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Finite-size corrections to defect energetics along one-dimensional configuration coordinate
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Recently, effective one-dimensional configuration coordinate diagrams have been utilized to calculate the line
shapes of luminescence spectra and nonradiative carrier capture coefficients via point defects. Their calculations
necessitate accurate total energies as a function of configuration coordinates. Although supercells under periodic
boundary conditions are commonly employed, the spurious cell size effects have not been previously considered.
In this study, we have proposed a correction energy formalism and verified its effectiveness by applying it to a
nitrogen vacancy in GaN.
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Introduction. Point defects are ubiquitous in solids, and
they play important roles in many fundamental physics
(e.g., superconductors [1] and topological materials [2]) and
practical applications (e.g., solar cell absorbers [3] and light-
emitting diodes [4]). To better understand and even predict the
point defect properties, first-principles calculations have been
routinely used over the past few decades [5]. Recently, the
line shapes of luminescence spectra [6,7] and carrier capture
coefficients [8–11] via point defects have been calculated
from first principles. The key approximation in these calcu-
lations is to simplify the defect-related phonon modes to one
effective mode [8] that is parallel to the distortion of the defect
geometry when gaining or losing an electron. Total energies as
a function of such a one-dimensional (1D) configuration are
schematically described with a configuration coordinate (CC)
diagram as shown in Fig. 1.

To accurately determine the formation energies of charged
defects using supercells under periodic boundary conditions
(PBCs), it is necessary to account for finite cell size errors that
result from spurious electrostatic interactions. Formalisms
have been developed for making such corrections, and the
Freysoldt-Neugebauer–Van de Walle (FNV) method [12] is
currently recognized as the most advanced approach. We have
expanded the FNV method to accommodate anisotropic ma-
terials with atomic relaxation (eFNV) [13]. Optical transition
levels via point defects, also known as vertical transition (VT)
energies, can be computed assuming that the atomic config-
uration remains unchanged during the electron transitions, in
accordance with the Franck-Condon principle [14,15]. Their
calculations require a distinct correction methodology, for
which we have proposed a method termed the GKFO method
[16]. Falletta et al. have also reported a comparable correction
energy from a different viewpoint [17].

So far, when calculating the CC diagram, all the energies
along the CC were constantly shifted by the correction en-
ergies obtained at the ground state using the FNV method.
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Unfortunately, this approach is incorrect. To understand why,
let us begin by defining some notation.

The atomic configuration R from the relaxed structure at
charge q to the relaxed structure at charge q + �q (�q = ±1)
is denoted as Rq→q+�q(α), where the structure is linearly
interpolated or extrapolated in a ratio of α. When α = 1, the
atomic configuration corresponds to the relaxed structure with
charge q + �q. The defect state at charge q and configuration
Rq→q+�q(α) is denoted as (q, Rq→q+�q(α)), and its energy as
E (q, Rq→q+�q(α)). We also define its relative energy with
respect to E (q, Rq→q+�q(0)) as �E (q, Rq→q+�q(α)) (see
Fig. 1).

In the case of q = 0 and �q = +1, E (0, R0→+1(0)) does
not require any electrostatic correction. However, when, e.g.,
α = 1, the neighboring ions move slightly as if +1 charge is
located at the defect site. Such ion distortion occurs linearly
with respect to α and is effectively regarded as a polarization
charge [17], which interacts with its images under PBCs and
requires energy corrections depending on α. Our objective is
to develop a formalism for correcting these energies and to
verify its effectiveness.

To obtain the correction energy for �E (q, Rq→q+�q(α))
(�Ecor), we introduce a virtual state (q + α�q, Rq→q+�q(α)),
in which the ionic dipoles are exactly balanced with the defect
charge q + α�q. While computing such a state explicitly is
computationally demanding, it is not necessary in the final
formulation. �Ecor is the sum of the (i) eFNV and (ii) GKFO
correction energies, as illustrated in Fig. 1. Initially, we con-
sider the cubic system and later generalize it.

U q
ε is the point-charge (PC) correction energy for charge

q screened by a dielectric constant ε, and Cq
ε is an alignment

constant chosen such that the short-range potential decays to
zero far from the defect after removing the long-range poten-
tial caused by charge q and screened by ε (see Refs. [12,13]).
As derived by Komsa et al. [18], the alignment term can be
generally written as

Cq
ε = 2π

∫
dr3�ρqr2

εL3
, (1)
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where L is the side length of the supercell, and �ρq is the
defect charge distribution modified by adding charge q.

The correction energies for the relaxed structures with
charge q and q + α�q are then expressed in the eFNV
approach as U q

ε0 − qCq
ε0 and U q+α�q

ε0 − (q + α�q)Cq+α�q
ε0 , re-

spectively. Here, ε0 is the static dielectric constant, which is
the sum of the ion-clamped (ε∞) and ionic (εion) dielectric
constants. The correction energy for route (i) is then described
as

�E (i)
cor = U q+α�q

ε0
− U q

ε0
− [

(q + α�q)Cq+α�q
ε0

− qCq
ε0

]
.

