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Infinite-randomness criticality in monitored quantum dynamics with static disorder
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We consider a model of monitored quantum dynamics with quenched spatial randomness: specifically, random
quantum circuits with spatially varying measurement rates. These circuits undergo a measurement-induced
phase transition (MIPT) in their entanglement structure, but the nature of the critical point differs drastically
from the case with constant measurement rate. In particular, at the critical measurement rate, we find that the
entanglement of a subsystem of size � scales as S ∼ √

�; moreover, the dynamical critical exponent z = ∞.
The MIPT is flanked by Griffiths phases with continuously varying dynamical exponents. We argue for this
infinite-randomness scenario on general grounds and present numerical evidence that it captures some features
of the universal critical properties of MIPT using large-scale simulations of Clifford circuits. These findings
demonstrate that the relevance and irrelevance of perturbations to the MIPT can naturally be interpreted using a
powerful heuristic known as the Harris criterion.
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Introduction. Recent years have seen dramatic advances
in the assembly and control of quantum coherent matter
[1–3], demonstrating significant progress towards a universal
quantum computer and other practical quantum technolo-
gies. These systems lead to new paradigms for many-body
physics in which phases of matter can be defined in a
purely information-theoretic manner [4–6], raising fundamen-
tal questions about the role of the environment or “observer”
in quantum many-body physics. Theoretical efforts in this
area have focused on the behavior of monitored systems where
there is a threshold for fault tolerance characterized by a
dynamic phase transition in the entanglement [7–9]. However,
as exhibited by recent experiments [10–12], any physical re-
alization will have spatially random noise in some aspect of
the device (e.g., due to fabrication or read-out imperfections).
Such noise appears as static disorder at the level of a moni-
tored quantum circuit, which could have a significant effect
on the fault-tolerance thresholds and associated phases.

As a toy model for monitored quantum systems and their
associated criticality, the study of “hybrid” dynamics (i.e.,
unitary evolution interspersed with measurements) in ran-
dom quantum circuits has garnered a significant amount of
attention in recent years [6,13–15]. It has become well es-
tablished that the competition between scrambling (unitary)
dynamics and local measurements leads to a measurement-
induced phase transition (MIPT)—a phase transition in the
entanglement structure of the quantum state conditional on
a set of (typical) measurement outcomes. Previous studies

established properties of MIPTs with a uniform density of
measurements [13,14,16–53], but do not address physical sit-
uations where some qubits are preferentially measured over
others (e.g., qubits closer to transmission lines, or computa-
tion with a measuring adversary who has limited access to
some of the qubits). In this Letter, we find that when qubits
are preferentially measured with individual probabilities px,
the phases and transition change dramatically, flowing to an
infinite-randomness fixed point.

In special limits, such as the Hartley entropy for generic
(Haar) random circuits [14] or infinite on-site Hilbert space
dimension [17], the physics of the MIPT in d dimensions can
be understood via mappings to percolation in d + 1 dimen-
sions. In the case of a d = 1 spin chain, the quenched spatial
randomness (i.e., preferential measurements) corresponds to
columnar disorder in the two-dimensional lattice. Applying
the rigorous Chayes-Chayes-Fisher-Spencer (CCFS) bound
[54] for disordered systems indicates that the correlation
length exponent ν, which characterizes the divergence of the
characteristic length scale as the critical point is approached,
should satisfy ν � 2/d for the critical point to remain stable
upon the introduction of disorder. Taking ν = 4/3 for perco-
lation, shows that the critical point is unstable and has been
found to flow to infinite randomness [55]. This behavior is not
seen for uncorrelated disorder since the dimension is instead
d + 1, and therefore the CCFS bound is satisfied. Away from
the percolation limits, numerical studies of MIPTs yield ν ≈
1.3 [13,16,19,20,23], and therefore we expect a violation of
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the CCFS bound with quenched spatial randomness. Indeed,
we demonstrate that the MIPT flows to a critical, infinite-
disorder, universality class and uncover the nearby Griffiths
phases that control the dynamics of quantum information.
Moreover, we establish the irrelevance of static quasiperiod-
icity, consistent with the Luck criteria [56] (ν � 1/d) (see
Sec. S1 in the Supplemental Material [57]).

