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We uncover the very rich graph topology of generic bounded non-Hermitian spectra, distinct from the topology
of conventional band invariants and complex spectral winding. The graph configuration of complex spectra are
characterized by the algebraic structures of their corresponding energy dispersions, drawing new intimate links
between combinatorial graph theory, algebraic geometry, and non-Hermitian band topology. Spectral graphs that
are conformally related belong to the same equivalence class, and are characterized by emergent symmetries
not necessarily present in the physical Hamiltonian. The simplest class encompasses well-known examples
such as the Hatano-Nelson and non-Hermitian SSH models, while more sophisticated classes represent novel
multicomponent models with interesting spectral graphs resembling stars, flowers, and insects. With recent rapid
advancements in metamaterials, ultracold atomic lattices, and quantum circuits, it is now feasible to not only
experimentally realize such esoteric spectra, but also investigate the non-Hermitian flat bands and anomalous
responses straddling transitions between different spectral graph topologies.
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Introduction. Topological classification plays an indispens-
able role in modern condensed matter physics, identifying the
intrinsic robustness in ionic compounds [1,2] and engineered
metamaterial platforms such as photonic [3–12], mechanical
[13–19], and electrical setups [20–35].

Conventionally, topological classification pertains to the
classification of eigenstate windings, specifically the topology
of the mapping between the Brillouin zone (BZ) and the target
state space. This notion of topology underscores all topo-
logical insulators [36–43], higher-order topological insulators
[44–48], and indeed practically all Hermitian topological lat-
tices, symmetry-protected or otherwise. The accompanying
topological invariant is connected to a quantized observable
such as Hall conductivity [36–38,49–51],1 which is as such
protected from continuously degrading.

In this work, we focus on a different type of topology,
namely the spectral graph topology, which is found to be far
more intricate and exotic than conventional Z or Z2 topo-
logical [37,52] classes. As presented in Fig 1(c), the energy
spectra of various bounded non-Hermitian lattices take on a
kaleidoscope of interesting shapes resembling stars, flowers,
or even insects, consisting of lines or curves that connect
spectral vertices in all imaginable ways. Compared to eigen-
state [Fig. 1(a)] or exceptional point [Fig. 1(b)] [53–65]
topology, which are represented by homotopy windings, the
planar graph topology of these non-Hermitian spectra can be
much more sophisticated, encoding arbitrarily complicated
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1However, see Ref. [150], which concerns a quantized measurable

quantity for winding in the energy plane.

connectivity structures. Indeed, the number of distinct pla-
nar graphs with N branching vertices scales rapidly as [66]
∼N−7/2γNN ! with γ ≈ 27.27, and no single topological in-
variant can unambiguously distinguish between two different
graphs.

Just like how conventional eigenstate topology manifests
as linear response quantization, topological transitions be-
tween different spectral graphs physically manifest as linear
response kinks. This is because different parts of the eigen-
states mix abruptly when at transitions between different

FIG. 1. Conventionally, topology typically refers to the winding
number either (a) in the state space or (b) around the exceptional
point (EP) branch cut (BC). (c) This work uncovers the very intricate
graph topology of the spectra of non-Hermitian bounded lattices,
which originates from (d) the intersections of its inverse skin depth
solution surfaces |κi(E )|.
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FIG. 2. Elementary illustrative OBC spectral graphs Ē : (a) real
spectral line segment of the Hatano-Nelson model; (b) hyperbola
spectral segments of the non-Hermitian SSH model with |μ| > |t |;
(c) five-pronged star for F (E ) = E and a = 3, b = 2; (d) Two de-
formed three-stars from the OBC spectrum of H2-band

2,1 with a = 2,
b = 1, and F (E ) = 2 − E 2; (e)–(f) Looped spectral graphs from
Eq. (3), with (e) G(E ) = E 2 + 0.7E , F (E ) = E 3, and (f) G(E ) =
E 4 + 0.7E 3, F (E ) = E 6.

graph configurations, resulting in enigmatic gapped marginal
transitions with no Hermitian analog [67]. In the simplest
cases, such transitions have also been associated with Berry
curvature discontinuities [68]. Since real experimental se-
tups are almost always finite and bounded, the requirement
of open boundary conditions (OBCs) does not diminish the
physical significance of spectral graph topology [69] (see also
Refs. [26,68,70–90] therein).

