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Hallmarks of orbital-flavored Majorana states in Josephson junctions based on oxide nanochannels
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We investigate the topological properties of a Josephson junction obtained by constraining a two-dimensional
electron gas at the oxide interface to form a quasi-one-dimensional conductor. We reveal an anomalous critical
current behavior with a magnetic field applied perpendicular to the Rashba spin-orbit one. We relate the
observed critical current enhancement at small magnetic fields with the appearance of orbital-flavored Majorana
bound states (OMBSs) pinned at the edges of the superconducting leads. Signatures of OMBSs also include
a sawtooth profile in the current-phase relation. Our findings allow us to recognize fingerprints of topological
superconductivity in noncentrosymmetric materials and confined systems with a spin-orbit interaction. They also
explain recent experimental observations for which a microscopic description is still lacking.
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Introduction. Topological superconductivity (TSC) is an
exotic phase of matter in which the fully gapped super-
conducting bulk hosts Majorana surface states protected by
non-Abelian statistics and/or symmetries. In condensed mat-
ter systems, the realization of TSC requires the simultaneous
presence of an s-wave superconducting order (SC) accompa-
nied by the breaking of inversion and time-reversal symmetry.
Inversion symmetry breaking might occur in noncentrosym-
metric materials and/or confined systems exhibiting large
Rashba spin-orbit coupling (SOC). Time-reversal symmetry
breaking can be induced by a magnetic order of intrinsic
origin or triggered by external magnetic fields. So far, research
on TSC has been mainly focused on platforms realized by
semiconducting nanowires proximitized by a conventional su-
perconductor [1–10], although other materials and platforms
have been recently proposed [11–16].

Several theoretical proposals suggested that the two-
dimensional electron gases (2DEGs) formed at the interface
between transition metal oxides, such as LaAlO3 and SrTiO3

(LAO/STO) [17–19], are promising candidates for the real-
ization of topological quantum gates, both in 2D [20] and
in quasi-one-dimensional (1D) models [21,22]. These ideas
are based on the extraordinary properties of these materials
and, in particular, the simultaneous presence of strong SOC
[23] and 2D SC [24], both electrically tunable [25]. All these
phenomena are related to interfacial orbital degrees of free-
dom, which dominate the oxide 2DEGs physics [26].
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The evidence of TSC in oxide 2DEGs has remained elusive
up to now. Suggestions in this direction come from the anoma-
lous dependence of the Josephson current on the magnetic
field in nanobridges at LAO/STO interfaces [27,28]. One of
the most intriguing results is an anomalous enhancement of
the critical current pattern, Ic(H ), as a function of a mag-
netic field H orthogonal to the 2DEG plane. An asymmetry
with respect to the direction of the applied magnetic field,
Ic(H ) �= Ic(−H ), is also reported. The anomalous pattern was
interpreted as a possible signature of an unconventional com-
ponent of the order parameter, giving rise to three-channel
current with intrinsic phase shifts [28]. On the other hand, a
symmetric critical current pattern with a strong enhancement
at small magnetic fields has also been observed in a Josephson
junction formed by an InAs nanowire proximitized by Ti/Al
superconducting leads [7]. In the latter case, it was argued
that the observed critical supercurrent increase is compatible
with a magnetic field-induced topological transition. Evidence
of critical current enhancements as a function of magnetic
fields has also been reported for Josephson junctions with
ferromagnetic barriers [29,30] and based on gold nanowires
[31]. Despite the relevance of these experimental findings,
a multiband microscopic model demonstrating the possible
connection between the anomalous features of the Josephson
current and the topological phase transition is still missing.

