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The synergistic interplay of different interactions in materials leads to the emergence of novel quantum
phenomena. Spin-orbit and vibronic couplings usually counteract each other; however, in cubic d1 double
perovskites they coexist and give rise to spin-orbit-lattice entanglement with unquenched dynamic Jahn-Teller
effect on the metal sites. The correlation of these entangled states induced by intersite interactions has not been
assessed so far. Here, we investigate the joint cooperative effect of spin-orbit and vibronic interactions on the
formation of the ordered phases in d1 double perovskites. We found that the magnetically ordered states in these
systems coexist with a dynamic vibronic order characterized by the ordering of vibronic quadrupole moments
on sites. This treatment allows for the rationalization of a number of unexplained features of experimentally
investigated phases.
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Introduction. In Mott insulators, spin-orbit entanglement is
a source of nontrivial magnetism. The anisotropic exchange
interaction induced by strong spin-orbit coupling in heavy
transition metal compounds has been intensively employed
to realize the Kitaev spin liquid phase [1,2]. When the total
angular momentum on metal sites amounts to Jeff > 1/2, the
magnetic interaction is not only anisotropic but also multipo-
lar. A well-known example of magnetic multipolar systems
is a family of geometrically frustrated 4d1/5d1 double per-
ovskites with Jeff = 3/2 (Fig. 1) characterized by unusual
order [3–20] and glassy phases [21–26].

The origin of the ordered phases in these systems is
still puzzling. These compounds exhibit either canted fer-
romagnetic (FM110) or antiferromagnetic (AFM) phases.
Spin-orbit based theories [27–29] predict the main features
of the FM110 phase, while showing discrepancies with ex-
periment, particularly, in the following two cases [11,13].
(1) A high-resolution x-ray scattering study on single-
crystalline Ba2MgReO6 revealed the coexistence of antiferro
x2 − y2 (rhombic deformations on sites) and ferro z2 (tetrag-
onal elongations on sites) quadrupole orders in the high-
temperature phase [13]. (2) A family of tantalum compounds,
A2TaX6 (A = Rb, Cs; X = Cl, Br), exhibits AFM order that
accompanies ferro z2 quadrupole order of tetragonal compres-
sion type [11,15]. However, conventional spin-orbit theories
do not predict quadrupole orders which would match the
observed structural distortions [27–29].

In the d1 double perovskites, the vibronic coupling at
each metal site gives rise to dynamic Jahn-Teller (JT) ef-
fect resulting in spin-orbit-lattice entanglement on sites [30].
Indeed, the ab initio calculations for molybdenum and os-
mium double perovskites proved that the Jeff = 3/2 states
are strongly coupled to the JT-active modes [30,31]. The
resulting dynamic JT stabilization is much larger than the
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magnetic interaction quantified by the Curie-Weiss constants,
indicating that the dynamic JT effect persists in these crystals
given the lack of common atoms for different metal octahedra
[Fig. 1(a)]. The dynamic JT effect smears out the structural
anisotropy, explaining why many d1 double perovskites are
cubic [5,18,19,21,22,24,26], while under external field the
ground states show slight localization at a JT deformed geom-
etry [30]. Despite the importance of the dynamical JT effect
in d1 double perovskites, it was still not properly treated for
the description of the magnetic phases in these compounds.

In this work, we extend the vibronic treatment of individual
metal sites over the cooperative effect of joint spin-orbit and
dynamic Jahn-Teller interactions in a family of cubic d1 dou-
ble perovskites. We found that elastic and exchange couplings
between entangled spin-orbit vibronic states on metal sites
give rise to rich phases of coexisting magnetic and vibronic
orders.