(2)

Route (ii) corresponds to the VT, where the charge transi-
tions from q + α�q to q, and it is corrected with the GKFO
method as follows:

�E (ii)
cor = − 2α�q

q + α�q
U q+α�q

ε0
+ U −α�q

ε∞

−
(

− α�qC−α�q
ε∞ − α�qCq+α�q

ε0

+ ε∞
ε0

(q + α�q)C−α�q
ε∞

)
. (3)

Here, C−α�q
ε∞ is an alignment constant caused by introducing

additional charge −α�q without altering the atomic configu-
ration Rq→q+�q(α) [16].

The sum of the PC correction terms can be expressed as

�EPC
cor = U −α�q

ε∞ − U −α�q
ε0

(4)

(see Supplemental Material [19] for the detailed derivation).
Because �q = ±1 and the sign of �q is irrelevant for U −α�q,
�EPC

cor depends on neither initial charge q nor �q but on α.
Note, however, that �Ecor represents the additional correction
to the relat ive energy with respect to the relaxed structure,
and the total correction energy is the sum of �Ecor and the
FNV correction energy to the relaxed structure, where the PC
term depends on q2.

The summation of the alignment terms is written as

�E align
cor = − (q + α�q)Cq+α�q

ε0
+ qCq

ε0

+α�qC−α�q
ε∞ + α�qCq+α�q

ε0

− ε∞
ε0

(q + α�q)C−α�q
ε∞ . (5)

When we define εeff as 1/εeff = 1/ε∞ − 1/ε0, �E align
cor is

found to be α�qC−α�q
εeff (see Supplemental Material [19] for

details of the derivation). Thus, �Ecor is expressed as

�E cor = U −α�q
εeff

− (−α�q)C−α�q
εeff

. (6)

The obtained �E cor is simply estimated by considering the
effective charge −α�q screened by an effective dielectric
constant εeff . This can be easily extended to the anisotropic
systems by replacing εeff with the tensor form, ε̄eff . Fur-
thermore, it is applicable to the anharmonic potential energy
surface [9] because the ionic displacement distance for the
screening depends linearly on α.

To verify the effectiveness of the correction formalism in
Eq. (6), we have calculated the total energies of the nitrogen
vacancy (VN) in GaN. To demonstrate that the initial charge

FIG. 1. Schematics of the configuration coordinate diagram be-
tween charge q and q + �q, where �q = ±1. The black circles
depict energies of structures relaxed at each charge, whereas the red
circles represent those relaxed at different charges. The blue circles
denote the energy in virtual state (q + α�q, Rq→q+�q(α)) (see the
text for details). The correction energy for �E (q, Rq→q+�q(α)) is
equal to the sum of correction energies for routes (i) and (ii).

state does not affect �Ecor, we calculated the energies at
q = +2 along the CC to the structure at q = +3. First, we
confirm that the conventional eFNV method works well for
calculating the formation energy of V +2

N [E (V +2
N )] in GaN,

especially when using the 300-atom supercell, as shown in
Fig. 2(a).

In Figs. 2(b) and 2(c), we present the atomic site potentials
caused by V +2

N at two different configuration coordinates,
namely α = 0.5 and 1.5, in the 576-atom supercell. Despite
having identical charge q = +2, a significant difference in the
potential variation is observed between the two coordinates.
The atomic site potentials calculated from a charge −α�q,
where �q = +1, at the defect site screened by ε̄eff are also
displayed. These potentials adequately reproduce tendencies
of the atomic site potentials in the region far from the defect,
leading to an estimation of C−α�q

εeff .
Figure 2(d) presents �E (2, R2→3(1.5)) of V +2

N as a func-
tion of the number of atoms in the pristine supercell (Natoms).
When applying the constant energy correction irrelevant to the
CC that corresponds to “Uncorrected” in this Letter, there are
noticeable finite-cell size errors. These errors are effectively
eliminated when �Ecor in Eq. (6) are applied, thereby validat-
ing our formalism. As shown in Fig. 2(d), the alignment terms
do not exert a significant effect, meaning that the ionic dipoles
that screen the additional defect charge do not appreciably
alter the defect charge.

Figure 2(e) depicts �E (2, R2→3(α)) with and without
corrections, as a function of the displacement fraction α.
As Eq. (6) suggests, the finite-size errors are predominantly
dependent on α2. When computing the nonradiative carrier
capture coefficients, the position at which the potential en-
ergy surfaces of two states intersect has a significant effect
on the capture rate. Such intersections can occur at values
of α greater than 2, as exemplified by the carbon impu-
rity at the nitrogen site in GaN [8]. Hence, it is likely that
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FIG. 2. (a) Relative formation energies of V +2
N in GaN without any corrections, with the PC corrections, and with the eFNV corrections as a

function of the supercell size. The zero-energy value is set to the energy corrected with the eFNV method at the largest supercell. (b),(c) Atomic
site potentials caused by V +2

N at (b) (2, R2→3(0.5)) and (c) (2, R2→3(1.5)) in the 576-atom supercell that are calculated by subtracting the
potentials in the supercell containing V +2