Here, we study the transport properties of an oxide-based
Josephson junction, made by constraining the 2DEG at the
LAO/STO (001) interface [32], to form a quasi-1D system.
Our main result is that the strong enhancement of the critical
current with applied magnetic field can be associated with the
appearance of Majorana bound states with an orbital-flavored
internal structure [33], lacking a counterpart in a single-band
model. To argue our conclusions, we match the transport
properties of the junction with a microscopic spectral analysis
of the system. We find that the maximum of the critical current
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pattern at finite magnetic field corresponds to a gap closing in
the energy spectrum with the appearance of orbital-flavored
Majorana bound states (OMBSs), as signaled by the Majorana
polarization analysis. At the same time, the current-phase
relations (CPRs) cross over a sawtooth profile. In the presence
of OMBSs, we observe nonsinusoidal CPRs and an increasing
of the critical current with increasing magnetic fields. Our
findings demonstrate that the experimental evidence of the
anomalous Josephson pattern discussed in Refs. [28,34] is a
strong hallmark of topology.

Theoretical model. We consider a short superconductor-
normal-superconductor (SNS) junction realized by constrain-
ing the 2DEG at the LAO/STO (001) interface, to form a
quasi-1D system. The latter condition is experimentally real-
izable via appropriate gating of the system. In the absence of
superconductivity, the system is described by the nanochannel
Hamiltonian H = H0 + HSO + HZ + HM with

H0 =
∑

j

�
†
j

(
h0

on ⊗ σ0
)
� j + �

†
j

(
h0

hop ⊗ σ0
)
� j+1 + H.c.,

(1)

HSO = �S0

∑

j

�
†
j (lx ⊗ σx + ly ⊗ σy + łz ⊗ σz )� j, (2)

HZ = −i
γ

2

∑

j

�
†
j (ly ⊗ σ0)� j+1 + H.c., (3)

HM = Mx

∑

j

�
†
j (lx ⊗ σ0 + l0 ⊗ σx )� j, (4)

where we use the t2g orbitals (dxy, dyz, and dzx), while
� j = (cyz,↑, j, cyz,↓, j, czx,↑, j, czx,↓, j, cxy,↑, j, cxy,↓, j )T is a vector
whose components are the electron annihilation operators for
a given spin, orbital, and position. The Hamiltonian terms
H0, HSO, HZ , and HM represent the kinetic energy, the spin
orbit, the inversion-symmetry breaking, and the Zeeman in-
teraction [22]. We consider a nanochannel oriented along
the x direction, for which the topological phase is stabilized
by a magnetic field perpendicular to the orientation of the
orbital Rashba-like field [22,33]. σi are the Pauli matrices,
while σ0 indicates the identity matrix. lx, ly, and lz are the
projections of the L = 2 angular momentum operator onto the
t2g subspace. The analytic expressions of such matrices with
those of the hopping Hamiltonians h0

on and h0
hop are reported

in the Supplemental Material [35] (see also Refs. [36–39]
herein). According to the ab initio estimates and on the basis
of spectroscopic studies [40–42], in agreement with Ref. [22],
we assume t1 = 300, t2 = 20, �SO = 10, �t = −50, and γ =
40 (in units of meV). t1 and t2 are the x-directed intraband
hopping couplings, respectively, for the yz and zx/xy bands,
appearing in H0. �t denotes the crystal field potential induced
by a symmetry lowering from cubic to tetragonal. The latter
is also related to inequivalent in-plane and out-of-plane tran-
sition metal–oxygen bond lengths, which lowers the on-site
energy of the xy band. This set of parameters is also represen-
tative of a physical regime with the hierarchy of the electronic
energy scales such that |�t | > γ > �SO.

In order to introduce superconducting correlations and de-
fine the SNS junction geometry, we add to the normal part of

the Hamiltonian H the mean-field pairing contribution,

HP =
∑

j,α

�( j, q) c†
j,α,↑c†

j,α,↓ + H.c., (5)

where α stands for an orbital index and �( j, q) = �eiq jeiφ j is
a space-dependent gap, taking into account a phase gradient
(φ j = χL

j φL + χR
j φR, with χα

j = 1 only when j belongs to
the α = L, R electrode) induced by the bias current and a
finite momentum effect of the Cooper pair (q). Indeed, for
some classes of superconductors, where both inversion and
time-reversal symmetries are broken, and in the presence of
SOC, it has been shown that Cooper’s pairs acquire a finite
momentum [43]. Therefore, we have included a spatially mod-
ulated superconducting gap, with q continuously determined
by the magnetic field (q = ηMx). The pairing amplitude has
been previously determined self-consistently in Ref. [33] as
� = 0.05, while the phase gradient is given by φ = φL − φR,
with φL,R the phase of the order parameter of the left and
right lead.

