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We study the localization properties of continuously monitored dynamics and associated measurement-
induced phase transitions in disordered quantum many-body systems on the basis of the quantum trajectory
approach. By calculating the fidelity between random quantum trajectories, we demonstrate that the disorder
and the measurement can lead to dynamical properties distinct from each other, although both have a power
to suppress the entanglement spreading. In particular, in the large-disorder regime with weak measurement, we
elucidate that the fidelity exhibits an anomalous power-law decay before saturating to the steady-state value.
Furthermore, we propose a general method to access physical quantities for quantum trajectories in continuously
monitored dynamics without postselection. It is demonstrated that this scheme drastically reduces the cost of
experiments. Our results can be tested in ultracold atoms subject to continuous measurement and open the avenue
to study the dynamical properties of localization, which cannot be understood from the stationary properties of
the entanglement entropy.
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Introduction. Localization is an exotic phenomenon where
a quantum state fails to spread over the entire Hilbert space.
One notable mechanism of localization is the disorder, which
prohibits the system from undergoing chaotic dynamics. For
example, arbitrary weak disorder in noninteracting one- or
two-dimensional systems leads to Anderson localization [1,2],
and many-body localization (MBL) transitions occur when
the disorder strength exceeds a critical value in interacting
systems [3–17]. Recently, MBL has broadened its research
arena to open quantum systems [18–25], where it has been
demonstrated that unique nonequilibrium phenomena emerge,
such as anomalous logarithmic growth of the von Neumann
entropy with the scaling collapse normalized by the dissipa-
tion rate [18].

Yet another mechanism that has recently attracted great
interest is the measurement, which localizes a quantum state
in nonunitary quantum circuits [26–52] and continuously
monitored systems [53–66]. Remarkably, novel quantum phe-
nomena that have no counterpart in a closed system have been
observed: A notable example is the measurement-induced
phase transitions (MIPTs) [26–29,67,68], which are typically
characterized by phase transitions from a volume law to an
area law in the entanglement scaling of the stationary state.
Interestingly, a continuously monitored MBL system can be
conveyed to the area-law entanglement phase with an in-
finitesimal measurement strength [69–73]. However, while
both the disorder and the measurement localize the wave
function and suppress the entanglement spreading, it is still
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not clear whether they exhibit the same localization properties
[74].

In this Letter, we demonstrate that dynamical properties
of localization induced by the disorder and the measure-
ment are distinct from each other in disordered quantum
many-body systems under continuous monitoring. We first
elucidate the whole entanglement phase diagram and associ-
ated MIPTs with respect to the disorder and the measurement
strength. Then, by analyzing the fidelity between ran-
dom quantum trajectories, we find that two dynamically
distinct regimes in the area-law phase appear: The disorder-
dominant measurement-induced area-law (DMAL) regime
and the measurement-dominant measurement-induced area-
law (MMAL) regime (see Fig. 1). We show that the DMAL
regime is characterized by an anomalous power-law decay
of the fidelity. This distinction is further supported by the
long-time dynamics of autocorrelation functions that relax to
a disorder-independent value in the MMAL regime, while the
DMAL regime exhibits slow dynamics reflecting the initial-
state information.

Furthermore, to verify our result in an experimentally ac-
cessible way, we propose a general method to obtain physical
quantities in the continuously monitored dynamics without
postselection. We elucidate that, once jump processes are ob-
served for a single trajectory, we can reproduce the dynamics
by repeating the processes of Hamiltonian evolutions and ap-
propriate unitary operations in a closed quantum system. This
scheme significantly reduces the experimental cost compared
to the postselection of the continuously monitored dynamics.

Measurement-induced phase transitions. We consider dis-
ordered interacting hard-core bosons on a one-dimensional
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FIG. 1. Entanglement phase diagram with respect to the mea-
surement rate γ /J and the disorder strength h/J in the steady state
of the continuously monitored dynamics. Chaotic and MBL phases
are separated at the critical disorder strength hc/J for γ = 0, and
MIPTs at the critical measurement rate γc(h)/J only occur for h <

hc. Though two regimes surrounded by dashed black lines show
the area-law entanglement, their dynamical properties of localization
are distinct from each other, leading to the MMAL and the DMAL
regimes.

lattice subject to open boundary conditions:

H =
L−1∑
j=1

J

2

(
b†

j+1b j + b j+1b†
j

) +
L−1∑
j=1

V nj+1n j +
L∑

j=1

h jn j .