We pursue two complementary approaches: First, we ex-
plore classically simulable Clifford circuits with a spatially
varying measurement rate; second, we construct a real-
space renormalization-group (RSRG) treatment [58–62] that
is strictly valid in the limit of large on-site Hilbert space
dimensions, but that may describe the fixed point more gen-
erally. The two approaches are mutually consistent in many
respects, but qualitative deviations between the two critical
points are found in some observables.

The RSRG mapping yields the following universal pre-
dictions: (i) This critical point exhibits activated dynamical
scaling, i.e., space and timescale with the relation ln t ∼ √

x
[cf. the relativistic behavior at the conventional MIPT (x ∼
t)]; (ii) the steady-state entanglement of a subsystem of size
� at the critical point scales as S(�) ∼ √

� [cf. ∼ ln � in the
absence of static disorder]; (iii) the MIPT is flanked by Grif-
fiths phases in which the late-time dynamics is governed by
rare-region effects. We put forward these three behaviors as
sufficient criteria to claim two critical points are described
by the same infinite-randomness fixed point. Our numerical
evidence indicates that both Clifford circuits and percolation
are consistent with each of these predictions. However, we
also find that the tripartite information at the Clifford critical
point acquires a broad distribution, with its average growing as
a fractional power law of system size. This numerical observa-
tion appears robust, and goes beyond any existing theoretical
calculation. This feature also appears to be absent in our
numerical simulations of percolation with columnar disorder.

Models and entanglement probes of the MIPT. We con-
sider random circuit models with the “brick wall” structure
consisting of randomly chosen two-qubit gates between
nearest-neighbor q-state spins. For our numerical simulations,
our two-qubit gates are Clifford gates (q = 2), allowing us to
reach large system sizes with efficient classical simulations
[63–66] (all simulations have periodic boundary conditions).
Our analytic treatment uses Haar-random gates, and we send
q → ∞. Last, we also consider a classical limit of this model
by solving a percolation problem with columnar disorder (see
Sec. S3 [57]).

To build static spatial randomness into the problem we
use a position-dependent measurement probability px applied
between every layer of unitary gates and given by px = rn

x ,
where rx is a random variable uniformly distributed in [0, 1]
and n is the tuning parameter. We denote averages over circuit
realizations via · · ·. For a given realization of the circuit, we
generate the static px and parametrize the strength of the mea-
surement rate by its disorder-averaged value, i.e., p = 1

n+1 .
This distribution is chosen to have long tails so that rare
regions of atypical values of px play an important role in the
dynamics for modest system sizes, but we do not expect it to
change the universal properties of the critical point in the ther-
modynamic limit. This static measurement profile produces a
“columnar” disorder pattern in space-time.

The measurement transition is present in averaged quan-
tities that are nonlinear in the reduced density matrix
conditional on measurement outcomes, therefore we focus on
entanglement probes of the system. First, the von Neumann
entanglement entropy S(x, t ) is computed by dividing our
system into two regions A (of length x) and B (of length
L − x), resulting in S(x, t ) = −TrA[ρA log2 ρA], where ρA =
TrB|ψ (t )〉〈ψ (t )| is a trace of the density matrix over region
B and |ψ (t )〉 is the time-evolved wave function on a given
sampled quantum trajectory. Unless otherwise specified, we
choose the initial state of the system to be a random product
state of up- and down-spin sites. In stabilizer circuits, von
Neumann and Rényi entropies are identical, but we expect
similar results for any Rényi entropy Sn in other cases (e.g.,
Haar) since their values must scale similarly with system size
[differing by at most a constant n/(n − 1) [14]].

Second, to identify and characterize the critical point of the
entanglement transition, we use the tripartite mutual informa-
tion I3(A, B,C) ≡ S(A) + S(B) + S(C) − S(A ∪ B) − S(A ∪
C) − S(B ∪ C) + S(A ∪ B ∪ C) where we have omitted the
time label and have partitioned the system into adjacent re-
gions A, B,C each of size L/4. The value of I3 depends
sensitively on the circuit realization; we thus study a probabil-
ity distribution P[I3] over trajectories and circuit realizations,
in addition to the circuit-averaged value I3. With strong
spatial randomness the mean I3 is not representative of the
broad distribution P[I3] due to fat tails. Thus, studying the
distribution P[I3] in detail, we are motivated to generalize the
scaling ansatz from Refs. [16,19] to include the possibility of
extensive scaling at the critical point (see supporting distri-
bution data in Sec. S2A [57]). Consequently, to numerically
identify the critical point, we find it most accurate to analyze
the distribution P[I3].

