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We present a perturbation method to compute the out-of-time-ordered correlator in the strongly disordered
Heisenberg XXZ model in the deep many-body localized regime. We characterize the discrete structure of the
information propagation across the eigenstates, revealing a highly structured light cone confined by the strictly
logarithmic upper and lower bounds representing the slowest and fastest scrambling available in this system.
We explain these bounds by deriving the closed-form expression of the effective interaction for the slowest
scrambling and by constructing the effective model of a half length for the fastest scrambling. We extend our
lowest-order perturbation formulations to the higher dimensions, proposing that the logarithmic upper and lower
light cones may persist in a finite two-dimensional system in the limit of strong disorder and weak hopping.
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Slow scrambling of quantum information is one of the in-
triguing phenomena occurring in many-body localized (MBL)
systems [1–5]. The time scale of scrambling dynamics [6]
in MBL systems is distinguished from Anderson localization
in noninteracting systems where correlation decays exponen-
tially [7,8] and also from the fast scrambling expected in
ideal chaotic systems [9–11]. The logarithmic time scale of
information propagation was first reported by the growth of
entanglement entropy in the disordered XXZ chain quenched
from a product state [12–14], which was explained in the
picture of the quasilocal integral of motion (LIOM) [15–18].
The Lieb-Robinson bound indicating the upper bound on in-
formation propagation speed was modified accordingly in this
picture, proposing the logarithmic light cone (LLC) of the in-
formation front moving at a finite speed defined in logarithmic
time instead of linear time [19–24].

Despite the numerical evidence of LLC found in MBL
systems [24–29], a basic understanding of LLC primarily
relies on the effective l-bit Hamiltonian [17,18]. The hypoth-
esized exponentially decaying effective interaction Jeff (r) ∝
exp(−r/ξ ) acting on two remote LIOMs at distance r with a
decay length ξ is a key to interpreting the time scale t ∼ 1/Jeff

exponentially increasing with r. Although this is well estab-
lished to describe the dephasing dynamics in one dimension
(1D), the effective picture lacks the system-specific details
that can still be necessary for understanding of the phenomena
in a particular system. In the simple setting with a fixed ξ ,
the slope of LLC is given by ξ−1 [20]. However, as noted in
the construction of the l-bit model [18], Jeff and ξ generally
vary with eigenstates as well as disorder configurations. We
study the consequence of such dependence in characterizing
information scrambling in the disordered XXZ model in the
deep MBL regime.
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On the other hand, practical signatures of MBL in two
dimensions (2D) have attracted much attention theoretically
[28–43] and experimentally [44–46] at finite systems, while
it has been argued that 2D MBL is asymptotically unstable
toward the avalanche of rare thermal regions [47–51]. In
particular, the evidence of LIOMs [34] and LLC [29] has
been recently presented in higher dimensions by the numerical
construction of the l-bit Hamiltonian. These motivate us to
revisit the computation of the out-of-time-ordered correlator
(OTOC) [6], a diagnostic tool for information scrambling, for
characterization beyond the generic l-bit description both in
1D and 2D.

In this Letter, we develop a perturbation formulation of
OTOC in the strongly disordered XXZ model in the weak
hopping limit. Measuring OTOC for each eigenstate, we re-
veal the discrete structure of the light cone built by the allowed
lowest orders of perturbation varying with the intervening spin
states at a given r. Remarkably, the light cone is bounded by
the two logarithmic slopes representing the slowest and fastest
scrambling. We derive an analytic formula for the effective
interaction for the slowest scrambling and describe the fastest
scrambling by the half-length effective Ising chain. Extending
our method to 2D, we demonstrate the logarithmic light cones
of the slowest and fastest scrambling in 2D within the lowest-
order perturbation formulations.

For perturbation expansion, we decompose the XXZ
Hamiltonian as Ĥ ≡ Ĥ0 + V̂ , where the unperturbed part Ĥ0

and the hopping perturbation V̂ are given as

Ĥ0 = Jz

2

∑
i

σ̂ z
i σ̂ z

i+1 +
∑

i

hiσ̂
z
i , (1)

V̂ = J
∑

i

(σ̂+
i σ̂−

i+1 + σ̂−
i σ̂+

i+1). (2)

The random disorder field is drawn from the uniform
distribution of hi ∈ [−h, h]. We assume that the unperturbed
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state is nondegenerate and localized in the Fock space of the
σ̂z-basis states. We consider the strong disorder and weak
hopping limit of J � Jz � h in the deep MBL regime. We
compute the perturbation corrections in energy within the
Rayleigh-Schrödinger perturbation theory using multipreci-
sion numerics to handle strong cancellations and critical
round-off errors (see Supplemental Material [52] and refer-
ences [53–56] therein).