The Josephson current of a short SNS junction with
translational invariant leads can be efficiently calculated by
using the subgap Bogoliubov–de Gennes (BdG) spectrum
of a system with truncated superconducting leads as I (φ) =
−(e/h̄)

∑
n dEn/dφ [44], with En being the subgap energies

of the BdG spectrum. The finite lead approach is valid as
long as the short-junction limit is considered [LN � ξ , with
ξ the Bardeen-Cooper-Schrieffer (BCS) coherence length].
Thus, we set the total size of the system, L = 2LS + LN ,
with LS � ξ being the size of the superconducting lead and
LN � LS the normal region size. The maximum (absolute
value of minimum) of I (φ) yields the critical current in the
positive (negative) direction. The tight-binding Hamiltonian is
numerically treated by using KWANT [45] and solved with the
help of NUMPY routines [46]. We explore different electronic
regimes defined by the orbital filling and controlled by μ, also
varying the Zeeman energy Mx, and the phase difference φ.
Numerical simulations have been performed by representing
the chemical potential in the form μ = μ0 + e0, where e0,
which determines the orbital filling, represents the energy off-
set measured from the bottom of the band μ0. An appropriate
setting of μ0 allows us to characterize the orbital-sensitive
response of the system.

Numerical results. In the entire Letter we fix LS = 1000,
LN = 10 in the unit of the lattice constant. First, we focus
on the regime of orbital filling corresponding to the lowest
doublet of the energy spectrum with a dxy orbital character
[see Fig. 1(a)]. In Figs. 1(b) and 1(c) we report the critical
current pattern by varying the Zeeman energy for both q = 0
and q = ηMx, with η 	 0.01 meV−1, deduced by the experi-
mental data in Ref. [28]. Hereafter, we consider an extended
Zeeman energy range that is accessible without destroying the
superconductivity [47,48] because of an effective Landé g fac-
tor that is strongly amplified by confinement effects [49,50].
We notice that, when e0 is varied in the green shaded area
in Fig. 1(a), an anomalous supercurrent enhancement occurs
with increasing the Zeeman energy Mx. When e0 falls in the
blue region in Fig. 1(a), a lowering of the critical current
for increasing Mx is observed, as in the conventional spin-
singlet superconductivity case. The anomalous enhancement
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FIG. 1. (a) Sketch of band structure near the � point in the Brillouin zone for Mx = 0. The six t2g d orbitals, i.e., dxy-like (purple and orange),
dzx-like (red and blue), and dyz-like (green and brown), are reported in the inset. The two-tone shaded area (green and blue) shows the lowest
doublet. (b) Critical current in the SNS junction as a function of Mx for different filling factors e0 and q = 0. A strong enhancement of Ic occurs
at |Mx| 	 0.3 and low fillings (e0 < 0.137). For e0 � 0.137, the critical current rapidly decreases with increasing of Mx . (c) Critical current in
the SNS junction as in the previous panel and q = ηMx , with η ∼ 0.01. An asymmetry at changing the field direction is observed. (d) Phase
diagram of the junction realized by plotting the lowest-energy level of the half positive sector of the BdG spectrum for φ = π , by varying
Mx and e0. Zero-energy region (blue region) corresponds to the emergence of OMBS within each superconductor, and the range of e0 values
corresponds to the green shaded area of (a) (low filling). (e), (f) Low-energy spectrum as a function of the superconducting phase difference
φ for Mx = 0.3 and 0.9, respectively, as indicated by the corresponding green and purple dots. It shows the presence of zero modes in the
topological phase (e), while the absence of OMBSs in (f) is clearly traced back to (d). (g) Sketch of the OMBS wave functions in the topological
region for φ = π , where the blue and red areas indicate the Majorana polarization. (h) CPRs evaluated at the points indicated in (d). CPRs
alternate between sinelike behaviors (for Mx = 0.1, 0.9) and sawtooth profiles for Mx = 0.3, in agreement with topological/trivial phases of the
phase diagram [the line’s colors correspond to the points of (b) and (d)]. CPRs fulfill the symmetry IMx (φ) = −I−Mx (−φ) (see Supplemental
Material [35]).

