host various magnetic or-
ders, then it is highly instructive to explore the doped distinct
magnetic ordered Mott insulators to fully reveal the prereq-
uisites for realizing superconductivity. Moreover, since the
interplay between the doped charge and the spin backgrounds
determines the charge properties [4–6,12,14], it is also fun-
damentally significant to identify the role of charge kinetic
energy in the resulting superconductivity.

Tremendous efforts on this issue have been devoted to the
square lattice [2–17] since the discovery of high-temperature
superconductivity in cuprates. Nevertheless, such studies on
the triangular lattice have equal importance and the geometric
frustrations bring even richer physics for both Mott insula-
tors [23–31] and doped Mott insulators [32–53], as revealed
in earlier experimental discoveries of superconductivity in
NaxCoO2 · yH2O [54,55]. Remarkably, distinct hopping signs
are inequivalent on a triangular lattice [41,48]. More recently,
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both the cold-atom and condensed-matter experiments have
offered additional platforms to probe the doped triangular-
lattice Mott insulators with a wide range of parameters in a
well-controlled manner, such as loading ultracold fermions
onto a triangular optical lattice [56,57], stacking two distinct
transition-metal dichalcogenides (TMDs) such as WSe2/WS2

heterobilayers [58–61], depositing atomic layers on semicon-
ductor substrates such as Sn/Si(111) [62], and doping organic
compounds [63,64]. Remarkably, these platforms host differ-
ent parent spin backgrounds and different sign combinations
in charge hoppings [54,55,58–64], laying the experimental
foundations for studying the roles of Mott insulation and
kinetic energy in the resulting superconductivity.

Motivated by the above, we examine the roles of the parent
spin backgrounds and the charge hopping signs in achieving
triangular-lattice superconductivity. We consider three distinct
spin backgrounds realized in the J1-J2 model,

HJ1-J2 = J1

∑

〈i j〉
Si · S j + J2

∑

〈〈i j〉〉
Si · S j, (1)

where 〈i j〉 and 〈〈i j〉〉 denote the nearest-neighbor (NN) and
next-nearest-neighbor (NNN) bonds, respectively. The un-
doped spin backgrounds are 120◦ antiferromagnetic (AFM) at
J2/J1 � 0.07 ∼ 0.08, stripy AFM at J2/J1 � 0.15–0.16, and
QSL in between [65–76], as shown in Fig. 1(b). The motion
of the doped charge can be captured by

Ht1−t2 = τ1|t1|P
∑

〈i j〉σ
(c†

iσ c jσ + H.c.)P

+ τ2|t2|P
∑

〈〈i j〉〉σ
(c†

iσ c jσ + H.c.)P, (2)

2469-9950/2023/107(22)/L220502(7) L220502-1 ©2023 American Physical Society

https://orcid.org/0000-0001-7510-9949
https://orcid.org/0000-0003-0756-408X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.L220502&domain=pdf&date_stamp=2023-06-06
https://doi.org/10.1103/PhysRevB.107.L220502


ZHENG ZHU AND QIANQIAN CHEN PHYSICAL REVIEW B 107, L220502 (2023)

FIG. 1. (a) Sketch of triangular lattice and model parameters.
(b) Phase diagram of J1-J2 Heisenberg model. (c) The most domi-
nant correlations in lightly doped Mott insulators on YC4 cylinders
controlled by J2/J1 = (t2/t1)2 for different hopping signs (τ1, τ2).

where c†
iσ is the fermion creation operator, and P projects to

the single-occupancy subspace. τ1 = ± (τ2 = ±) denote the
signs of NN hopping t1 (NNN hopping t2). The different sign
combinations (τ1, τ2) are physically reasonable because they
correspond to different materials [54,55,58–64]. Physically,
J2/J1 = (t2/t1)2 since (2) is an effective Hamiltonian of the
Hubbard model in the strong-coupling limit.