We study the purification dynamics with the ancilla order
parameter defined by Ref. [67]: At t = 0 a site in the system
is maximally entangled with a reference qubit and the system
is scrambled by unitary evolution for a time 2L. The system
is then evolved under the hybrid dynamics for an additional
time 2L and the average entanglement entropy of the reference
qubit SQ acts as an order parameter. Near the critical point,
SQ obeys single-parameter scaling allowing for an additional
probe of the transition complimentary to I3.

RSRG for quenched disorder. The transition is ana-
lytically tractable for Haar-random circuits as the on-site
Hilbert space q → ∞, using mappings onto replica statistical
mechanics models [17,35,40,68–70]. Upon averaging over
random Haar gates and measurement locations and outcomes,
nonlinear functions of the density matrix can be mapped
onto an effective two-dimensional k!-state Potts model in
the replica limit k → 1, which describes bond percolation
[17,35]. Quenched disorder in the circuit leads to colum-
nar disorder in the statistical mechanics model, which is
amenable to RSRG techniques [57,58,60]. We find that for
any number of replicas, and directly in the replica limit
k → 1, the transition is described by an infinite-randomness
fixed point [57] with space-time scaling ln t ∼ �ψ , with
ψ = 1

2 (z = ∞ that diverges as z ∼ �ψ/ ln �), in agree-
ment with results on percolation with columnar disorder
[55]. Scaling properties follow from known results [58–60]:
In particular, the (average) correlation length exponent is
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FIG. 1. (a) Top: Phase diagram of the disordered circuit model indicating the behavior of the dynamic exponent z, which characterizes
the divergence of the characteristic timescale, near the critical point and Griffiths phase. The dynamic exponent z = z(p) is a continuous
function of the average measurement rate p and increases as p → pc from the volume-law and area-law phases (data points are obtained from
numerical simulations, dashed lines are the result of the RSRG prediction 1/z ∼ |p − pc|νψ = |p − pc|). Bottom: Entanglement profile S(x, t )
as a function of the cut x and time t (darker blue indicates later times). Each panel corresponds to a single trajectory and a different value
of p in the Griffiths regime (left: p = 0.091; right: p = 0.20). The red to blue color at the bottom indicates small to large values of the local
measurement probability px , respectively. (b) Early-time behavior of the average half-cut entanglement entropy, S(L/2, t ), in the volume-law
phase of the disordered circuit. The data are fit to a power law given by S(L/2, t ) ∼ t1/z. (c) Purification time in the area-law phase used to
extract the dynamical exponent from a fit of τ̄ ∼ Lz.

ν = 2, and the scaling in the phases is controlled by Griffiths
effects.

Importantly, the mapping predicts that the steady-state en-
tanglement entropy at criticality scales as S ∼ √

�. In the
statistical mechanics picture, the entanglement entropy is re-
lated to the free-energy cost of inserting a domain wall of
size � at the (spatial) boundary of the system [17,35]; this
cost is related to the logarithm of the boundary two-point
function, which typically scales as exp(−�ψ ) [58–60]. Since
S is related to the logarithm of the boundary two-point func-
tion it is dominated by typical samples and not rare samples,
hence the result above. Furthermore, due to space-time scaling
ln t ∼ √

�, S ∼ ln t .
Although our predictions are restricted to q = ∞, infinite-

randomness fixed points are typically “superuniversal”
[71,72], e.g., in the random Potts model the critical properties
independent of the number of states [71], in contrast with the
clean case. We therefore expect our q = ∞ predictions to ex-
tend to finite q, which we verify numerically below for qubits
(q = 2). Notably, however, we find deviations between the
universal behavior of the q = ∞ percolation model and the
Clifford model in the scaling of mutual information quantities
at criticality.