(1)

Here, b j (b†
j) is the bosonic annihilation (creation) oper-

ator satisfying the hard-core constraint b2
j = 0, n j = b†

jb j

is the particle number operator, and disorder hj is ran-
domly chosen from the uniform distribution hj ∈ [−h, h].
Throughout this Letter, we set V = J . Since our aim is to
study the measurement-induced trajectory dynamics in open
quantum systems, we employ the stochastic Schrödinger
equation obeying the marked point process [58,75], which is
given in the time interval [t, t + dt] by

d|ψ (t )〉 =
⎛
⎝−iHeff + γ

2

L∑
j=1

〈L†
j L j〉

⎞
⎠|ψ (t )〉dt

+
L∑

j=1

⎛
⎜⎝Lj |ψ (t )〉√

〈L†
j L j〉

− |ψ (t )〉

⎞
⎟⎠dWj . (2)

Here, 〈· · · 〉 denotes an expectation value with respect to
the quantum state |ψ (t )〉, and Heff = H − iγ

2

∑
j L†

j L j is the
non-Hermitian Hamiltonian with the jump operator Lj = n j ,
which describes continuous measurements of the local par-
ticle number. We note that a discrete random variable dWj

satisfies dWjdWk = δ jkdWj and E [dWj] = γ 〈L†
j L j〉dt , where

E [·] represents an ensemble average over the stochastic pro-
cess. Importantly, as the total particle number is a conserved
quantity, the nonunitary dynamics under Heff is replaced by
the unitary evolution under H upon the normalization of the
state |ψ (t )〉 [58]. In the following, we calculate the exact time
evolution assuming that the initial state |ψ0〉 is prepared in the
Néel state |1010 · · · 〉 at half filling.

Under the quantum trajectory dynamics, the entanglement
is built due to the Hamiltonian evolution, while it is erased

FIG. 2. Half-chain entanglement entropy S̄A (A={ j|1� j�L/2})
in the steady state with respect to L/2 for (a) h/J = 1, (b) h/J = 2,
(c) h/J = 3, and (d) h/J = 5. The legend shows γ /J . The entan-
glement exhibits MIPTs for h < hc, while it immediately undergoes
area-law transitions for h > hc. Steady state is reached at γ t = 1000
in (a)–(c), and γ t = 2000 in (d) with the average over 300×100
realizations. Hereafter, we use the notation “n×m realizations” to
represent that m-trajectory samplings are performed for each n-
disorder sampling.

by the measurement. To obtain entanglement properties and
associated MIPTs in the steady state, we start by calculating
the von Neumann entropy for a subsystem A, which is defined
by

SA = −TrA[ρA ln ρA]. (3)

Here, ρ = |ψ〉〈ψ | is the density matrix of the system, and the
reduced density matrix ρ for a subsystem A is obtained by
tracing out over the complement Ac as ρA = TrAcρ. Figure 2
shows the half-chain entanglement entropy S̄A in the steady
state with respect to subsystem sizes. Here, X̄ = Edis[E [X ]]
with Edis denoting the disorder average. We note that the en-
tanglement entropy shows sufficient convergence with respect
to time, and all physical quantities in the steady state obtained
in this Letter converge with respect to time, trajectory real-
izations, and disorder realizations with sufficient accuracy.
From Figs. 2(a)–2(c), we see that the entanglement exhibits
volume-law to area-law MIPTs as the measurement strength
is increased in the chaotic phase with weak disorder. On the
other hand, in the MBL phase with strong disorder, which
is expected to emerge above the critical value hc/J � 3.6
[5,7,76], it has been discussed that any finite measurements
force the system to undergo area-law entanglement transitions
[69]. We indeed see that the results in Fig. 2(d) show the area-
law entanglement scaling qualitatively well. We note that, in
Ref. [69], area-law transitions of entanglement entropy were
obtained only in the deep MBL phase, which is far above the
critical point given by hc.