Microscopic model for the d1 compounds. In d1 double
perovskites, the metal octahedra form a face-centered-cubic
(fcc) lattice [Fig. 1(a)]. In each d1 octahedron, the d orbitals
split into the eg doublet and t2g triplet and an electron occu-
pies the t2g orbitals in the low-energy states. The microscopic
model for the t2g electrons comprises intrasite bielectronic,
spin-orbit and Jahn-Teller, and intersite electron transfer and
elastic interactions:

Ĥ =
∑

i

(
Ĥ i

U + Ĥ i
SO + Ĥ i

JT

) +
∑
i< j

(
Ĥ i j

t + Ĥ i j
vib

)
. (1)

The Coulomb and electron transfer interactions are

Ĥ i
U =

∑
γ

Un̂iγ↑n̂iγ↓ +
∑
γ<γ ′

∑
σσ ′

[(U − 2JH )n̂iγ σ n̂iγ ′σ ′

+ JH â†
iγ σ â†

iγ ′σ ′ âiγ σ ′ âiγ ′σ ] +
∑
γ �=γ ′

JH â†
iγ↑â†

iγ↓âiγ ′↓âiγ↑,

(2)

Ĥ i j
t =

∑
γ γ ′

∑
σ

t i j
γ γ ′ (â†

iγ σ â jγ ′σ + â†
jγ ′σ âiγ σ ), (3)
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FIG. 1. Structure of d1 double perovskites and local quantum
states. (a) Conventional cell of fcc lattice of octahedral centers. Blue
and red spheres are metal and ligand atoms. (b) The energy diagram
of the d1 site. (c) APES with respect to JT-active normal coordinates.

where γ (= yz, zx, xy) are three t2g orbitals at each site i,
U and JH are the Coulomb and Hund coupling parameters, re-
spectively, and t i j

γ γ ′ is the electron transfer parameter between
orbitals γ and γ ′. We assume that U/t is sufficiently large for
the development of the Mott insulating phase.

The spin-orbit coupling at each metal site can be expressed
via the effective orbital angular momentum l̃ = 1 of the t2g

shell (Sec. 7.1.1 in Ref. [32]) as follows:

Ĥ i
SO = λl̃

i · ŝi. (4)

It stabilizes Jeff = 3/2 (�8) at each site given λ > 0 [Fig. 1(b),
Sec. 7.1.2 in Ref. [32]].

The t2g orbitals also interact with the JT active Eg vibrations
of the octahedron (Sec. 3.3.2 in Ref. [33]):

Ĥ i
JT =

∑
α

h̄ω

2

(
p2

iα+q2
iα

) + h̄ωg
[(

qiz2 + η
{
q2

i

}
z2

)
P̂i

xy + cycl
]
,

(5)

where qα and pα (α = z2, x2 − y2) are dimensionless normal
coordinates for the JT active modes and conjugate mo-
mentum, respectively, {q2}z2 is the symmetrized quadratic
polynomial of q, ω is the frequency of the JT active mode, g >

0 and gη > 0 are the dimensionless linear and quadratic vi-
bronic coupling parameters, respectively, P̂i

γ is the projection
operator into the γ orbital on site i, and “cycl” indicates cyclic
permutations of x, y, z. qz2 > 0 (<0) corresponds to tetragonal
elongation (compression) of the octahedron [Fig. 1(c)]. The
adiabatic potential energy surface (APES) from Eq. (5) con-
sists of three independent paraboloids (Fig. 3.6 in Ref. [33]).
Each paraboloid corresponds to one t2g orbital and has a min-
imum with tetragonal compression normal to the plane of this
orbital.

Finally, the JT active vibrations on neighbor sites interact
through the elastic coupling:

Ĥ i j
vib = (qiz2 , qix2−y2 )Di j

0 (θ )(q jz2 , q jx2−y2 )T . (6)

The strongest is the on-site Coulomb interaction (U ≈ 3 eV
[5,34]), followed by spin-orbit coupling (λ ≈ 0.25–0.35 eV
for 5d1 ions [11,30]), and then Jahn-Teller (h̄ωg ≈ 50 meV
[30]) and electron transfer (t ≈ 50 meV [5]) interactions. The
intersite elastic interaction of JT active vibrations is about
one order of magnitude smaller than their frequency, h̄ω ≈
50 meV.