Griffiths phases. The RSRG treatment predicts that around
the critical point, certain dynamical quantities are dominated
by rare-region effects. The presence of rare-region effects
is manifest in spatial profiles of the entanglement entropy
S(x, t ) for a given profile of measurement rates (for posi-
tion x and time t) [see Fig. 1(a)]. At small values of p,
frequently measured regions act as bottlenecks that hinder the
growth of the entanglement. In contrast, for large values of p
we see that regions that are measured infrequently produce
highly scrambled local regions. (Note that Griffiths effects
in measurement-induced phases were previously studied, in
“flipped” circuits with the roles of space and time inter-
changed [73]. Relating the two sets of results is an interesting
task for future work.)

The observables that diagnose these Griffiths effects are
distinct in the two phases. In the volume-law phase, regions
with a high measurement probability act as bottlenecks for

entanglement growth. Conversely, in the area-law phase, rare
locally scrambling regions dominate the purification rate of
an initially mixed state.

First, consider the volume-law phase and a region of size
� that is locally in the area-law phase and gets entangled with
degrees of freedom to its left; therefore, it is in a mixed state.
Measurements rapidly purify/disentangle this region, and the
probability (and therefore the rate) that entanglement spreads
across it is scales as e−�/ξ where ξ is the local correlation
length inside the rare region. Because the measurement rate
is spatially uncorrelated, the density of rare regions of size �

is exponentially suppressed as f � for some f that depends on
the microscopic details of the disorder but approaches unity
at the transition. Therefore, bottlenecks that allow entangle-
ment growth at rate �γ occur at density f −ξ ln γ ∼ γ α , where
α ≡ ξ | ln f |. Reference [74] addressed the problem of entan-
glement growth in the presence of a power-law distribution of
bottlenecks and found that S(t ) ∼ t1/z, where z = (α + 1)/α.
In Fig. 1(b), the late-time entanglement growth is shown along
with a power-law fit at late times to extract z in the volume-law
phase. This stands in stark contrast to space-time random
circuits that scale ballistically in time.

Next, consider the area-law phase and a region of size
� that is locally in the volume-law phase; it purifies on a
timescale ∼e�/ξ where ξ is the local correlation length of the
region. As before, the density of volume-law regions of size
� is suppressed as f̃ � for some f̃ that approaches unity at the
transition. In a sample of size L, the largest expected volume-
law region has f̃ � ∼ 1/L so � ∼ ln L/| ln f̃ |. The purification
time of the sample is controlled by this largest bottleneck and
therefore scales as τ (L) ∼ Lz where z = 1/(ξ | ln f̃ |). Deep in
the area-law phase z → 0 but as p → pc rare-region effects
begin to play a role in the dynamics and the size of the largest
rare region determines the purification time, giving rise to the
power-law behavior τ ∼ Lz. In Fig. 1(c), z is extracted via fits
to the largest system sizes.

In summary, in each Griffiths regime the dynamic exponent
z = z(p) is a continuously varying function of p; it diverges
as p → pc from both sides, starting from z = 1 (z = 0) in the
deep volume- (area-) law phase [see Fig. 1(a)]. These results
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FIG. 2. Data and collapse of the distribution P[I3 = 0] used to
determine the critical point pc and the correlation length exponent ν.

provide an underestimate of z near pc as it is heavily affected
by finite-size effects.

Identifying the critical point and its properties. Next, we
determine the location of the critical point using the tripartite
mutual information. Due to the distribution P[I3] developing
fat tails (see Sec. S2A [57]), the mean I3 does not fully
characterize the distribution, which dramatically modifies the
single-parameter scaling I3 near the transition. Therefore, we
turn to properties of P[I3] to identify pc. In the volume-law
phase, the probability to find I3 = 0 must vanish in the ther-
modynamic limit, whereas it must approach unity deep in the
area-law phase (see Sec. S2A [57]). As shown in Fig. 2, this
behavior is consistent with our numerical data allowing us to
identify P[I3 = 0] as a scaling variable, which importantly
does not require knowing the scaling of I3. Using the scal-
ing ansatz P[I3 = 0] ∼ F [L1/ν (p − pc)], where F (x) is an
arbitrary scaling function, we find excellent data collapse as
shown in Fig. 2 (inset) for pc ≈ 0.145(5) and ν ≈ 2.2(2), in
agreement with the RSRG. Importantly, the estimated value
of ν is stable with respect to the Harris/CCFS bound.