To further quantify MIPTs, we calculate the bipartite mu-
tual information IAB between two subregions A and B given
by

IAB = SA + SB − SA∪B. (4)
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FIG. 3. Mutual information ĪAB (A = {1}, B = {L/2 + 1}) with
respect to γ /J in the steady state for (a) h/J = 1, (b) h/J = 2,
(c) h/J = 3, and (d) h/J = 5. Critical points of MIPTs are evaluated
from the peak of ĪAB. Steady state is reached at γ t = 1000 in (a)–(c),
and γ t = 2000 in (d) with the average over 300×100 realizations.

Previous studies have found that the mutual information (4)
exhibits a peak at the critical point of MIPTs with respect
to the measurement rate [29]. Figure 3 shows the mutual
information in the steady state. We note that the choice of
the distance between A and B does not affect the qualitative
argument if they are located at a distance of the order of L;
here, we take A = {1} and B = {L/2 + 1}. As clearly seen
from Figs. 3(a)–3(d), the peak of ĪAB gradually shifts towards
lower γ /J as the disorder strength h/J is increased, and in
the MBL phase, the critical value of MIPTs γc(h)/J becomes
zero irrespective of the disorder strength. From these results,
we have elucidated the phase diagram shown in Fig. 1 (see
Supplemental Material [77] for the quantitative diagram). We
note that previous works on MIPTs in MBL systems have not
obtained the entire phase diagram in Fig. 1 [69–73].

Dynamical properties of localization. Although the station-
ary state displays the area-law entanglement in the greater
part of the phase diagram, it is not clear whether the regime
near the unitary MBL phase (DMAL regime) and the one far
from the unitary phase (MMAL regime) dynamically show the
same property (see Fig. 1). In order to clarify this problem,
we analyze the fidelity that describes the overlap between
independent random quantum trajectories |ψ (t )〉 and |ψ ′(t )〉
for each disorder given by

F (t ) = |〈ψ (t )|ψ ′(t )〉|, (5)

and study its average over disorder and trajectories [78]. We
note that, as the (normalized) states |ψ (t )〉 and |ψ ′(t )〉 in
Eq. (5) are prepared for the same disorder distribution, the
fidelity stays at F (t ) = 1 for γ = 0 if the dynamics starts
from an identical initial state. Remarkably, we find that the
fidelity in the DMAL regime F̄MBL(t ) reveals an anomalous
power-law behavior for times γ t � 1 before saturating to the
steady-state value as

F̄MBL(t ) ∝
(

1

γ t

)α

. (6)

In Fig. 4, we have calculated the dynamics of the fidelity in the
DMAL regime, where we have set h/J = 10 and γ /J = 0.05.

FIG. 4. Log-log plot of the dynamics of the fidelity F̄ (t ) with
respect to γ t in the DMAL regime. The shaded region, which is a
guide to the eye, shows the power-law behavior of the fidelity. The
parameters are set to h/J = 10 and γ /J = 0.05, and the disorder
average is taken over 300 realizations. For each fixed disorder, we
take 50 pairs of trajectories with respect to |ψ (t )〉 and |ψ ′(t )〉.

We have obtained the exponent α from the power-law fitting
of the data (taken in the time interval 200 � γ t � 2000) as
α = 0.55, 0.74, 0.93, 1.07 (±0.01) for L = 8, 10, 12, 14, re-
spectively. As shown in Fig. S5 in the Supplemental Material,
the exponent α seems to be proportional to L for small sys-
tem sizes. On the other hand, as we depart from the DMAL
regime, the numerical results demonstrate that this power-law
dependence of the fidelity is smeared and finally vanishes in
the MMAL regime [77]. This is because the time that the
power-law decay should end becomes shorter than the typical
timescale of the system such as 1/J .

Thus, we demonstrate that, though both the disorder and
the measurement localize the wave function in the steady
state, the speed of relaxation dynamics in the DMAL regime is
slow enough to exhibit the power-law behavior of the fidelity.
We also find that the overlap between random quantum tra-
jectories in the steady state is suppressed by the disorder and
the measurement, while the fidelity is made to be zero in the
limit L → ∞ in the entire phase diagram [77]. These results
conclude that the dynamical property in the DMAL regime is
distinct from that in the MMAL regime.