We treat the intrasite interactions exactly and the inter-
site interactions perturbatively following the standard way
for correlated insulators. We reduce ĤU and Ĥt to the spin-
orbital superexchange interaction for the description of the
low-energy phenomena within the Mott insulating phase. The
magnitude of the exchange interaction parameter, J ≈ t2/U ≈
1 meV, is consistent with the experimental estimates from the
Curie-Weiss constants J ≈ 
/z, where z = 12 is the number
of the nearest-neighbor sites. The exchange interaction is by
two orders of magnitude smaller than the intrasite interactions
and is comparable to the intersite elastic interaction. Below,
we describe the interactions in descending order of the energy
scale.

Local spin-orbital-lattice entangled states. The octahedral
symmetry of each d1 site enables the persistence of the JT
effect in strong spin-orbit coupled states. The spin-orbit �8

quartet splits into two Kramers doublets by JT deformations
[Fig. 1(c), Sec. 3.3.3 in Ref. [33]]: under tetragonal compres-
sion along an axis γ (= x, y, z), the lower energy Kramers pair
contains a dominant contribution from the t2g orbital lying in
the plane perpendicular to the γ axis.

The nature of the JT coupling within the �8 quar-
tet becomes transparent by introducing pseudo orbital and
pseudospin. Because of the relation �8 = �3 ⊗ �6, we can
represent the �8 multiplet via a direct product of e (�3)
“pseudo orbital” τ̃ and �6 “pseudospin” s̃ (τ̃ = s̃ = 1/2)
[28,35]: |�8,∓ 1

2 〉 = ±|τ̃z = + 1
2 , s̃z = ∓ 1

2 〉 and |�8,∓ 3
2 〉 =

±|τ̃z = − 1
2 , s̃z = ± 1

2 〉. τ̃z(x) is an electric z2 (x2 − y2)
quadrupole moment operator. Within this representation, the
JT coupling term in Eq. (5) reads as

−h̄ωg[(qz2 + η{q2}z2 )τ̃z + (qx2−y2 + η{q2}x2−y2 )τ̃x]. (7)

The pseudo-JT coupling between spin-orbit multiplets and the
anharmonicity effects vary the magnitude of the warping of
the APES [Figs. 1(b) and 1(c)].

The local quantum states are of vibronic type characterized
by spin-orbit and lattice entanglement [30]. We start with three
localized states around the minima of the APES with γ (=
x, y, z) compression, |�γ 〉 [Fig. 1(c)]. A localized state |�γ 〉
is the direct product of the pseudo orbital state cos φγ |τ̃z =
− 1

2 〉 + sin φγ |τ̃z = + 1
2 〉 and the ground vibrational state at the

minimum, where φγ = −π
6 , π

6 , π
2 for γ = x, y, z, respectively.

The kinetic energy term in Eq. (5) promotes the delocalization
over other minima (Sec. 4.3.3 in Ref. [33]). Then the vibronic
states are linear combinations of |�γ 〉’s and two ground states
are E type,

|z2〉 = 1√
6

(2|�z〉 − |�x〉 − |�y〉),

|x2 − y2〉 = 1√
2

(|�x〉 − |�y〉), (8)

and one excited state of A type,

|A〉 = 1√
3

(|�x〉 + |�y〉 + |�z〉), (9)

defining a one-site Hamiltonian,

Ĥ0 = �P̂A, (10)
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where P̂A = |A〉〈A| and � is the gap between them [Fig. 1(b)].
We emphasize that the order of these vibronic states is prede-
termined by the geometric phase [36] and does not depend
on the computational methods (see Sec. 4.3 in Ref. [33])
and weak interactions such as higher-order vibronic coupling,
pseudo-JT coupling, and anharmonic terms (see Ref. [30]).

Vibronic quadrupole moment. The vibronic states on the
d1 sites are correlated via intersite interactions acting on spin,
orbital, and lattice degrees of freedom, underlying ordered
phases of vibronic states [30]. To characterize the phases,
vibronic quadrupole operators are further introduced T̂γ . We
define T̂γ by the projection of the electric quadrupole mo-
ments, τ̃γ , into the vibronic states, Eqs. (8) and (9):

T̂γ = P̂ τ̃γ P̂ (γ = x, z), (11)

where P̂ = ∑
κ=z2,x2−y2,A |κ〉〈κ|.

