
PHYSICAL REVIEW B 107, L220408 (2023)
Letter

Plaquette valence bond solid to antiferromagnet transition and deconfined quantum critical point of
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We study the ground-state phase diagram of the Shastry-Sutherland model by using a variational optimization
of the infinite tensor network states, and identify a weakly first-order transition between the plaquette valence
bond solid and the antiferromagnetic states. The full plaquette state is found to strongly compete with the empty
plaquette ground state, and can be stabilized as the ground state when a staggered ring-exchange interaction
preserving the Shastry-Sutherland lattice symmetry is introduced. We propose the triple point where the full
plaquette, empty plaquette, and antiferromagnetic phases meet as a deconfined quantum critical point (DQCP).
The analysis of susceptibilities provides evidence of an emergent SO(5) symmetry at this point. These results
shed light on the study of DQCP in quantum magnets and provide a way to understand the proximate DQCP
signatures in recent experiments on SrCu2(BO3)2.
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Introduction. Enhanced quantum fluctuations in a frus-
trated spin system can give rise to exotic quantum phases,
including the quantum spin liquid (QSL), valence bond solid
(VBS), and spin nematicity [1–6]. The nature of these novel
quantum phases and related quantum phase transitions has
been extensively studied. Though most transitions can be de-
scribed within the standard Ginzburg-Landau-Wilson (GLW)
paradigm, it has been proposed that the transition between a
VBS and an antiferromagnetic (AFM) phase is beyond the
GLW scenario, e.g., via a deconfined quantum critical point
(DQCP) [7]. At this point, deconfined fractionalized excita-
tions emerge, and the enhanced symmetry allows a continuous
rotation between the two distinct order parameters. This new
scenario has inspired extensive studies [8–12], but it is still
challenging to realize a DQCP in two-dimensional (2D) frus-
trated spin systems, and the nature of this critical point needs
to be explored.

The Shastry-Sutherland (SS) model [13] is an ideal
frustrated spin model for studying the VBS-AFM transi-
tion [14–21]. It is defined on the SS lattice as sketched in
Fig. 1(a), and the Hamiltonian reads

ĤSS = J
∑

〈i, j〉
Si · S j + J ′ ∑

〈〈i, j〉〉
Si · S j, (1)

where Si is an S = 1/2 spin on site i, and J and J ′ refer to the
nearest- and next-nearest-neighbor couplings, respectively. As
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demonstrated in Fig. 1(c), the ground state is found to be
a product of dimer singlets (DSs) along the diagonal direc-
tions for J/J ′ � 0.68 [14,17]. For J/J ′ � 0.68, the ground
state first changes to a plaquette VBS, then to a Néel AFM
state with increasing J/J ′ [14,17,19]. A first-order transition
between the DS and plaquette phases has been verified by
various numerical results. However, the understanding of the
plaquette-AFM transition remains controversial: A series ex-
pansion study [14] found a second-order transition, while an
infinite projected entangled pair state (iPEPS) tensor network
calculation [17] showed it to be weakly first order. A recent
density matrix renormalization group (DMRG) study [19]
proposed the transition is through a DQCP with an emergent
O(4) symmetry, but another DMRG work [20] suggested a
gapless QSL settles in between the plaquette and AFM phases.

The SS model is believed to properly describe the quantum
magnetism of the quasi-2D material SrCu2(BO3)2 [14,22,23].
Evidence of the evolution from the DS to a plaquette then
to an AFM state under pressure has been cumulated via
inelastic neutron scattering (INS) [24], nuclear magnetic res-
onance (NMR) [25,26], Raman scattering [27], and specific
heat [28,29] measurements. Some experimental results imply
the intermediate plaquette ground state has a full plaquette
(FPL) pattern, that is, the local singlet spans on the plaquette
with a diagonal J2 bond [24,27,30]. However, numerical cal-
culations on the SS model [17–20] suggest an empty plaquette
(EPL) ground state [Fig. 1(c)]. Though it was shown theoret-
ically that the FPL can be stabilized as the ground state when
the SS lattice symmetry is broken [18], the suggested symme-
try breaking has not been observed. Moreover, the symmetry
breaking is incompatible with the DQCP scenario, which is
suggested by recent NMR measurements [30]. Therefore, the
nature of the PL state is still an open issue crucial to the study
of DQCP in SS systems.
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FIG. 1. (a) Sketch of the generalized SS model. J and J ′ refers
to the nearest- and next-nearest-neighbor Heisenberg couplings. Q
refers to the staggered ring-exchange interaction ĤQ. (b) The 16-
PESS setup on the SS lattice. The tensors are placed at the plaquette
within the J ′ coupling. Each U tensor (blue) consists of four physical
spin indices and four auxiliary ones, while an S tensor contains four
auxiliary indices only. (c) The ground-state phase diagram of the SS
model. DS, EPL, and AFM refer to dimer singlet, empty plaquette,
and antiferromagnetic phases, respectively. Both the DS-EPL and
EPL-AFM transitions are found to be first order. (d) Typical config-
urations, corresponding spin-spin correlations, and magnetic order
parameters of the DS, EPL, FPL, and AFM states in the calculation.
The EPL and FPL have distinct characters of symmetry breaking.