Deep mathematical relationships exist between the spec-
tral graph topology of a system and the algebrogeometric
properties of its energy-momentum dispersion. As elabo-
rated shortly, the dispersion can be written as a bivariate
Laurent polynomial P(E , z), where E and z = eik are the
energy and complex exponentiated momentum, respectively.
In lattices with multiple components (bands) or hoppings,
the OBC spectral graph quickly becomes very intricate,2 and
P(E , z) becomes a fingerprint of the set of its possible graph
topologies. This correspondence survives under conformal
transformations in the complex energy, which is a vast group
of symmetries tying together otherwise unrelated Hamiltoni-
ans. In charting out the classification table for distinct graph
topologies, we also uncover emergent symmetries absent in
the original Hamiltonian, leading to alternative avenues for
engineering real non-Hermitian spectra beyond PT symmetry
[28,91–98]

Spectral graphs from energy dispersions. Under OBCs,
the spectrum of generic non-Hermitian lattices collapses into
straight lines or curves [70,71,99] that join to form a planar

2The exact OBC spectrum quickly becomes analytically in-
tractable, since, due to the Abel-Ruffini theorem, no generic analytic
solution is possible for sufficiently high-order polynomials [151].

graph made up of stars and loops [Figs. 1(c), 2(a)–2(f)]. To
understand why, we first highlight the fundamental role played
by the dispersion relation

P(E , z) = Det[H (z) − E I] = 0, (1)

which is the characteristic polynomial of the Hamiltonian
H (z), z = eik . In an unbounded periodic crystal, the spec-
trum is simply the set of E satisfying P(E , eik ) = 0 for real
momenta k ∈ [0, 2π ). However, under OBCs, this is not the
case since k no longer indexes the eigenstates due to broken
translation symmetry. Yet, because the bulk is still translation
invariant, any eigenstate must be composed of eigensolutions
of Bloch-like form, characterized by complex instead of real
momenta k. The imaginary part of the momentum Im(k) rep-
resents spatial decay rate (since |eikx| ∼ e−(Imk)x), and is also
known as the inverse skin depth [68,70–73,95,96,99–117].

In particular, for an eigenstate to satisfy OBCs, it must
simultaneously vanish at both ends, and that requires it to be
a superposition of degenerate eigensolutions with equal skin
depths [69]3 As a consequence, the OBC spectrum consists4

of the set of energies E ∈ {Ē} that satisfy P(Ē , z) = 0, and
which are simultaneously degenerate in both E and Im k =
− log |z|.

Interpreted geometrically, these conditions imply that OBC
eigenenergies must lie on a planar graph: On the complex E
plane, solutions to P(E , z) = 0 that are degenerate in both
E and Im k = − log |z| can be visualized geometrically as
the intersections of Im k surfaces. Intersections of two Im k
surfaces trace out curves, i.e., graph edges, while intersections
of three or more Im k surfaces produce branch points, i.e.,
spectral graph vertices [Fig. 1(d)]. Together, these intersection
loci trace out a planar spectral graph on the complex plane.
Note that if P(E , z) is of degree p in z, there exist p surfaces
of Im k everywhere due to the fundamental theorem of algebra
[118]. Indeed, the OBC spectral graph depends solely on the
algebraic form of P(E , z); the exact form of the Hamiltonian
H (z) is inconsequential. This is actually already the case in
Hermitian lattices; bulk bands are computed from the dis-
persion relation P(E , z) = 0, and not explicitly from H (z)
per se. What is unique and interesting in the non-Hermitian
context is the key role played by Im k solution surfaces
across the entire complex E plane, not just points satisfying
P(E , z) = 0.