We define OTOC by the squared commutator of two σ̂x

operators initially located at a and b as

Cα (r, t ) = 1
2 〈α||[σ̂ x

a (t ), σ̂ x
b

]|2|α〉 = 1 − Re[Fα (r, t )], (3)

where the correlator Fα (r, t ) = 〈α|σ̂ x
a (t )σ̂ x

b σ̂ x
a (t )σ̂ x

b |α〉 and r ≡
|a − b| − 1 � 0 is the separation between a and b. Choosing
|α〉 to be an eigenstate, the correlator can be approximated at
weak perturbation as

Fα (r, t ) =
∑
β,γ ,δ

sαβγ δei�αβγ δt ≈ exp
(
iJα

efft
)
, (4)

where the frequency �αβγ δ = Eα − Eβ + Eγ − Eδ and the
coefficient sαβγ δ = 〈α|σ̂ x

a |β〉〈β|σ̂ x
b |γ 〉〈γ |σ̂ x

a |δ〉〈δ|σ̂ x
b |α〉. As-

suming that a perturbation correction in a state vector
is small, the single dominant term is found at sαβγ δ ≈
1 for |α〉 ≈ |α(0)〉, |β〉 ≈ |β (0)〉 = σ̂ x

a |α(0)〉, |γ 〉 ≈ |γ (0)〉 =
σ̂ x

b σ̂ x
a |α(0)〉, and |δ〉 ≈ |δ(0)〉 = σ̂ x

b |α(0)〉, where the superscript
denotes the corresponding unperturbed state. The frequency
of the dominant component is rewritten in terms of the pertur-
bation corrections as

Jα
eff = 	Eα − 	Eβ + 	Eγ − 	Eδ, (5)

which we referred to as an effective interaction from the anal-
ogy to the one in F (t ) = exp(±4iJefft ) given for the effective
l-bit model [20–24]. The same expression of Jα

eff can also be
extracted using the protocol of the double electron-electron
resonance (DEER) [57–60]. From Eqs. (3) and (4), the disor-
der average of Cα is written as

〈Cα (r, t )〉av ≈ 1 − Re

[∫ ∞

−∞
eiJα

eff t P
(
Jα

eff

)
dJα

eff

]
, (6)

with the probability distribution P(Jα
eff ) being obtained by

computing Jα
eff for random disorder configurations. In this

weak perturbation formulation, only the energy corrections
are important while the small corrections in the state vectors
are irrelevant. Measuring OTOC in the Fock space with |α(0)〉
leads to the same expression.

Figure 1 displays the scrambling time t∗ as a function of
r obtained by solving 〈Cα (r, t∗)〉av = 0.5 for each eigenstate.
It turns out that t∗ is not on a single light cone but structured
by the lowest order of the nonvanishing perturbation term in
Eq. (5), varying with the intervening spin configuration in
|α(0)〉. The lowest order nα (r) is determined by the minimum
number of the hopping operators flipping all intervening spins,
which is written as nα (r) = 2(r − mα

s ), where mα
s is the num-

ber of staggered spin pairs found in |α(0)〉 between a and b.
Remarkably, the discrete structure of t∗ indicates the sharp

upper and lower bounds in the logarithmic slope, representing
the slowest and fastest scrambling available in this system.
These bounds correspond to Jα

eff ∝ J2r (mα
s = 0) and Jα

eff ∝ Jr

(mα
s = r/2) at even r, which are associated with |α(0)〉 of the

FIG. 1. Light cone structure of the disordered XXZ chain in
the deep MBL regime. The markers denote the scrambling time
Jzt∗ obtained at the fixed value of the disorder-averaged OTOC
〈Cα (r, t∗)〉av = 0.5 for each eigenstate α, comparing the lowest-
order perturbation results with the exact diagonalization at J/Jz =
0.001 and h/Jz = 10. The arrows indicate the allowed change of
t∗ with increasing separation. The background color indicates the
infinite-temperature OTOC C∞, the average of 〈Cα (r, t )〉av over all
eigenstates.

ferromagnetic (FM) domain and the chain of staggered spin
pairs such as in the antiferromagnetic (AF) state, respectively.
This structure is hidden in the infinite-temperature OTOC, an
average over the eigenstates, revealing the detailed view of the
light cone in the strongly disordered XXZ model.

For the slowest scrambling, we obtain the lowest-order
expression of JFM

eff at the FM unperturbed state as

JFM
eff = 2Jz

(
J

2

)2r r∑
k=0

F 2
k

Ak + Bk+1

Ak + Bk+1 − Jz
G2

k+1, (7)

where Ak = ha − ha+k and Bk = hb − ha+k . The factors are
given as Fk = ∏k

j=1 A−1
j and Gk = ∏r

j=k B−1
j , where an empty

product is unity. Note that a nonzero interaction Jz is essential.
While the detailed derivation is provided in the Supplemen-
tal Material [52], each term is conceptually illustrated in
Fig. 2(a). The diagrams of 	Eβ and 	Eδ describe the lowest
order of V̂ that moves an excitation site by site to sweep
through the intervening FM area and 	Eγ includes all such
hopping configurations with two excitations.