In this Letter, we investigate the ground-state phase dia-
gram of the SS model by using a variational optimization
of the infinite tensor network states with the projected en-
tangled simplex state (PESS) construction. Our calculation
clarifies the intermediate phase to be an EPL, and our results
evidence a weakly first-order EPL-AFM transition at J/J ′ ≈
0.79, without an intervening QSL. Nevertheless, the FPL state
is found to be intimately competing with the EPL ground state,
with an energy difference less than 10−4J . By including a
staggered ring-exchange interaction as a symmetry-preserving
perturbation, we show the ground state can change from the
EPL to FPL. In light of this observation, we establish a global
phase diagram of this generalized SS model, and propose the
triple point among the FPL, EPL, and AFM phases as a DQCP.
By analyzing susceptibilities associated with order parame-
ters, we provide evidence of an emergent SO(5) symmetry at
the DQCP. These results reveal the unusual physics of DQCP
in SS model and related experimental systems.

Model and method. We consider the ground states of the
SS model defined in Eq. (1). To investigate the stability of

the EPL vs FPL, we also consider a generalized SS model
by including a staggered ring-exchange interaction ĤQ within
neighbor spins of a plaquette with J ′ coupling [see the inset of
Fig. 1(a)]:

ĤQ = −Q
∑

i jkl∈�

(Si · S j )(Sk · Sl ) + (Si · Sk )(S j · Sl ). (2)

The ground states are obtained by using the variational
optimization of the 16-PESS tensor network states [31]. The
PESS construction of the tensor network states has been
shown to give an excellent description of the ground state
of frustrated spin systems [32,33]. On the SS lattice, the 16-
PESS is constructed with U and S tensors, as illustrated in
Fig. 1(b). A projection tensor U is defined on a plaquette with
the J ′ interaction, and carries the four spins in this plaquette.
Four adjacent U tensors are then connected by an entangled
simplex tensor S. The S tensor is introduced to describe the
entanglement among the spin clusters but itself does not carry
any physical spin degree of freedom. In this work, we find a
2 × 2 unit cell with one independent pair of U and S tensors
is sufficient to characterize the ground state. The calculation
is performed in an infinitely large system by employing trans-
lational symmetry.

To determine the ground states, we adopt an advanced
variational optimization method to globally minimize the
ground-state energy 〈ψ |Ĥ |ψ〉/〈ψ |ψ〉. We are inspired by dif-
ferentiable programming [34–36], which can be effectively
combined with other well-developed techniques [37–41]. To
be specific, the state for optimization is initialized from an
arbitrary state or an approximately converged state obtained
from (imaginary) time evolution [32,37,39,41]. Then we use
the corner transfer matrix renormalization group (CTMRG)
method [38,42] to contract the infinite network and get the
approximate environment of the local tensors. After that,
we use the quasi-Newton limited memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) algorithm to minimize the energy
density, which can be effectively implemented by the ZYGOTE

package [43]. The automatic differentiation provides a global
optimization strategy of the ground state, and is more reliable
than local optimization approaches, especially for critical sys-
tems where many competing states exist. Technical details and
benchmarking of this combination of 16-PESS ansatz and the
automatic differentiation can be found in the Supplemental
Material (SM) [31].