of the critical current can be understood in terms of a spin-
momentum-locking phenomenon. This is realized when the
chemical potential lies at the bottom of a Rashba-like band,
e.g., see the purple lines in the cartoon in Fig. 1(a). For fillings
towards the second band of the orbital doublet, the spin cant-
ing increases and consequently imperfect spin-momentum
locking is observed. In fact, the bands start to deviate from the
ones of the Rashba-like model and the multiband character of
the band structure dominates. In this case, the critical current
decreases with the magnetic field. Further increasing e0, when
the Fermi energy level cuts the two spin subbands, the spin
and momentum degrees of freedom are completely decoupled
[see the purple and orange lines in Fig. 1(a)].

Spin-momentum locking is one of the most impor-
tant properties associated with nontrivial topological states
[51,52], and a topological phase transition is expected when
e0 lies at the bottom of the SOC band and Mx increases above
a critical magnetic field. The latter is signaled by a gap closing
and reopening with the formation of OMBSs at zero energy.
The density plot in Fig. 1(d) captures this phenomenology by

showing the behavior of the lowest-energy eigenvalue E0 of
the Hamiltonian as a function of e0 and Mx. The Andreev
spectrum as a function of the superconducting phase is shown
in Figs. 1(e) and 1(f) for two points of Fig. 1(b). We see a gap
closing in Fig. 1(e) indicating a topological phase transition.
Indeed, in this regime, the lowest level (red line) is almost
insensitive to φ and comes from the outer OMBSs of the two
superconducting leads. The second energy level (blue line)
originates from the inner Majoranas, sketched in Fig. 1(g).
It is strongly dispersive with φ and becomes degenerate with
the lowest-energy level only at φ = π . Outside the topolog-
ical region, both the first and the second energy levels are
lifted from zero [see Fig. 1(f)]. For φ �= π , the inner OMBSs
hybridize into a fermionic state of finite energy, as discussed
below. Figure 1(h) displays the CPRs in the cases highlighted
in Fig. 1(d). They show sawtooth profiles for Mx values for
which E0 = 0, while for Mx values for which E0 �= 0, they
acquire a sinelike behavior as a function of φ [53]. Introducing
an effective junction transparency T depending on the value
of E0, we observe that skewed CPRs correspond to T → 1
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FIG. 2. (a) Px at φ = π shows the presence of four OMBS at the
corners of the two superconductors. For φ � π the inner Majoranas
disappear, and the Majorana polarization concentrates at the corners
(see Supplemental Material [35]). (b), (c) Majorana polarization Px

for φ = π/40 and for Mx = 0.3 of the lightest green and darkest
blue curve of Fig. 1(b), as indicated by the corresponding points.
The value of Ptot quantifies the topological charge of the exhibited
modes.

and resonant transmission with OMBSs, while E0 > 0 gives
sinelike CPRs and T < 1 (see Supplemental Material [35]).