We study the ground-state properties by density matrix
renormalization group (DMRG) [77,78]. To examine the roles
of Mott insulation after doping, we focus on light doping
and study three distinct Mott insulators by tuning J2/J1. The
triangular lattice is spanned by the primitive vectors ex, ey
and wrapped on YC cylinders [see Fig. 1(a)]. The system size
is N = Lx × Ly, where Lx (Ly) represents the cylinder length
(circumference). The doping concentration is δ = N0/N , with
N0 denoting the number of doped charges, which could rep-
resent either electrons or holes, depending on the fermion
charge. Here, we mainly study Ly = 4, 6 and also exam-
ine Ly = 5, 8. Due to the different rates of convergence at
different parameters, the bond dimension is pushed up to
D = 40 000 when implementing U (1) × U (1) symmetry and
D = 16 000 when implementing SU (2) × U (1) symmetry.

Main findings. By studying the lightly doped three distinct
Mott insulators (i.e., 120◦ AFM, QSL, and stripy AFM) with
all possible hopping signs (τ1, τ2), we conclude our findings in
Fig. 1(c). First, the quasi-long-range superconductivity order
can be realized regardless of the nature of the undoped parent
Mott insulators, provided specific hopping signs. Second, the
quasi-long-range superconductivity ordered phase in a trian-
gular lattice is commonly featured by the short-ranged spin

correlations and two-charge filled stripes per one-dimensional
unit cell in the bulk. Third, at larger J2/J1, sign τ1 determines
the Cooper-pair phase coherence for the superconductivity
phase, whereas sign τ2 is relevant to the charge pairing for all
phases. Flipping the signs τ1 and τ2 from the robust supercon-
ductivity phase would give rise to pseudogaplike behavior and
charge stripes without strong pairing, respectively. Interest-
ingly, their roles interchange at smaller J2/J1. Fourth, specific
sign combinations (τ1, τ2) would stabilize distinct phases at
larger J2/J1 including SC, charge density wave (CDW), spin
density wave (SDW), and pseudogap (PG)-like phase.

Unlike previous studies of the same model which only
focus on (τ1, τ2) = (−,−) in QSL [42,43] or the 120◦
AFM [43] parent spin background to search for supercon-
ductivity, in this Letter, we consider three distinct parent spin
backgrounds, i.e., 120◦ AFM, QSL, and stripy AFM, and all
possible signs (τ1, τ2) = (±,±) to understand how to achieve
superconductivity, as well as revealing different correlated
phases stabilized by specific sign combinations such as SC,
CDW, SDW, and PG-like phases. Moreover, we focus on very
light doping in order to examine the role of Mott insulation,
thus our focused doping concentration and J2/J1 are also dif-
ferent. Considering the DMRG cylinders break the rotational
symmetry, the identification of pairing symmetry is not our
focus [79].

Pair correlations for distinct (τ1, τ2). We begin by examin-
ing the pair correlations

Dαβ (r) ≡ 〈�̂†
α (r0)�̂β (r0 + r)〉, (3)

where the pair operator is �̂α (r) ≡ 1√
2

∑
σ σcr,σ cr+eα,−σ and

α, β = x, y, z. In quasi-one-dimensional cylinders, the true
long-range superconductivity order is forbidden based on the
Mermin-Wagner theorem, so we look for quasi-long-range
order Dαβ (r) ∼ r−ηsc . In particular, ηsc < 2 suggests divergent
SC susceptibility in two dimensions (2D).