Weakly first-order plaquette-AFM transition. For the SS
model, as demonstrated in Fig. 1(c), we find the ground
state is the DS for J/J ′ < 0.675, consistent with previ-
ous results [14,17,19]. Increasing J/J ′, the ground state
first changes to the EPL, then to the AFM at J/J ′ ≈
0.79. To examine the plaquette-AFM transition, we calcu-
late the ground-state energy E and its derivative dE/dJ .
The results for D = 5 are shown in Fig. 2(a) and 2(b), re-
spectively. Though E varies smoothly across the transition,
dE/dJ shows a small discontinuity at J/J ′ ≈ 0.78, featur-
ing a weakly first-order transition. We further calculated the
order parameters mm and mp of the AFM and plaquette
phases, respectively: mm = √〈mx

m〉2 + 〈my
m〉2 + 〈mz

m〉2, and
mp = |∑〈i j〉∈�A

〈Si · S j〉 − ∑
〈i j〉∈�B

〈Si · S j〉|. Here, 〈mα
m〉 =

1
N

∑
i〈eiQ·ri Sα

ri
〉ri for α = x, y, z, Q = (π, π ), and �A/B label
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FIG. 2. Ground-state properties of SS model. (a) The ground-
state energy per site with J/J ′ at D = 5. The blue (red) dashed
line is the fitted energy EA (EP) in the AFM (plaquette) phase (see
text). (b) The first-order derivative dE/dJ with J/J ′ shows a clear
discontinuity at the plaquette-AFM transition. (c) Finite-D analysis
and the extrapolated mm with J/J ′. (d) The staggered magnetization
mm with J/J ′ for D = 5. Solid circles show mm values of the lowest-
energy configurations, while open squares are obtained with biased
configurations (see text) and exhibit a clear hysteresis loop.

the two inequivalent empty plaquettes. As shown by the solid
curves with solid symbols in Fig. 2(d), mm exhibits a small
but finite abrupt jump near J/J ′ ≈ 0.78, consistent with the
dE/dJ result. As shown in Fig. 2(c), the jump of mm is seen
for all the finite D values we studied, and is robust even in
the large-D limit after proper extrapolation. To further verify
the first-order nature of the transition, we first stabilize the
plaquette (AFM) state from our optimization at a J/J ′ ratio
far from the transition, then slowly increase (decrease) J/J ′.
At each step, we take the converged state obtained from the
last step as the initial state for optimization. We repeat this
procedure until the system is driven through the transition to
the AFM (plaquette) phase. As shown by the dashed curves
with open symbols in Fig. 2(d), mm exhibits a clear hysteresis
loop, indicating the existence of metastable states, which is
a prominent signature of a first-order transition. Similar be-
havior of mp confirms the first-order transition behavior [31].
The transition point is determined to be (J/J ′)c ≈ 0.79 in the
large-D limit from the crossing point of the fitted energies
in the plaquette and AFM phase. Details of the fitting and
extrapolation procedures are presented in SM [31].

Nature of the plaquette ground state. In the parameter
regime 0.68 � J/J ′ � 0.79, we are able to stabilize both two
plaquette states in the calculation [see Fig. 1(d)], and we find
the energy of the EPL state is always lower than that of the
FPL. Interestingly, near the transition point, the energies of
these two states become very close, as shown in Fig. 3(a). In
the large-D limit, the energy difference is less than 10−4J .

FIG. 3. (a) Energies of EPL and FPL states vs 1/D at J/J ′ =
0.77. The horizontal dashed-dotted lines show the plaquette ground-
state energies in iPEPS [17] and DMRG [19] studies for comparison.
(b) Ground-state phase diagram of the generalized SS model that
preserves the SS lattice symmetry. Besides the DS phase (not shown),
EPL, FPL, and AFM phases are stabilized as the ground states.
Symbols show the transition points and the lines are guides to the
eyes. The triple point of the EPL, FPL, and AFM phases is proposed
as a DQCP (see text).

Such a small energy difference is about the same order as
the one between the EPL and AFM states near the transi-
tion (see Fig. S4 of SM [31]). This implies that the FPL
state, though never favored as the ground state, emerges as
a low-lying competing state near the plaquette-AFM transi-
tion. Actually, besides the FPL, we can also stabilize other
metastable states with competitive energies near the transition.
The emergence of these metastable states suggests enhanced
low-energy fluctuations, and is consistent with the weakly
first-order transition we found.