Within the space of these vibronic states, the normal co-
ordinates are proportional to T̂γ . By the same procedure,
we get

qz2(x2−y2 ) → P̂qz2(x2−y2 )P̂ = −gT̂z(x). (12)

Thus the vibronic quadrupole moments enable a unified treat-
ment of pseudo orbital and lattice degrees of freedom.

From Eq. (12), the thermal average of T̂γ is related to
the deformation of the system. When Tz = 〈T̂z〉 > 0 (<0),
the system is tetragonally compressed (elongated) along the
c axis. Similarly, Tx > 0 (<0) indicates the −x2 + y2 (x2 −
y2) deformation within the ab plane.

Elastic quadrupole interaction. For nearest neighbor sites
i, j on the xy plane, we can write on symmetry reasons:

Di j
0 (θ ) = d0(cos θσ0 + sin θσz ). (13)

Here σ0 is the two-dimensional identity matrix and σz are the
z component of the Pauli matrix.

The spin-orbit-lattice entangled states on the d1 sites re-
spond to the intersite elastic coupling. Projecting qα as in
Eq. (12), Ĥvib reduces to a vibronic quadrupole interaction:

Ĥi j
vib = (

T̂ i
z , T̂ i

x

)
Di j (θ )

(
T̂ j

z , T̂ j
x

)T
, (14)

with Di j = g2Di j
0 and d = g2d0. The present vibronic

quadrupole model has the same mathematical form as the
electric quadrupole model in Ref. [37], while being of a com-
pletely different origin.

The vibronic quadrupole interaction (14) with local vi-
bronic Hamiltonian (10) shows various ferro- (FQ) and
antiferro- (AFQ) vibronic quadrupole orders [Fig. 2(a)]. We
first analyze the limiting case of � → +∞ (d/� = 0).
To derive the ground state, we employ the four-sublattice
mean-field theory as in Refs. [27,29,37]. The Tx and Tz mo-
ments form the type-I AFM-like AFQ and FQ001 orders
for 0 < θ < π − tan−1 2 and π + tan−1 2 < θ < 2π , respec-
tively [Figs. 2(b) and 2(d)]. The FQ order of Tz (> 0, c/a < 1)
arises for the other range of θ [Fig. 2(c)].

Reducing � (d/� > 0), several phases emerge [Fig. 2(a)].
The FQ phase remains for almost the same range of θ . The
AFQ also persists, while, for small θ � π/5, a new phase
(zxyz̄) develops [Fig. 2(e)]. The FQ001 is fully quenched for

FIG. 2. Vibronic ordered phases at T = 0. (a) Vibronic
quadrupole phase diagram with respect to elastic coupling parame-
ters, d/� and θ . The magenta, black, cyan, green, orange, and white
areas indicate AFQ, FQ, FQ001, AFM001, zxyz̄, zyxz̄, and inter-
mediate phases, respectively. (b)–(f) Arrangements of the vibronic
quadrupole moments. The numbers 1–4 indicate the metal sites in
Fig. 1(a).

d/� � 0.05 and a phase (zyxz̄) [Fig. 2(f)] resembling zxyz̄
arises.

In the AFQ phase with finite �, ferro Tz order (Tz < 0,
c/a > 1) develops too. When � is finite, Ĥvib hybridizes
the fully delocalized ground vibronic states and the excited
one, giving rise to a tiny localization of the ground mean-
field states around the minima of the APES. This localization
makes Tz nonzero.