We compute the pair correlations for all (τ1, τ2) in lightly
doped spin backgrounds: 120◦ AFM [Figs. 2(a) and 2(c)],
QSL [Fig. 2(e)], and stripy AFM [Fig. 2(g)]. We choose
typical parameters of each parent phase and find that the
power-law-decayed pair correlations can always be realized
at certain signs (τ1, τ2). As shown in Figs. 2(a) and 2(c),
although the parent spin backgrounds are the same, the power-
law-decayed pair correlations emerge at (τ1, τ2) = (−,+)
with 1 < ηsc < 2 when J2/J1 = 0.03, 0.01 for Ly = 4 while
they switch to (τ1, τ2) = (−,−) with a much slower de-
cay rate ηsc ≈ 0.82 for J2/J1 = 0.05. Further increasing the
ratio J2/J1 deep inside the parent spin background QSL
with J2/J1 = 0.12 or the stripy AFM with J2/J1 = 0.24
[see Figs. 2(e) and 2(g)], the pair correlations at (τ1, τ2) =
(−,−) become fairly strong against distance with expo-
nent ηsc � 1, suggesting the robust superconductivity in both
cases. Moreover, the main features are qualitatively con-
sistent when increasing the doping or the system size, as
Figs. 2(b), 2(d) 2(f), and 2(h) show, and the pair correlations
become weakened with increasing doping. On wider cylinders
with widths larger than Ly = 4, as shown in Fig. 4(a), we also
find algebraically decayed pair correlations at light doping
with ηsc ≈ 1.6 for Ly = 5, ηsc ≈ 1.4 for Ly = 6, and ηsc ≈ 1.3
for Ly = 8. The exponent ηsc < 2 suggests robust SC with
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FIG. 2. (a)–(h) The pair correlations for all hopping signs (τ1, τ2) = (±,±) in lightly doped three parent Mott insulating spin backgrounds:
(a)–(d) 120◦ AFM, (e), (f) QSL, and (g), (h) stripy AFM. Here, we consider systems with Ly = 4 and δ = 1/24, 1/12. (i), (j) The charge density
distribution (i) and the spin correlations (j) at the parameters with quasi-long-range superconductivity order.

divergent susceptibility towards 2D. These results illustrate
that superconductivity can be obtained from doping distinct
Mott insulators, not only from the QSL. More crucially, the re-
alization of superconductivity requires specific hopping signs
and finite NNN hopping.

The common features for phases with quasi-long-range su-
perconductivity order. Although the parent spin backgrounds
are distinct before doping, there are common features when
the quasi-long-range SC order establishes after doping.

In the charge sector, we examine the charge density
distribution, which is uniform along ey on cylinders, so
we focus on the distribution along ex and define n(x) ≡
1/Ly

∑
y 〈1 − n̂e(x, y)〉. As shown in Fig. 2(i) for Ly = 4 and

Fig. 4(b) for Ly = 5, 6, 8, the charge profiles exhibit stripe
patterns with specific charge numbers in each stripe. For spe-
cific (τ1, τ2) with quasi-long-range SC order, there are two
doped charges per unit cell if we view the cylinders as one-
dimensional systems, i.e., ns = 2 with ns denoting the number
of doped charges in each stripe on average, consistent with the
existence of strong pairing.

In the spin sector, we compute the spin correlations S(r) ≡
〈S(r0) · S(r0 + rex)〉. For specific (τ1, τ2) with quasi-long-
range SC order, the spins commonly exhibit short-ranged
correlations with finite decay length ξs, as shown in Fig. 2(j)
for Ly = 4 and Fig. 4(c) for wider cylinders with Ly = 5, 6, 8.

In particular, we find the increased decay length on wider
cylinders; however, it tends to saturate when further increasing
cylinder length (width) for a fixed width (length) [79], e.g., un-
changed ξs when increasing Lx for fixed Ly = 6 [see Fig. 4(c)].
We remark that, although the parent spin background could be
distinct before doping, when the SC emerges after doping, the
spin correlations become short ranged.