The superconducting topological phase can be well char-
acterized by the Majorana polarization (Mp), which measures
the quasiparticle weight in the Nambu space. According to
Refs. [33,54–56]. P( j, ω) = ∑

n(
∑

α,σ un, j,α,σ vn, j,α,σ )[δ(ω −
En) + δ(ω + En)], where u and v are the particle and hole
components of the Bogoliubov wave function, while α and σ

are the orbital and spin indices. Let us note that P( j, ω) has a
nontrivial internal dependence on orbital degrees of freedom,
depending on the energy filling e0. In particular, by choosing
ω = 0, the total Majorana polarization Ptot = | ∑L/4

j=1 P( j, 0)|
is equal to 1 for genuine Majorana fermions. P defines a
vector with Px( j) = Re[P( j, 0)] and Py( j) = Im[P( j, 0)], and
both Px and Py are peaked functions at the system edges,
i.e., they show OMBSs with opposite topological charge. In
particular, Fig. 2(a) shows the appearance of four OMBSs
for φ = π [sketched in Fig. 1(g)], while for φ ∼ π + ε (i.e.,
we set ε = 0.05), the inner OMBSs are fully hybridized and
Majorana polarization disappears at the middle of the junc-
tion (see Supplemental Material [35]). When φ = π/40, fully
polarized OMBSs nucleate at the system edges [Fig. 2(b)],
while hybridized modes show a polarization loss [Fig. 2(c)].
The scenario described above suggests that the symmetric en-
hancement of the critical current versus magnetic field curves,
reported in Ref. [34], is a fingerprint of a topological phase
transition.

The same type of analysis based on the Majorana po-
larization holds also in the case shown in Fig. 1(c), where
an asymmetric enhancement of Ic versus magnetic field is
observed. This behavior closely follows the experimental find-
ings of the oxide-based Josephson junction [28,57,58].

Phenomenologically, the asymmetry was ascribed to the
inversion symmetry breaking and to the presence of three
current channels in the junction, with phases 0, π , and φ0 [28].
The analysis of the CPRs for the two asymmetric maxima still
shows a sawtooth profile when the magnetic field approaches
the topological phase transition. Interestingly, the critical cur-

FIG. 3. Critical current in the SNS junction as a function of Mz

for different filling factors e0 starting from the bottom of the highest
doublet in the spectrum (see inset) and q = ηMz, with η = 0.005.
The asymmetric peaks collapse in a single maximum at higher
fillings.

rent pattern is antisymmetric with respect to the inversion of
both the magnetic field and the bias current [35]. Thus, the
formation of a φ junction, and its relevant role for the system
response suggested in Ref. [28], is here confirmed.

Finally, in order to explore a different filling regime, we
have studied the critical current patterns (see Fig. 3) for chem-
ical potentials corresponding to the upper doublet of bands
in the inset of Fig. 1(a). These bands originate from the hy-
bridization of orbitals with dzx, dyz character. As previously
shown [33], this band exhibits a transition to the TSC when a
magnetic field is applied along the z axis. The critical current
pattern shows again a double-maxima structure that coalesce
in a single maximum when the energy offset e0 is moved from
the bottom of the doublet to higher values. The asymmetric
increase of the current pattern with the applied magnetic field
still signals the approach to a topological phase transition with
the formation of OMBSs at the edges of the 1D channel (see
Supplemental Material [35]).

Conclusion. In summary, we have highlighted that signa-
tures of TSC can be found in the anomalous critical current
pattern of short SNS junctions based on oxide nanochan-
nels and, in general, on noncentrosymmetric superconductors.
Notably, the topological phase transition is suggested by (i)
the enhancement of the critical current by increasing the ap-
plied magnetic field perpendicular to the SOC and (ii) the
peculiar symmetry by reversing the magnetic field and the
bias current (see Supplemental Material [35]). These features
are associated with the presence of OMBSs at the edges of
the superconducting leads. These topological properties are
intertwined to multiband effects, the relevance of which can
be adjusted by appropriate gating of the system.

Finally, the microscopic phase transition mechanism, re-
ported in this Letter, appears to be consistent with recent
experimental observations of unconventional features of the
Josephson current, for which, to date, a microscopic theory is
still lacking [7,28].
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