To understand how P(E , z) determines the possible spec-
tral graphs Ē , we first mention two important symmetries
that greatly simplify their distinct classification. First, all
Hamiltonians related by a translation of imaginary momentum
H (k) → H (k + iκ ), i.e., real-space rescaling c†

x → c†
xe−κx

possess [70] identical OBC spectra Ē . This is because Ē
depends on the intersections of Im k surfaces, which cannot
change if all solution surfaces are translated by an equal
amount κ . As such, all polynomials related by rescalings of
z, i.e., P(E , z) → P(E , e−κz) correspond to the same set of

3If the decay rates are not equal, we are left with effectively one
eigenstate in the thermodynamic limit, and the state wave function
cannot vanish at both ends and satisfy OBCs.

4With the exception of a small number of isolated states protected
by eigenstate topology, if any.

L220301-2



ZOOLOGY OF NON-HERMITIAN SPECTRA AND THEIR … PHYSICAL REVIEW B 107, L220301 (2023)

Ē , allowing for the normalization of the coefficients of z
(hopping amplitudes) without loss of generality.

Second, different P(E , z) related by a conformal mapping
of E possess OBC spectra Ē related by the same mapping,
i.e., if P′(E , z) = P( f (E ), z), then Ē ′ = f (Ē ) [69]. In other
words, when classifying P(E , z), one only needs to consider
the simplest functional dependencies on E .

Elementary examples. To facilitate our spectral graph clas-
sification through P(E , z), we first examine the few simplest
examples with analytically known OBC spectra.

(i) P(E , z) = F (E ) − (z + z−1).
This simplest case can be written in the separable

form F (E ) = z + z−1, where F (E ) is solely dependent
on E , and the right-hand side depends only on z. It
encompasses the two most well-known non-Hermitian lat-
tice models: the Hatano-Nelson and non-Hermitian SSH
models given by Refs. [74,75,100] HHN(z) = uz + vz−1,
and HSSH(z) = (t − μ + z)σ+ + (t + μ + z−1)σ−, respec-
tively. For the single-component HHN, the energy eigenequa-
tion is E − (uz + vz−1) = 0, which can be rewritten as
PHN(E , z) = E/

√
uv − (z + z−1) = 0 after letting z → √ u

v
z

and F (E ) = EHN/
√

uv. For the two-component HSSH, we
have E2 = (t − μ + z)(t + μ + z−1) = (t2 − μ2 + 1) + (t +
μ)z + (t − μ)z−1, which can also be written as PSSH =
FSSH(E ) − (z + z−1) upon letting z → z

√
t+μ

t−μ
and defining

FSSH(E ) = (E2 + μ2 − t2 − 1)/
√

t2 − μ2.
Now, since z + z−1 is invariant under z ↔ z−1, it is

doubly degenerate when |z| = |eik| = 1. Thus the OBC spec-
trum Ē is just given by F (Ē ) = 2 cos k, k ∈ R. For the
Hatano-Nelson model, we thus have ĒHN = 2

√
uv cos k,

which is a real line interval when
√

uv is real [Fig. 2(a)].
For HSSH, it is slightly more complicated with ĒSSH =
±

√
1 + t2 − μ2 + 2

√
t2 − μ2 cos k, which constitutes two

mirror-imaged real line intervals if t2 − μ2 is real, and two
curved hyperbola segments otherwise [Fig. 2(b)]. As such,
the spectral graphs HHN and HSSH both correspond to the
same dispersion class P(E , z) = F (E ) − (z + z−1), and are
conformally related to each other.

(ii) P(E , z) = F (E ) − (za + z−b).
Next up is the dispersion class F (E ) = za + z−b, which

is still separable, but without z → z−1 symmetry. It oc-
curs when there are dissimilar hopping distances, such
as in Ha,b(z) = za + z−b, which contains hoppings of a/b
sites to the left/right. A more sophisticated example would
be H2-band

2,1 (z) = (z−1 − 1)σ+ + (z + z2 − 1)σ−, which cor-
responds to F (E ) = 2 − E2 and a = 2, b = 1, and is the
one-dimensional (1D) precursor to a Chern model without
Hermitian limit [68].