Global phase diagram and possible DQCP. The quaside-
generacy between the EPL and FPL states prompts that
an FPL ground state can be stabilized nearby if we con-
sider a global phase diagram with an extra tuning parameter.
Such a global phase diagram would help solving the para-
dox on the nature of the plaquette ground state between
theory and experiments. A previous theoretical work [18]
found a quasi-one-dimensional singlet phase adiabatically
connected to the FPL when the symmetry between the two
diagonal J ′ bonds is broken. However, the orthogonal lat-
tice distortion accounting for this symmetry breaking has not
been verified experimentally. For example, a recent NMR
study on SrCu2(BO3)2 claiming proximate DQCP between
the FPL and AFM phases [30] shows no signature of the
orthogonal lattice distortion. To reconcile the discrepancy
between theory and experiments, here we adopt a different
strategy: Tune the stability of the EPL and FPL phases with-
out breaking the SS lattice symmetry. For this purpose, we
generalize the SS model by including a ring-exchange-like
interaction.

The model Hamiltonian reads Ĥ = ĤSS + ĤQ, where ĤSS

and ĤQ are given in Eqs. (1) and (2), respectively. The global
phase diagram in the J-Q plane is illustrated in Fig. 3(b).
It is shown that the EPL, FPL, and AFM states span a
broad regime, and the ring-exchange term ĤQ favors the
FPL ground state over the EPL state. We find the FPL-AFM
transition is also weakly first order, as evidenced by the
discontinuity of the ground-state energy derivative dE/dQ
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FIG. 4. Ground-state properties of generalized SS model. (a) The
derivative of the ground-state energy dE/dQ with (Q − Qc )/J ,
where Qc is the FPL-AFM transition point. The jump of dE/dQ at
Qc indicates a first-order transition. (b) The discontinuity of dE/dQ
at Q = Qc vs J ′/J . The discontinuity vanishes when approaching the
triple point, implying it is a DQCP. (c) The FPL susceptibility χFP

and AFM susceptibility χm vs (Q − Qc )/J at J ′/J = 0.6. (d) The
EPL susceptibility χEP vs J ′/J when approaching the triple point.
χEP is calculated slightly away from the transition point Qc in the
AFM and FPL phases, respectively.

[Figs. 4(a) and 4(b)]). Remarkably, the discontinuity of the
energy derivative reduces along the FPL-AFM transition tra-
jectory toward the triple point among the EPL, FPL, and AFM
phases. It is fully suppressed when extrapolating to the triple
point, as shown in Fig. 4(b). This implies that the triple point is
a quantum critical point. Note that our model preserves the SS
lattice symmetry and the three phases break distinct symme-
tries. A conventional continuous transition is then prohibited
within the LGW paradigm. We therefore propose this point as
a DQCP.

The EPL and FPL states break different Z2 lattice symme-
tries, and their order parameters can be combined to a complex
(two-component) monopole operator [19]. Further taking the
three-component spin order parameter of the AFM phase, this
infers an enlarged SO(5) symmetry [from SO(3) × Z2 × Z2]
at the proposed DQCP. To examine the exact emergent sym-
metry at this point, we calculate the susceptibilities associated
with the AFM, FPL, and EPL order parameters, χm, χFP,
and χEP, respectively. For a conventional first-order transition,
the two ordered phases are not related by any symmetry, so
the susceptibility is expected to be finite in each phase, and
experiences a jump across the transition. But the enhanced
symmetry allows a continuous rotation between order pa-
rameters in different phases and causes additional gapless
excitation modes, which are signaled by the divergence of
order-parameter susceptibilities. We first study the first-order
FPL-AFM transition. As shown in Fig. 4(c), for the transition

at J ′/J = 0.6, χm tends to diverge when approaching to the
transition point Qc from the FPL phase, and vice versa for
χFP. This divergent behavior indicates that the AFM and FPL
order-parameter fluctuations are combined to a new excita-
tion mode at the transition point, which contributes as an
emergent Goldstone mode in addition to those stabilized in
the AFM phase. This emergent Goldstone mode evidences an
enhanced symmetry from SO(3) × Z2 to O(4). We find this
O(4) symmetry emerges along the entire FPL-AFM transition
trajectory, despite the first-order nature of the transition. Note
that this symmetry is also found in a related J-Q model [45].
We then examine the behavior of χEP along the FPL-AFM
transition line toward the triple point. To obtain the asymp-
totic behavior and avoid complexity caused by the first-order
transition, we calculate χEP slightly away from Qc in the
FPL and AFM phases, respectively. As shown in Fig. 4(d),
χEP increases rapidly with J ′/J in either phase, suggesting a
divergent behavior approaching the triple point. A divergent
susceptibility indicates the existence of a soft mode, and the
number of the soft modes is associated with the number of
components N of the emergent O(N ) symmetry. Therefore,
the simultaneous divergence of all order-parameter suscepti-
bilities indicates the DQCP at the triple point has an enlarged
SO(5) symmetry.