The effect of hopping signs (τ1, τ2) on robust supercon-
ductivity at larger J2/J1. To identify the roles of hopping
signs in superconductivity, we start from a robust super-
conductivity phase and examine the effect of flipping the
signs τ1, τ2. The robust superconductivity is characterized by
power-law-decayed pair correlations and the dominant pair
correlations over other correlations, which occur at J2/J1 �
0.05 when (τ1, τ2) = (−,−) [see Figs. 2(c), 2(e), 2(g),
and 3(a)]. To compare various correlations at light doping
δ, we define the renormalized correlations, including (i) the
single-particle propagator CC(r) ≡ [C(r)/δ]2 where C(r) =∑

σ 〈c†
σ (r0)cσ (r0 + rex)〉, (ii) the spin correlations SS(r) ≡

|S(r)|, (iii) the pair correlations DD(r) ≡ |Dyy(r)|/δ2, and
(iv) the charge density correlations NN(r) ≡ |N (r)|/δ2, where
N (r) = 〈n(r0)n(r0 + rex)〉 − 〈n(r0)〉〈n(r0 + rex)〉.

As shown in Fig. 3(a) for (τ1, τ2) = (−,−), the pair
correlations with exponent ηsc ≈ 0.96 dominate over other
correlations. We remark that here ηsc < 1 < ηcdw is consistent

FIG. 3. Various correlations for distinct hopping signs (τ1, τ2) = (±, ±) (a)–(d) at a lightly doped (δ = 1/24) stripy AFM parent spin
background. (e) The charge density distributions for distinct (τ1, τ2). Here, we consider J2/J1 = 0.24 (stripy AFM) on N = 48 × 4 cylinders.
The doped QSL with J2/J1 = 0.12 and doped 120◦ AFM with J2/J1 = 0.05 exhibit similar behavior [79].
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FIG. 4. (a) The pair correlations, (b) charge density distribution, and (c) spin correlations on wider cylinders with Ly = 5, 6, 8 for J2/J1 =
0.24. Starting from (τ1, τ2) = (−,−) with quasi-long-range SC order, (d) and (e) show the effect of flipping the hopping sign τ2 and τ1.

with the Luther-Emery liquid behavior [80]. By only switch-
ing τ2, as shown in Fig. 3(b), the charge density correlations
become dominant instead, while the pair correlations are sig-
nificantly suppressed. Meanwhile, the change of ns from 2 to
1 [see Fig. 3(e)] implies the breaking of Cooper pairs. This
suggests the sign of NNN hopping is relevant to the charge
pairing. By contrast, when only switching τ1, we also find
the suppressed pair correlations but with strong fluctuations
[see Fig. 3(c)], and all other correlations decay faster than r−2.
Since both signs of τ1 exhibit ns = 2 stripes [see Fig. 3(e)], the
charge pairs are robust, consistent with a pseudogap behavior,
where the doped charges form pairs but the phase coherence
is lacking. This suggests the sign of NN hopping is relevant
to the phase coherence among pairs. When simultaneously
switching both signs, as shown in Fig. 3(d), the spin corre-
lations are remarkably enhanced and decay slightly slower
than the charge density correlations, demonstrating the robust
SDWs. The spin structure factor [see the inset of Fig. 3(d)]
suggests an incommensurate SDW. We remark that the above
results are obtained for doped stripy AFM at J2/J1 = 0.24,
the doped QSL, and doped 120◦ AFM at J2/J1 = 0.05 exhibit
similar behavior [79].

Moreover, we further confirm the roles of τ2 and τ1 on
wider cylinders. As shown in Fig. 4(d) for Ly = 6 cylinders,
when starting from (τ1, τ2) = (−,−) with quasi-long-range
SC order, flipping the sign τ2 would change ns from 2 to 1,
consistent with breaking Cooper pairs. By contrast, flipping
τ1 does not break Cooper pairs. However, either flipping the
sign τ2 or τ1 would significantly suppress the pair correlations,
as shown in Fig. 4(e), while the charge density correlations
remain robust. These observations suggest the hopping signs
are relevant to charge pairing and phase coherence.