By considering simultaneous rotations of F → Feiθ , z →
zeiφ , it can be shown that F (Ē ) is a star with (a + b)-fold
rotational symmetry [Fig. 2(c)]. Via a conformal transform,
this star may be mapped into multiple distorted stars, such as
Ē2-band

2,1 [Fig. 2(d)].
(iii) P(E , z) = G(E )z + z−1 − F (E ).
This dispersion class is nonseparable, containing a mixed

term G(E )z involving both E and z. It can arise from intra-
sublattice hoppings in a multicomponent model, such as the

minimal model with nontrivial trace

HF (E )=E2,
G(E )=E

(z) =
(

rz 1/z
1 0

)
. (2)

In general, mixed terms pose challenges in the analytic char-
acterization of Ē , because they make the GBZ notoriously
difficult to express explicitly. However, for this specific ansatz
P(E , z) = G(E )z + z−1 − F (E ), the OBC spectrum is exactly
given by [69]

F (Ē )2 = η G(Ē ), (3)

where η ∈ R. This gives starlike spectral graphs when F (E )
and G(E ) are both monomials, but more esoteric looped
topologies otherwise [Figs. 2(e), 2(f)]. Note that Hamiltonians
corresponding to particular F (E ), G(E ) are not unique, see
Ref. [69] for more examples.

Classification of spectral graphs. We are now ready to
analyze the spectral graph topology arising from more general
energy dispersion, of the form

P(E , z) = Q(z) + r G(E )J (z) − F (E ), (4)

which involves not just the sum of z- and E -dependent
terms, but also their product. Representative examples of
such P(E , z) are given in Table I. As shown shortly, their
OBC spectral graphs depend intimately on their polynomial
degrees f = deg[F (E )], g = deg[G(E )], j = deg[J (z)] and
q± = deg[Q(z±1)]. Notably, r, the coefficient for the product
term, can drive transitions between graph topologies; see the
final section of the Supplemental Material [69] for an exten-
sive array of examples.

While Eq. (4) admits no general analytical solution for its
Ē , we can comprehensively deduce its spectral graph structure
by separately examining its small and large E limits. For
definiteness, we specialize to

P(E , z) = zq+ + 1

zq−
+ r Eg z j − E f , (5)

which is equivalent to many other realizations of Eq. (4) up to
conformal transforms of E or rescalings of z.

When E → 0, we have P(E , z) ∼ Q(z) + r G(E )J (z) =
zq+ + z−q− + rEgz j , since g < f = dim(H ) from the def-
inition P(E , z) = Det[H (z) − I E ]. Clearly, the condition
P(E , z) = 0 is equivalent to that of the previously discussed
P(E , z) = F (E ) − (zq+ + z−q− ), and we conclude that for
small |E |, the OBC spectrum forms a star with

NS = f (q+ + q−) (6)

rotationally symmetric branches centered at the origin. Note
that since Q(z) = Det[H (z)], NS is limited by max(q+, q−) �
dim(H )range(H ), where range(H ) is the maximal hopping
distance.

At sufficiently large |E | and r, P(E , z) ∼ zq∓ + rEgz j −
E f , where ∓ = −sgn( j). By considering simultaneous phase
rotations E → Eeiθ , z → zeiφ , one finds [69] that Ē is 2π/NL

rotation symmetric, where

NL = (q∓ + | j|) f − gq∓
GCD(q∓ + | j|, q∓)

. (7)
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TABLE I. Different forms of the canonical dispersion P(E , z) of Eq. (5) correspond to rich and diverse OBC spectral graphs Ē . For each
P(E , z), we can (i) associate a nonunique minimal Hamiltonian H (z); (ii) identify emergent global symmetries of Ē not necessary present in
H (z), and (iii) characterize its spectral graph topology with its number of branches NS,NL and loops N	, as well as its adjacency matrix. See
the Supplemental Material [69] for the latter as well as more examples with varying r.

Im
 [E

]
Im

 [E
]

Im
 [E

]
Im

 [E
]

Im
 [E

]
Im

 [E
]

Re [E]

Re [E]

Re [E]

Re [E]

Re [E]

Re [E]

This emergent combination of NS- and NL-fold rotational
symmetries can be employed for the design of new models
with continua of real energy states [97], even when such
symmetry is not obvious from the Hamiltonian.

Armed with Eqs. (6) and (7), one can deduce the topology
of the entire spectral graph via the following heuristics:

(i) At small |E | and large |E |, the OBC spectral graph of
P(E , z) have, respectively, NS and NL rotationally symmetric
branches centered at the origin. The rest of the spectral graph
interpolates between them.