The fastest scrambling in the lowest-order picture is de-
scribed by a half number of pseudospins each of which maps
to a two-site block of a staggered spin pair as sketched in
Fig. 2(b). The lowest order is given by the r/2 number of
the V̂ operators applying exclusively on each block for the
simultaneous flip of the two opposite spins. The resulting
two-level structure leads us to define the pseudospin Pauli
operators X̂ and Ẑ in the basis of |⇑〉 ≡ |↓↑〉 and |⇓〉 ≡ |↑↓〉
for the reduced Hilbert space. We choose the AF state to
evaluate JAF

eff , but all configurations filled up with staggered
spin pairs provide the equivalent results.
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FIG. 2. Schematic diagrams of the lowest-order contributions to
the effective interactions. (a) In the slowest scrambling, the lowest
order is given by the minimum sequential moves of the excitation
covering the intervening spin-polarized region. (b) In the fastest
scrambling across the blocks of staggered spin pairs, the lowest order
only involves spin exchanges within the block, mapping the block
into one Ising pseudospin.

At the lowest order, JAF
eff in the XXZ chain is exactly

reproduced by the Ising chain of a half length l = r/2,

ĤIsing = −Jz

2

l∑
k=0

ẐkẐk+1 +
l+1∑
k=0

	kẐk + J
l∑

k=1

X̂k, (8)

where 	0 = ha, 	l+1 = −hb, and 	k = ha+2k − ha+2k−1 for
k = 1, . . . , l . The perturbation part is J

∑
i X̂i. The FM state

corresponds to the AF state of the XXZ chain and X̂0,l+1

replaces σ̂ x
a,b for the OTOC operators. While we cannot find

an analytic formula of JAF
eff , the half length chain significantly

reduces the numerical cost for the full perturbation calcula-
tion [52]. Since nonzero Jz is essential in both JFM

eff and JAF
eff ,

hereafter we express the quantities in a dimensionless form as
t̃ ≡ Jzt , h̃ ≡ h/Jz, J̃ ≡ J/Jz, and J̃eff ≡ Jeff/Jz.

Figure 3 presents the numerical results based on Eqs. (7)
and (8), which verifies the logarithmic propagation of the
fronts of the slowest and fastest scrambling but also exam-
ines the decay length scale of the effective interaction. The
disorder-averaged OTOC plotted as a function of r−1 ln t̃ ex-
hibits an increase that gets sharper as r increases, assuring
the strictly logarithmic slopes of the light cone. The shift
g ≡ q ln J̃ comes from J̃eff ∝ J̃qr , where q = 2(1) is for the
FM(AF) state.

Assuming the form of J̃eff∼ exp(−r/ξ ), we extract the
inverse decay length as ξ−1 = −r−1 ln |J̃eff |. The distribution
of ξ−1 is increasingly peaked as r increases, indicating a
well-defined 〈ξ−1〉av. The skewed shape that we observe here
at the particular states is different from the log-normal shape
previously reported at infinite temperature [59]. In addition,
we find that 〈ξ−1〉av follows the characteristic behavior with
varying parameters as

〈ξ−1〉av = −〈ln |J̃eff |〉av

r
∼

{
ln(h̃/J̃ )2 for FM,

ln(h̃κ/J̃ ) for AF.
(9)

One can directly extract the behavior for the FM state from
Eq. (7) giving J̃FM

eff ∼ (J̃/2h̃)2r after rewriting it in the dimen-
sionless form. For the AF state, we determine the exponent
κ ≈ 1.55 numerically.

FIG. 3. Slowest and fastest scrambling in the lowest-order per-
turbation theory for the strongly disordered XXZ chain. The disorder
average 〈C(r, t )〉av, the distribution of ξ−1 ≡ −r−1 ln |J̃eff |, and the
decay length 〈ξ−1〉av are computed at h/Jz = 20 for the (a)–(c) FM
and (d)–(f) AF states. The constant g is set to be 2 ln J̃ (FM) and ln J̃
(AF).

Our lowest-order formulations developed above in 1D can
be readily extended to 2D by considering the multiple paths
of the same Manhattan distance between the two sites a
and b, namely the number of edges to hop along the path,
composing the nonvanishing lowest-order terms. Below we
describe the calculations of Jeff at the FM and AF states in
Lx × Ly lattices with the two operators being located at the
opposite corners as sketched in Fig. 4. We remove bound-
ary artifacts by adding the FM or AF environments to the
system.