We note that Eq. (6) is reminiscent of the logarithmic
growth of the von Neumann entropy in the MBL system
following the Lindblad master equation [18]. In Ref. [18], it is
pointed out that the von Neumann entropy of the whole system
SLind

MBL(t ) exhibits the logarithmic growth for times γ t � 1
before saturation as Edis[SLind

MBL(t )] ∝ β log(γ t ). As the density
matrix in the Lindblad equation ρLind(t ) is related to that in
the trajectory dynamics ρ(t ) as ρLind(t ) = E [ρ(t )], we find
that the trajectory average of the squared fidelity in Eq. (5) is
given by E [F (t )2] = Tr[ρLind(t )2]. Assuming that the second
Rényi entropy S2(t ) = − log Tr[ρ(t )2] behaves similarly as
the von Neumann entropy, we obtain Edis[log E [FMBL(t )2]] =
−Edis[S2

Lind
MBL(t )] ∝ log(1/γ t )β . If Edis commutes with log and

the squared fidelity displays similar behavior as the fidelity,
we arrive at Eq. (6). We note that β ∝ L

√
J/h is reported

in Ref. [18], and this value is consistent with the fitting
data of the exponent α in Eq. (6), which seems to increase
as we increase the system size L. However, we stress that
E [FMBL(t )] cannot exactly reduce to the quantity calculated
from the averaged dynamics of ρLind(t ).
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FIG. 5. System-size dependence of the autocorrelation function
C̄i(τ ) (i = L/2 + 1) in the long-time regime τ � 1/γ , which takes a
disorder-independent value in the MMAL regime and shows slow re-
laxation reflecting the initial-state information in the DMAL regime.
The legend shows γ /J . The starting point of the autocorrelation is
taken at γ t = 667 in (a)–(c), and γ t = 2000 in (d). We set γ τ = 333
in (a)–(c), and γ τ = 1000 in (d), and take an average over 300×100
realizations for (a) h/J = 1, (b) h/J = 2, and (c) h/J = 3, and
300×50 realizations for (d) h/J = 10.

Furthermore, we study the dynamics of the following auto-
correlation function,

Ci(τ ) = | lim
t→∞〈ψ (t + τ )|ni|ψni (t + τ )〉|, (7)

where |ψni (t + τ )〉 stands for a quantum state that gives the
same realization of quantum jump processes as |ψ (t+τ )〉,
while the particle number operator ni is inserted into
the dynamics at some time t [77]. Here, we note that
the normalization condition of |ψni (t + τ )〉 is given by
|| |ψni (t + τ )〉 || = ||ni|ψ (t )〉||. The autocorrelation function
(7) describes how the particle number operator overlaps with
itself under the dynamics from the steady state. Figure 5
shows the autocorrelation function in the long-time regime
for the weak disorder case [Figs. 5(a)–5(c)] and the strong
disorder case [Fig. 5(d)]. Importantly, we find a character-
istic phenomenon that the long-time autocorrelation takes
the disorder-independent value around C̄i(τ � 1/γ ) � 0.3 in
the MMAL regime for the large measurement rate γ /J . On the
other hand, as shown in Fig. 5(d), we see that the autocorre-
lation function in the DMAL regime with weak measurement
shows a slow relaxation reflecting the information about the
initial Néel state (see the plot for γ /J = 0.05). Here, we
note that, as we take the site i in Ci(τ ) to be i = L/2 + 1,
the dynamics from t = 0 starts from an up spin for L = 8, 12,
and from a down spin for L = 10, 14. The difference between
the relaxation dynamics means that the initial-state informa-
tion in the dynamical overlap of the particle number operator
is smeared faster in the MMAL regime, where the localization
effect caused by the measurement exceeds the one caused by
the disorder. Since the dynamics in the DMAL regime is slow
enough as shown in the power-law decay of the fidelity in
Eq. (6), the slow relaxation of the autocorrelation function

agrees with it. In addition, in the volume-law phase [see
Figs. 5(a)–5(c)], we find that C̄i(τ � 1/γ ) seems to become
zero in the limit L → ∞. Since the eigenstate thermalization
hypothesis [79] guarantees Edis[Ci(τ → ∞)] → 0.25 under
the unitary dynamics with γ = 0 in the chaotic phase, it is
surprising that any finite measurement immediately changes
the value of C̄i(τ � 1/γ ) to zero. To analyze the phenomena
in detail, we have further calculated C′

i (τ ) = | limt→∞〈ψ (t +
τ )|ψni (t + τ )〉| and found that the behavior of C̄′

i (τ � 1/γ ) is
qualitatively similar to that of C̄i(τ � 1/γ ) (see Supplemen-
tal Material [77] for detailed results). Thus, we conclude that
the behavior shown in Fig. 5 stems from that of the overlap
between the trajectories |ψni (t + τ )〉 and |ψ (t + τ )〉, though
the detailed analysis is left for future work.