(ii) Generally, the origin is the only branching point if
NL = NS [Table I (i)]. An exception might occur if the equal
number of spectral branches at small and large |E | are dis-
placed by a small rotation angle. Additional branches appear
to connect these two regimes, typically leading to a flowerlike
shape [Table I (ii)].

(iii) When NS < NL, additional disjointed or isolated
branches can appear at larger |E | [Table I (iii)]. However, this
condition alone does not guarantee the existence of isolated
branches [Table I (iv) is connected].

(iv) Depending on the symmetry of P(E , z) under r →
−r, the spectral graph at sufficiently large ±r are either iden-
tical, or mirror-reflected (r reflection).

(v) As we tune |r|, the number of rotationally symmetric
branches interpolates between NL at large |r| and f (q+ + q−)
at small |r|, as exemplified in Ref. [69].

(vi) Sometimes, branches emanating from the origin may
join up into loops. This is especially common when NS > NL

[Table I (v) and I (vi)], but may also appear when NS < NL

[Table I (iv)].
The total number of loops N	 is related to the number of ver-
tices V , branch segments E and disconnected spectral graph
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components C via Euler’s formula on a planar graph [119]:
N	 = C + E − V . Here V includes branching points as well
as endpoints of branches; there are usually NL of them, as
showcased at the end of the Supplemental Material [69]. Con-
sider Table I (iv), we have V = 13, E = 14, and C = 1, and
thus N	 = 1 + 13 − 11 = 2 loops.

All in all, the graph structure is revealed through two
different interpolations: that between small and large |E |
reveals the branching pattern for a particular P(E , z) at large
|r|, and further interpolating to r = 0 reveals additional topo-
logical transitions. Each of these branching points are spectral
singularities, which lead to emergent complex flat bands [76].
For each graph, one may encode its topology by labeling its
branching points and constructing the adjacency matrix [69].

Discussion. The proper understanding of the energy
spectrum is central in explaining key response properties
[120–122]. In particular, transitions in the spectral graph
topology lead to emergent OBC flat bands [76,123–125],
which are not only useful in sensing [77–80,126–128], but
also physically result in responses kinks that can be measured
in ultracold atomic settings [69]. Generalizing to two dimen-
sions would potentially also give rise to interesting scenarios
with discontinuous Berry curvature [68,81,82,84–86,129],
particularly in nonlinear settings. In this work, we have uncov-
ered that non-Hermitian spectra can present far richer graph
topologies than hitherto reported, with their structure heuristi-
cally deducible from the dispersion equation P(E , z) (Table I).
The simplest topologies, i.e., the P(E , z) = F (E ) − (z + z−1)
class have already been experimentally probed in ultracold
atomic lattices [130–132] as well as photonic, mechanical,
and electrical networks [17,26,107,133].

Mathematically, our characterization unveils new symme-
tries not present in the original Hamiltonian [69,101,105,134],

and suggests new links between combinatorial graph the-
ory, algebraic geometry5 and non-Hermitian band topology
[18,73,135,136]. One open mathematical question remains:
For a given spectral graph topology, can one always find a
local parent Hamiltonian?6

Moving forward, exciting discoveries are expected in the
following directions: (i) Multidimensional generalizations,
since the interplay with hybrid higher-order topology can
lead to the spontaneous breaking of symmetries in the spec-
tral graphs, as the κ deformation affects topological and
bulk modes differently [90,137]. (ii) Introduction of inter-
actions, which causes the aforementioned OBC flat bands
to become highly susceptible to new many-body effects
that are potentially accessible in ultracold atomic setups
[132,138,139] and, more recently, quantum circuits [140–146]
with monitored nonunitary measurements [147,148]. (iii)
Quasiperiodicity will inevitably introduce self-similarity to
the spectral graph topology [149], further enriching the
classification.
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5Our results are totally unrelated to known correspondences be-
tween polynomials and graphs, i.e., chromatic polynomials and
Dessin d’enfants [152,153].

6A general construction exists by means of an electrostatic mapping
[97], but locality is not guaranteed.
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