For the FM state, the lowest order is determined as
2r(a, b) = 2(Lx + Ly − 3), which depends on the number of
sites along the shortest paths between a and b. The 2D variant
of Eq. (7) is written in a dimensionless form as

J̃FM
eff = 2

(
J̃

2h̃

)2r∑
(x1→x2 )

′
F̃ 2

x1

Ãx1 + B̃x2

Ãx1 + B̃x2 − h̃−1
G̃2

x2
, (10)

where Ãx = (h̃a − h̃x)/h̃ and B̃x = (h̃b − h̃x)/h̃. The primed
sum runs over directed links (x1 → x2) on any shortest path
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FIG. 4. Logarithmic light cones in the 2D strongly disordered XXZ model. The scrambling time t∗ is computed at J/Jz = 0.001 and
h/Jz = 20 for the (a) FM and (b) AF states, corresponding to the slowest and fastest scrambling, respectively. In the (L + 1) × L lattices, the
σ̂x operators of OTOC are located at the diagonal corners with separation r = 2(L − 1). The schematic diagram in the insets shows an example
of a path contributing to the lowest-order perturbation calculation.

from a to b. The factors F̃ and G̃ are defined as

F̃x =
∑

w(a,x)

∏
y∈w

a
Ã−1

y , G̃x =
∑

w(b,x)

∏
y∈w

b
B̃−1

y ,

where the sum runs over every shortest path w(x0, x) con-
necting x0 and x and

∏a(b) excludes a(b) in the product over
every site y along the path w. The squared factors consider
the excitation moving forward and backward along different
paths unlike in 1D.

For the AF state, we consider (L + 1) × L lattices, where
l ≡ L − 1 pairs of the up-and-down spins exist along any
shortest path between a and b, giving the lowest order r = 2l .
Unlike the FM case, the lowest-order contributions can be sep-
arated into each path because a string of the hopping operators
for paired spin flips must stay on the same path. For a path
w ≡ (a, x1, x2, . . . , x2l , b), the contribution is then given by
the Ising chain with path-dependent parameters, which can be
expressed as ĤIsing[�(w)] with 	0 = ha, 	l+1 = −hb, and
	k = hx2k − hx2k−1 + 2J , where 2J is from the AF surround-
ings. Summing over all paths, we write J̃AF

eff as

J̃AF
eff (a, b) =

∑
w

J̃AF
eff [ĤIsing[�(w)]], (11)

which involves an exponentially growing number of terms as
L increases but allows us to go well beyond the system-size
limit of the exact diagonalization and the numerical perturba-
tion calculations for arbitrary orders.

Figure 4 shows 2D LLCs from the scrambling time and the
disorder-averaged OTOC measured at the FM and AF states in
the 2D XXZ model in the strong disorder and weak hopping
limit. Since the number of the shortest paths scales as 4l ,
a rough estimate ignoring disorder correlations between the
paths suggests J̃AF

eff ∼4l e−2l/ξ from Eq. (11), implying LLC
for 〈ξ−1〉av � ln 2. While our calculations are based on the
lowest-order perturbation theory, the numerical tests show ex-
cellent agreement with the exact diagonalization at small L’s

for the FM state and with the full perturbation calculations up
to the fourth lowest order for the AF state. Our observation of
LLC in the strongly disordered XXZ model is also consistent
with the previous evidence of LLC reported in the 2D bosonic
system with the l-bit construction at the strong disorder and
weak interaction limit [29].

In conclusion, our perturbation formulation reveals the
peculiar structure of slow information propagation in the
paradigmatic XXZ model in the deep MBL regime. The slow-
est and fastest scrambling identified in the discrete structure
of OTOC characterizes the drastic difference between the
spin-polarized and the Néel states of the intervening spins
prepared for the OTOC or DEER measurements. We have
derived the closed-form expression of the effective interaction
for the slowest scrambling and found the effective Ising chain
of a half length describing the fastest scrambling, presenting
the sharp logarithmic upper and lower bounds of the light
cone.

Our observation of LLCs extends the variety of the practi-
cal MBL signatures previously reported in finite 2D systems,
although the instability of 2D MBL in the asymptotic limit
goes beyond our method. A challenging direction for future
study may include the behavior of OTOC measured across
2D thermal defects and its finite-size effects. On the other
hand, our findings on the distance effectively reduced by half
at the fastest scrambling imply an interesting question on its
l-bit representation. In contrast to the slowest one, the fastest
scrambling involves only the half number of the pseudospins,
proposing to further explore how the mapping to the l-bit
Hamiltonian encodes these system-specific scrambling struc-
tures for the XXZ model.
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