Accessing physical quantities without postselection. Gen-
erally, to experimentally realize the trajectory dynamics, we
need to postselect special measurement outcomes so as to
collect the trajectories that reproduce the same jump processes
(see below). However, under continuously monitored dynam-
ics, such experiments require an extremely large number of
trials including the factor [1/(γ L	t )]N×LN for a single quan-
tum trajectory, where γ L	t =: ε  1 represents the accuracy
of reproducing the same jump timing and N is the number
of quantum jumps. To eliminate this factor, we focus on the
fact that

∑
i L†

i Li = ∑
i ni is a conserved quantity under the

measurement Li = ni and propose a general way to realize
the trajectory dynamics without postselection [67,80–86] (see
Supplemental Material [77] for details).

The stochastic dynamics (2) is constructed from
the unitary time evolution described by the Hermitian
Hamiltonian (1) and the measurement process given
by the particle number operator Li = ni. Then, the
evolved state for a single quantum trajectory is written as
|ψ (t )〉 ∝ e−iH (t−tN )niN e−iH (tN −tN−1 )niN−1 · · · e−iHt1 |ψ0〉, where
{t j, i j} ( j = 1, . . . , N) is a set of the time and the site of
quantum jump processes. Importantly, by using this fact and
that the particle number operator is given by ni = σ z

i /2 + 1/2,
where σ z

i is the Pauli matrix, we can decompose the physical
quantities into a set of terms including a finite number of
σ z

i operators as follows. For example, the fidelity (5) is
constructed from terms such as

〈ψ0|eiHt1σ z
i1

eiH (t2−t1 ) · · · e−iH (t ′
2−t ′

1 )σ z
i′1

e−iHt ′
1 |ψ0〉, (8)

where {t ′
j, i′j} ( j = 1, . . . , N ′) is a set of jump processes cor-

responding to |ψ ′(t )〉 and at most N + N ′ number of σ z
i

operators appear. Then, once the jump processes {t j, i j} and
{t ′

j, i′j} are obtained, we can reproduce the expectation value
(8) by evolving the state under the Hermitian Hamiltonian H
and applying a σ z unitary operation in a closed system. We
note that, as the Rényi entropy has been experimentally ob-
served by using the SWAP operation [87–90], the above method
is readily applicable to obtain the entanglement entropy that
determines MIPTs. Thus, we can obtain the physical quanti-
ties discussed in this Letter without postselection [67,80–86]
and can significantly reduce the cost stemming from the factor
(1/ε)N×LN .

Conclusion. We have elucidated that dynamical properties
of localization induced by the measurement and the disorder
are distinct from each other. In particular, in the large-disorder
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regime with weak measurement, the dynamics of the fidelity
is highlighted by the anomalous power-law decay. Our results
are readily observed in ultracold atoms, by first combining
the off-resonant probe light and the quantum-gas microscopy
to realize the continuously monitored dynamics [91], and
then applying our postselection-free probe method without
dissipation. It should be noted that there has been a heuristic
argument regarding the existence of the MBL phase in the
thermodynamic limit [76]. However, we emphasize that meso-
scopic systems such as ultracold atoms in an optical lattice
have experimentally demonstrated the existence of chaotic-
MBL transitions [17]. Thus, our results are still relevant to
experiments regardless of the existence of the MBL phase
in the thermodynamic limit. Regarding the finite-size effect,
although our calculation is restricted to small system sizes due
to numerical limitation, it is important to study the precise
system-size dependence of the power-law exponent of the
fidelity. Though it is numerically difficult to find critical points

in the dynamics of autocorrelation functions, it deserves to
study how MIPTs of entanglement are related to them. More-
over, as a similar phase diagram has been obtained in MBL
of Liouvillian eigenstates [23], it is of interest to investigate
its relation to MIPTs. Last but not least, since localization
properties of monitored free fermions that exhibit Anderson
localization have been recently studied [74,92,93], it is also
interesting how dynamical properties in monitored MBL sys-
tems are related to those in monitored Anderson localized
systems.
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