Discussions and conclusion. As mentioned in the Intro-
duction, the nature of the transition between the plaquette
and AFM phases is under active debate. To address this is-
sue numerically, it is important to accurately determine the
ground-state energy. In our calculations, the ground state
converges quickly with increasing D. Compared to other nu-
merical methods, as shown in Fig. 3(a), the energy of the
EPL state at D = 6 in our calculation is lower than that of a
previous iPEPS work [17] for D = 7, and close to the D = 10
result and a DMRG one [19]. For the AFM state (see Fig. S5
of SM [31]) the energy at D = 6 in our work is lower than
those of DMRG [20] and series expansion results [14].

The discontinuities of dE/dJ and mm, as well as the
hysteresis loop, unambiguously show a first-order EPL-AFM
transition in the SS model, and rule out a continuous transi-
tion [19] or an intervening QSL phase [20]. The extrapolated
transition points from different estimates are converged in our
calculation. This suggests that a QSL regime [20], even if
exists, should be very narrow in the parameter space. Our
results also shed light on the VBS-AFM transitions in the
square lattice J1-J2 and checkerboard (CB) models [46–51],
as both SS and CB models can be realized by depleting the
J2 bonds from the J1-J2 model. In the CB model, the full and
empty plaquettes have a more significant energy difference.
We then expect the VBS-AFM transition there to be stronger
first order. In the J1-J2 model, however, the VBS-AFM tran-
sition should be weaker, or could even be intervened by a
QSL, because the frustration is not released by depleting the
J2 bonds.

Here, we show a ring-exchange interaction, likely existing
in SrCu2(BO3)2, helps realize a DQCP [30]. Actually our
argument for the DQCP is generic: This intriguing physics
applies to any perturbation that preserves the SS lattice sym-
metry and can tune the ground state between EPL and FPL.
Note that a DQCP does not exist in models breaking the SS
lattice symmetry [18].
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Our proposal of a DQCP with an emergent SO(5) sym-
metry obviously differs from other theoretical suggestions
in the SS model [19,20], in which the DQCP possesses an
O(4) symmetry. The different symmetry reflects an important
difference in the structure of topological defects, whose pro-
liferation causes deconfinement of spinons. For example, as
in the columnar VBS phase [7], a topological defect carry-
ing a spinon in the plaquette phase demands both EPL and
FPL domains, and necessarily restores the Z2 × Z2 symme-
try. On the SS lattice, this can only happen when the EPL
and FPL are degenerate, e.g., along the EPL-FPL transi-
tion line. The topological defects proliferate approaching the
triple point (DQCP), where the symmetry is enlarged from
SO(3) × Z2 × Z2 to SO(5). On the other hand, for a DQCP
with an O(4) symmetry, the associated topological defect in
the plaquette phase would carry multiple spinons, causing a
very different low-energy spin excitation spectrum near the
DQCP.

Our results provide a way to understand the proximate
DQCP signatures in a recent experiment [30]. The DQCP
stabilized in our model serves as an anchoring point for the
proximate DQCP behavior observed experimentally. It has
been shown that the SO(5) DQCP causes a large anomalous
dimension η ≈ 0.26 [10], which naturally accounts for the
observed η ∼ 0.2 at the VBS-AFM transition in recent NMR
measurements [30]. Moreover, our finding of the divergent

susceptibilities gives a clue in probing the emergent symmetry
at a DQCP.

In conclusion, our numerical results unambiguously show a
weakly first-order plaquette-AFM transition in the SS model.
Though the ground state favors the EPL configuration, the
FPL is energetically competitive, and can be stabilized as
the ground state under a ring-exchange-like perturbation that
preserves the SS lattice symmetry. Moreover, we provide ev-
idence for a DQCP with an emergent SO(5) symmetry at the
triple point where the EPL, FPL, and AFM phases meet in the
global phase diagram of the generalized SS model. Unusual
topological excitations dictated by the emergent symmetry are
expected and deserve detailed investigations.
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