Spin-orbital superexchange. The pseudospin and vibronic
quadrupole moments on d1 sites are correlated via spin-orbital
superexchange interaction. In a xy (yz, zx) plane of the fcc lat-
tice, the dominant electron transfer occurs between the nearest
xy (yz, zx) orbitals. We consider only the dominant electron
transfer as in Ref. [28]. Regarding the electron transfer inter-
action as a perturbation to the on-site Coulomb interaction,
and applying the second-order perturbation theory, we obtain
the spin-orbital superexchange model. Then, projecting the
exchange coupling into the �8 multiplets [28], we finally get

Ĥ i j
ex = Ĵ i j s̃i · s̃ j + s̃iK̂

i j
s̃ j + Q̂i j . (15)

For a pair i, j in an xy plane,

Ĵ i j = 16

27
(2r2 + r3)

(
τ̃ i

z − 1

2

)(
τ̃ j

z − 1

2

)
, (16)

K̂
i j

takes a diagonal matrix form with

K̂ i j
xx = 4

3
√

3
(r1 − r2)

[
τ̃ i

x

(
τ̃ j

z − 1

2

)
+

(
τ̃ i

z − 1

2

)
τ̃ j

x

]
,

K̂ i j
yy = −K̂ i j

xx,

K̂ i j
zz = 2

9
(r1 − r2)

(
2 − τ̃ i

z − τ̃ j
z − 4τ̃ i

z τ̃
j

z

)
, (17)

and Q̂i j is an electric quadrupole interaction

Q̂i j = 2
27 (9r1 − r2 − 2r3)τ̃ i

z τ̃
j

z . (18)
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FIG. 3. Spin-vibronic ordered phases at T = 0. (a) Phase
diagram with respect to d/J and θ . The magenta, black,
gray, cyan, green, and white areas indicate FM110, AFM-FQ,
AFM-FQ′, FM001, AFM001, and nonsymmetric FM phases, respec-
tively. (b)–(f) Arrangements of the vibronic quadrupole moments
(top) and pseudospins from [001] direction (bottom). For sites 1–4,
see Fig. 1(a).

Here r1 = (1 − 3JH/U )−1, r2 = (1 − JH/U )−1, and r3 =
(1 + 2JH/U )−1. The units of Ĵ , K̂, and Q̂ are J = t2/U .

The ground state of the exchange model (15) is either
FM110 or coplanar AFM phase. Within the mean-field theory,
the FM110 [27] and coplanar AFM [28,29] phases arise for
1/3 > JH/U � 0.23 and the smaller JH/U , respectively. Only
the FM110 phase is relevant to the experimental data of 5d1

double perovskites.
We now include the vibronic effect into the exchange

model, Eq. (15). Projecting Ĥ i j
ex into the space of the vibronic

states by using Eq. (11), we obtain

Ĥi j
ex = Ĵ i j s̃i · s̃ j + s̃iK̂i j s̃ j + Q̂i j . (19)

Here Ĵ i j , K̂i j , and Q̂i j are the exchange operators expressed
via T̂ , Eq. (11).

The spin-vibronic ordered phase is of FM110 type. The
mean-field phase of Ĥex (19) with local Ĥ0 (10) is either
FM110-type or a two-sublattice ferromagnetic-type (FM001)
[Figs. 3(b) and 3(d)]. The FM110 appears for � > �c

(�c/J ≈ 30 for JH/U = 0.3) and � � 5J and the FM001
does otherwise. The dynamic JT effect would not drastically
change the ordering of the ground state because � (≈ several
tens meV) is one or two orders of magnitude larger than
J (� 1 meV) in 5d1 double perovskites [30].

Vibronic order at 0 K. Concomitantly treating local Ĥ0,
exchange Ĥex, and elastic Ĥvib couplings, we now analyze
the ground ordered states at temperature T = 0 K. We varia-
tionally derive the ground state within the mean-field theory.
Below we set JH/U = 0.3 and �/J = 100, with which the

FM110 state appears when Ĥvib = 0, and treat d/J and θ as
parameters.

Figure 3(a) shows the phase diagram with respect to d and
θ . The FM110 phase persists in a similar range of θ where
the AFQ order develops [Fig. 2(a)]. As in the AFQ phase with
finite �, Ĥvib enhances the ferroquadrupole order of Tz < 0
(c/a > 1).