The effect of hopping signs (τ1, τ2) on pair correlations at
smaller J2/J1. At smaller J2/J1, we find algebraically decayed
pair correlations when (τ1, τ2) = (−,+) with 1 < ηsc < 2
on Ly = 4 cylinders [see Figs. 2(a) and 2(b)]. Notably, the
pair correlations decay at a comparable rate with the charge
density correlations, exhibiting competing quasi-long-range
orders. Since ηcdw � ηsc, the stripe order is slightly dominant.
The existence of competing orders is also reflected in the con-
vergence of DMRG, which becomes much harder than larger
J2/J1. With the increase of system size, it also requires a larger
bond dimension to ensure the convergence of correlations at
a longer distance [see Fig. 5(b)]. We notice that the charge
profiles exhibit a two-charge filled stripe pattern only in the
bulk, while the boundaries host separate single charge [see
Figs. 2(i) and 5(d)].

Compared with other sign combinations, (τ1, τ2) = (−,+)
indeed enhances the pair correlations at smaller J2/J1 [see
Fig. 2(a)]. Now we start from (τ1, τ2) = (−,+) to examine
the effect of switching the signs τ1, τ2. We will show the
interchanged roles of τ1, τ2 at smaller J2/J1 compared with
the larger J2/J1. After solely switching τ2, as Fig. 5(b) shows,
the pair correlations are strongly suppressed. Meanwhile, the
single-particle propagator and spin fluctuations are also signif-
icantly suppressed. Given the robust two-charge filled stripe
pattern shown in Fig. 5(d), the resulting phase hosts the ro-
bust local pairing. The absence of quasi-long-range order is
induced by the lack of phase coherence among pairs. Here,
we remark that the pair correlations in this parameter regime
also exhibit strong anisotropy [79]. These observations are
consistent with a pseudogaplike behavior, and the role of
sign τ2 at smaller J2/J1 is similar to the role of sign τ1 at
larger J2/J1 [see Fig. 3(c)]. Furthermore, if only switching τ1,
as shown in Fig. 5(c), the pair correlations are dramatically
suppressed, while the charge profile also implies the loosened
strong pairing [see Fig. 5(d)]. These findings suggest that τ1

may play a role in the formation of strongly paired charges,
similar to the effect of τ2 at higher J2/J1[see Fig. 3(b)]. When
simultaneously switching both signs (τ1, τ2), the charge den-
sity correlations become the most dominant ones [79].

Summary and discussion. In summary, we study how to
realize superconductivity in lightly doped triangular-lattice
Mott insulators in the strong-coupling limit. By consider-
ing three distinct undoped parent spin backgrounds and all
possible sign combinations of the NN and NNN hoppings,
we find that, provided with finite NNN hopping and spe-
cific sign combinations, superconductivity can always be
realized with doping distinct Mott insulators, not only the
QSL. The superconductivity phase is commonly featured by
short-ranged spin correlations and two charges per stripe.
Moreover, switching the sign τ2 (τ1) in a robust superconduc-
tivity phase would result in the stripe phase without strong
pairing (pseudogaplike phase without Cooper-pair phase co-
herence) at larger J2/J1, whereas their roles interchange at
smaller J2/J1. We also reveal that different sign combina-
tions stabilize distinct correlated phases, including SC, CDW,
SDW, and PG-like phases. Our findings suggest the impor-
tance of kinetic energy in realizing superconductivity, which
may stimulate future studies on the superconductivity mecha-
nism and on examining different sign combinations for other
lattice geometries and their intrinsic connections to a previ-
ously studied square-lattice case [12,14,81,82]. Considering
different triangular-lattice materials correspond to different
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FIG. 5. (a), (c), (d) Various correlations for distinct hopping signs (τ1, τ2) at smaller J2/J1. Here, we consider J2/J1 = 0.03 at δ = 1/24 on
N = 48 × 4 cylinders. (b) shows the convergence of pair correlations for different lattice sizes and (e) shows the charge density distributions.
Other parameters J2/J1 = 0.02, 0.01 exhibit similar behavior [79].

sign combinations in hopping terms [54,55,58–64,83,84], our
findings of distinct correlated phases stabilized by specific
hopping sign combinations can be potentially probed.
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