N at (2, R2→3(0)). Blue marks are the electrostatic potentials caused by periodic point charges −α�q
and background charge screened by an effective dielectric tensor, while red crosses are their differences from the atomic site potentials. The
vertical dashed lines indicate the radius of the sphere in contact with the supercell. The averaged potential difference far from the defect
(C−α�q

εeff
) is evaluated outside of the sphere (see Ref. [13] for details). (d) The supercell size dependence of �E (2, R2→3(1.5)) without any

corrections, with PC corrections [Eq. (4)], and with corrections in Eq. (6). (e) �E (2, R2→3(α)) as a function of α without and with corrections
in Eq. (6) calculated using the 300-atom supercell. Since the contributions of the alignment terms are only a few meV, the PC correction results
are nearly identical to the fully corrected results. (f) �Q of VN in GaN from +2 charge to +3 charge (see the text for details). In (d) and (e),
the zero-energy values are set to the energies corrected with Eq. (6) at the largest supercells.

the intersection coordinates and energies are significantly
modified by applying �Ecor. It is also worth noting that a
miscalculation of 0.1 eV in the energies along the CC can
result in a tenfold error in the nonradiative carrier capture
coefficients [8].

As shown in Figs. 2(a) and 2(d), E (V +2
N ) and

�E (2, R2→3(1.5)) are effectively corrected even using
the 72-atom supercell. However, the difference of the
configuration coordinate Q (see the Method section) between
charge q and q + �q (�Q) is not accurately estimated using
the 72-atom supercell as shown in Fig. 2(f). This might also
be related to the fact that the 72-atom supercell calculation
of E (V +2

N ) shows a different tendency in Fig. 2(a). Because
errors in �Q have a significant impact on the calculations of
the line shapes of luminescence spectra and carrier capture
coefficients, we generally recommend using larger supercells,
particularly to improve �Q.

The effective dielectric constant εeff quantifies the polar-
ization resulting from ion displacement. It is related to the
long-range electron-phonon coupling, and it is commonly
used when discussing self-trapped polarons [20]. In general,
decreasing εeff leads to an increase in Ecor. Because εeff =
ε∞ + ε2

∞ /εion, εeff decreases as ε∞ decreases and εion in-
creases. To assess the potential magnitude of the error in

realistic materials resulting from neglecting �Ecor in Eq. (6),
we calculated εeff for 931 oxide materials for which we cal-
culated the oxygen vacancies in our previous work [21], using
the spherical averages of ε∞ and εion. The smallest εeff , which
is 2.5, is found in CsLi5(BO3)2, where the averaged ε∞ and
εion are 2.1 and 10.8, respectively. Then, �Ecor for the oxygen
vacancy at state (1, R1→2(α = 2)) is estimated to be 1.2 eV
even using the very large 448-atom supercell.

We can estimate how much the energy correction modifies
the effective phonon frequency, which is given by the
equation �2 = ∂2E

∂Q2 in the harmonic approximation [6,8].
Replacing � with � + �cor, where �cor is the corrected
frequency, and E with E + �Ecor, and assuming that
�cor � � and the PC term is dominant in Eq. (6), we obtain

�cor = U �q
εeff

�(�Q)2 (7)

(see Supplemental Material [19] for details of the
derivation). For the case of (2, R2→3(α)) for VN, we find
h̄�cor = 3.28 meV when using the 72-atom supercell, which
is 14.5% of the uncorrected h̄�. Note that, because h̄�cor

is approximately proportional to U �q
εeff , its convergence as a

function of Natom is slow if �Ecor is not applied.
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To conclude, we derived the correction formalism for
the defect energies along the 1D CC, which has not been
considered so far. The correction energy is described with
the effective charge −α�q and effective dielectric constant
εeff . Its effectiveness has been verified with a nitrogen va-
cancy in GaN. Since our correction method is automatically
applied with negligible computational cost compared to first-
principles calculations, we believe that it will be routinely
used in the future.

Method. All the calculations were performed using the pro-
jector augmented-wave (PAW) method [22,23] implemented
in VASP [24]. We adopted the HSE06 hybrid functional [25].
A fraction of Fock exchange parameter was set to 0.31 to
reproduce the experimental band gap [8]. See Supplemental
Material [19] for the computational details. The harmonic
phonon frequencies were calculated using NONRAD [26]. All

the VASP input settings were generated with the VISE code
(version 0.7.0) [27], while the processing related to defects
was done with PYDEFECT [28]. The difference of the config-
uration coordinate �Q is defined as

√∑
α Mα · �R2

α , where
Mα and �Rα are the atomic mass and the displacement vector
from the equilibrium position of atom α, respectively [6,8].
The ion-clamped dielectric constants (ε∞) for 931 oxides
were obtained from the long-range wavelength limit in the real
part of dielectric functions calculated using the dielectric de-
pendent hybrid functional [29] (see Ref. [30] for details). The
ionic contributions (εion) were calculated using the density
functional perturbation theory [31] (see Ref. [21] for details).
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