The FM110 phase turns into the AFM phase by increasing
θ in Ĥvib. For sufficiently strong Ĥvib (d > dc; dc/J ≈ 10
in the present case), the AFM-FQ phase emerges. In the
AFM-FQ phase, the first kind AFM and ferro Tz (>0, c/a <

1) orders coexist [Fig. 3(b)]. The strong Ĥvib stabilizes the
|z2, s̃z〉 spin-vibronic doublets and the exchange interaction
between the doublets on different sites becomes antiferromag-
netic. For weaker Ĥvib (dc > d > dc′ ; dc′/J ≈ 4 in the present
case), the AFM-FQ′ phase appears. In the AFM-FQ′ phase,
the first kind AFM and a ferroic order of T ’s with Tx/Tz = √

3
(b = c and a/c > 1) or an equivalent one develop [Fig. 3(c)].

We mainly focus on the FM110 and AFM-FQ phases
because, as we discuss below, these phases show up in the
existing materials.

Before we turn to the analysis of finite temperature phases,
we discuss the effect of the electric quadrupole coupling. The
intersite Coulomb interaction contains a term acting on local
electronic quadrupole moments τ̃γ [27]. Within the space of
the vibronic states, the electric quadrupole interaction takes
the same form as Ĥvib (14) with fixed θ = 0.587π . Figure 3(a)
shows that the electric quadrupole interaction does not quali-
tatively change the FM110 phase for arbitrary strength of the
interaction.

Finite temperature vibronic order. Let us now analyze the
temperature evolutions of the FM110 and AFM-FQ phases.
For d > dc, in both states, the specific heat Cv shows two
phase transitions at Tm and Tq (Tm < Tq) [Figs. 4(a) and 4(c)].
The order parameters indicate that the transitions at Tm and
Tq correspond to the magnetic and vibronic quadrupole tran-
sitions, respectively [Figs. 4(b) and 4(d)]. At these transitions,
the entropy gains the contributions (kBln2 each) from the mag-
netic and the ground vibronic degrees of freedom, respectively
[Figs. 4(a) and 4(c)]. Decreasing d , Tq approaches Tm and,
below dc, the two transitions merge.

The presence or absence of the vibronic quadrupole tran-
sition depends on the strength of the correlation between
s̃ and T̂ via Ĥex [see the first and second terms in Eq. (19)].
When Ĥvib is dominant (d > dc), T̂ ’s are almost independent
from s̃. Under this situation, Tq (or Tq/Tm) and T become
larger as d increases. When Ĥex is dominant (d � dc), the
pseudospin and vibronic states are strongly correlated and
only one transition appears.

Finally, we note that the ferro Tz order in the FM110 phase
persists above Tm (d > dc) [Fig. 4(b)]. The ferro Tz order
originates from the hybridization of the E and A vibronic
states by Ĥvib [Fig. 1(b)] as in the AFQ phase [Fig. 2(c)].

Vibronic order in materials. Our spin-vibronic orders are
consistent with the ordered phases of the 5d1 double per-
ovskites, particularly, the high-temperature quadrupole phase
of Ba2MgReO6 and the AFM phase of A2TaX6.

The theoretical quadrupole phase above Tm of the FM110
phase [Figs. 4(a) and 4(b)] explains the experimental data of

L220404-4



VIBRONIC ORDER AND EMERGENT MAGNETISM IN … PHYSICAL REVIEW B 107, L220404 (2023)

FIG. 4. Temperature evolution of the order parameters and
thermodynamic quantities in the FM110 and AFM-FQ phases.
In (a), (c), the blue solid and red dotted lines indicate Cv

and S, respectively. In (b), (d), the red and blue lines indi-
cate vibronic quadrupole moments and the black lines pseu-
dospins. The FM110 and AFM-FQ phases have two sublattices,
A and B. θ = 12π/25 for the FM110 phase and π for the
AFM-FQ phase.

Ba2MgReO6 [13]. In the rhenium compound, the ferro Tz (<0,
c/a > 1) and antiferro Tx quadrupole orders coexist between
Tm = 18 K and Tq = 33 K, which agrees with our calculation
[Fig. 4(b)]. The specific heat of the single-crystalline sample
does not show a clear peak [12], which agrees with the present
simulation [Fig. 4(a)].