Furthermore, we can use the data collapse of I3 with
the less constrained scaling ansatz I3 ∼ Lag[(p − pc)L1/ν], to
account for L dependence at the critical point, that could be in-
curred for example due to a fat tail in P[I3]. For completeness,
we consider three cases of the scaling function motivated by

generality, the behavior of P[I3 = 0], and the RSRG picture
(see Sec. S2B [57]). In all cases, we find similar results for pc,
ν, and a > 0 with differences �10%. Last, the nonzero value
of a is beyond the classical limit of the model (see Sec. S3B
[57]).

Motivated by these results, we study the average, half-cut,
bipartite entanglement entropy S(L/2, t ) as a function of the
system size L and time t . Near the transition (p ≈ pc) we find

S(L/2, t � L) ∼
√

L and S(L/2 � t, t ) ∼ ln t, (1)

as shown in Fig. 3(a), in agreement with the RSRG predic-
tions. These results demonstrate that the critical point has
a divergent dynamic exponent consistent with an infinite-
randomness fixed point. In the classical limit of percolation,
we have also found the scaling in Eqs. (1) (see Sec. S3B
[57]). Additionally, we compute the saturation time t∗ at which
S(L/2, t ) reaches its late-time value as shown in Fig. 3(b). In
the disordered system, rare regions cause the entanglement
to grow sub-ballistically so that the saturation time is no
longer t∗ ∼ L. Numerically, in the volume-law phase, we find
a stretched exponential t∗ ∼ e

√
L while in the area-law phase

it approaches a constant [see Fig. 3(b) (inset)].
Finally, the average order parameter dynamics SQ(t, L) at

the critical point is shown in Fig. 3(c). Our results demonstrate
this critical point is of the infinite-randomness type and has
a divergent dynamic exponent z ∼ ξψ ∼ |p − pc|−νψ ; there-
fore, we can use the activated dynamic scaling ansatz [75]
that yields SQ(t, L) ∼ g(L−ψ ln t ), where g(x) is an arbitrary
scaling function and ψ is the so-called activation or barrier
exponent. We find ψ = 0.56(4) through data collapse [see
Fig. 3(c) (inset)]. Importantly, this value of ψ is in agreement
with RSRG and consistent with the length-time scaling of the
entanglement entropy in Eq. (1).

Discussion. Introducing static disorder to the
measurement-induced phase transition is a relevant
perturbation that produces a flow to an (apparently)
infinite-randomness critical point. We developed a real-space
renormalization group approach to this transition and verified
its predictions using large-scale simulations of Clifford
circuits and its classical limit through percolation. Our results
for the tripartite mutual information for Clifford circuits and
percolation show qualitatively different behavior, suggesting
that these two infinite-randomness fixed points belong

FIG. 3. (a) Average half-cut entanglement entropy at late times for various measurement rates. Near the critical point, the entanglement
entropy behaves as S ∼ √

L as shown by the black dotted line fit for pc ≈ 0.14. (b) Example fit (at p ≈ pc) used to extract the saturation time
t∗ as a function of system size. Inset: In the volume-law phase, we find a stretched exponential behavior t∗ ∼ exp[

√
L] while in the area-law

phase it approaches a constant. (c) Order parameter dynamics for the disordered measurement rate. The data collapse onto a single universal
curve using the activated dynamic scaling ansatz.
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to distinct universality classes. Analytically, computing this
quantity within the RSRG is an important task for future work.

Our results for static randomness stand in stark contrast
with the case of static quasiperiodic modulation in space.
The relevance of quasiperiodic perturbations added to random
circuits is governed by the weaker Luck [56] bound ν � 1/d .
Therefore, quasiperiodic spatial modulations of the measure-
ment rate leave the universal nature of the MIPT unchanged,
as we demonstrate in Sec. S1 [57]. The demonstration of
the Harris/Luck criteria to measurement-induced criticality
provides a powerful heuristic to interpret relevant and irrel-
evant perturbations on this information-theoretic transition.
Under this paradigm, future work could begin to understand
how topologically ordered phases and transitions change with
static randomness [20].

Finally, we remark that many quantum computing systems
exhibit quenched spatial randomness in the noise and tuning
parameters due to disorder in device fabrication [11]; there-
fore, we expect some of the universal features studied here

to be relevant in the many-body physics of such devices. We
leave more concrete studies of these effects for future work.
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