In similar FM110 compounds such as Ba2NaOsO6 and
Ba2ZnReO6, the Tz moment has not been experimentally de-
tected, which does not contradict our theory. As mentioned
above, Tq/Tm and Tz increase as Ĥvib becomes stronger. In-
deed, Tq/Tm’s are about 1.3 for Ba2NaOsO6 [10] and 1.4
for Ba2ZnReO6 [18], and smaller than Tq/Tm ≈ 1.8 for
Ba2MgReO6, indicating that Ĥvib’s (and Tz) of the former
compounds are weaker than that of the latter. Tz of the former
could be too small to experimentally detect with currently
available methods.

Our AFM-FQ phase [Figs. 3(a) and 3(c)] captures the
low-temperature ordered phases of A2TaX6. Lowering T
from the room temperature, the tantalum compounds undergo
tetragonal compression at Tq (c/a < 1, Tz > 0), continuing
through the Néel transition [11,15,20], which agrees with
the temperature evolution of our AFM-FQ phase [Fig. 4(d)].
At these transitions, the specific heat of single-crystalline
Cs2TaCl6 shows sharp peaks [20], which is consistent
with our calculation [Fig. 4(c)]. The AFM-FQ phase is
also in line with the experimental data of Ba2CaReO6

[4,16].

The AFM-FQ phase could appear in cubic Ba2LiOsO6 too.
Although the presence of the Tz quadrupole order has not
been reported yet [3,6,18], the magnitude of Tz could be too
small to experimentally detect because of weak Ĥvib as in
isostructural and isoelectronic Ba2NaOsO6. Recent NMR data
(the temperature evolution of 1/T2) show a bump just above
Tm [19]. As discussed in the literature, the data might imply
the presence of quadrupole transition.

Furthermore, the FM110-to-AFM transition resolves why
similar 5d1 double perovskites exhibit FM110 and AFM
phases. Isoelectronic and isostructural Ba2NaOsO6 and
Ba2LiOsO6 show FM110 and AFM phases, respectively. The
nature of the phase of Ba2CdReO6 is under debate as to
whether it is FM110 [14] or AFM [18]. We propose that these
systems are close to the border of the FM110 and AFM phases
in the phase diagram [Fig. 3(a)]: by slightly varying θ in
Ĥvib, phase transition between them could occur. The elastic
coupling varies by changing nonmagnetic alkali ions in the
osmium compounds and via a small change in, e.g., crystal
anisotropy and the density of defects of different samples of
the rhenium compound.

Conclusion. We developed a microscopic vibronic ap-
proach that concomitantly treats the competing spin-orbit
and vibronic interactions in cubic d1 double perovskites. We
found that the magnetic order coexists with the vibronic or-
der characterized by ferro/antiferro arrangement of vibronic
quadrupole moments on sites. The present theory allows for
the rationalization of the mechanism of puzzling phases in the
5d1 double perovskites: the high-temperature quadrupole or-
ders above the magnetic transition of FM110 phase in rhenium
compounds and the antiferromagnetic phase with tetragonal
compression in tantalum compounds.

The vibronic quadrupole order can be detected by reso-
nant x-ray scattering. Since the vibronic quadrupole moments,
Eq. (11), respond to all external fields acting on the
orbitals, high-resolution resonant elastic/inelastic x-ray scat-
tering (REXS/RIXS) measurements used to probe orbital
orders [38–40] will be indispensable to study vibronic order
too. A fingerprint of the vibronic order will appear as the
anisotropy of the atomic scattering factors in REXS spectra
and in the low-energy vibronic excitation bands in RIXS spec-
tra.

The unquenched orbital-lattice entanglement could exist
in a large class of metal compounds. The proposed ap-
proach is applicable to systems with orbital (quasi)degeneracy
on sites since the orbital-lattice entanglement could per-
sist in low-symmetric systems with moderate orbital energy
splitting. The dynamic vibronic order assumes the forma-
tion of local vibronic states: this picture is adequate in
the systems where intersite interactions are weak and do
not intermix many vibronic states on sites. Further inves-
tigations on both experimental and theoretical sides are
required to get deeper insights into the nature of vibronic
order.
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