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Collinear scattering and long-lived excitations in two-dimensional electron fluids
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For a long time, it has been thought that two-dimensional (2D) Fermi gases could support long-lived
excitations, owing to the collinear quasiparticle scattering controlled by phase-space constraints at a 2D Fermi
surface. We present a direct calculation that reveals such excitations. The excitation lifetimes are found to exceed
the fundamental bound set by the Landau Fermi-liquid theory by a factor as large as (7y /T )* with o ~ 2. These
excitations represent Fermi-surface modulations of an odd parity, one per each odd angular momentum. To
explain this surprising behavior, we employ a connection between the linearized quantum kinetic equation and
the dynamics of a fictitious quantum particle moving in a 1D reflectionless sech? potential. In this framework,
we identify the long-lived excitations in Fermi gases as zero modes that arise from supersymmetry.
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A microscopic theory of carrier collisions in two-
dimensional (2D) electron systems is essential for the field
of electron hydrodynamics, an area that has made significant
progress in recent years [1-19]. The theory of Fermi liquids
that links carrier collision rates and quasiparticle lifetimes
is generally considered to be comprehensive and complete.
However, recent research has challenged the widely held be-
lief that the theory is entirely free of gaps and inconsistencies
[20-24]. Specifically, this literature indicates that Landau’s
T? scaling law, which describes quasiparticle decay in three-
dimensional (3D) Fermi liquids at low temperatures, may not
hold true for 2D metals. This happens because 2D fermions
display two-body scattering of a unique collinear character,
arising due to kinematic phase-space constraints at the Fermi
surface. These findings have interesting implications for our
understanding of Fermi liquids, as they suggest that the behav-
ior of quasiparticles in 2D materials may differ significantly
from that in 3D materials. The quenching of Landau’s T2
damping for certain excitations points to new ways for ex-
tending coherence in electron systems. The aim of this Letter
is to validate these predictions through a direct calculation.

The collinear behavior in 2D raises an interesting com-
parison with one-dimensional (1D) systems, where collinear
scattering causes quasiparticles to have a short lifespan. Inter-
actions in 1D systems destroy the Fermi-liquid state, leading
to a state known as the Tomonaga-Luttinger state [25,26].
The collinear processes in 2D metals take on a role which is
the complete opposite of that in 1D liquids. These processes
give a giant boost to quasiparticle lifetimes and can be said to
produce a “super Fermi liquid” that harbors a unique family
of excitations with exceptionally long lifetimes, exceeding by
orders of magnitude those familiar from Fermi-liquid theory.
The unique behavior arising from these processes endows the
kinetics of 2D fermions with angular memory and gives rise
to peculiar “tomographic” response effects [22-24].

The presence of long-lived degrees of freedom can signifi-
cantly enhance the response to weak perturbations, leading to
the emergence of long-lasting collective memory effects and
novel hydrodynamic modes. In this regard, recent work [27]
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predicts the existence of a distinct family of viscous modes
characterized by non-Newtonian viscosity. These modes were
not anticipated by earlier studies, highlighting the impor-
tance of the long-lived degrees of freedom originating from
collinear scattering for 2D electron transport.

The emergence of novel timescales is particularly evident
in a system with isotropic band dispersion and a circular Fermi
surface. In such a system, various excitations correspond to
distinct angular harmonics of Fermi-surface modulations that
evolve in space and time as

Sf(p,x,t)~ Zam(e,x, t)ycosml + B, (€,x,t)sinmo,

where 6 is the angle parametrizing the Fermi surface. The
microscopic decay rates, illustrated in Fig. 1, govern the dy-
namics of spatially uniform excitations, o, B, ~ e 7. As
evident in Fig. 1, at low temperatures T < T the lifetimes
of these modes greatly exceed the ones for even m, showing
a strong departure from conventional Fermi-liquid scaling.
The decay rates in Fig. 1 are obtained by a direct calculation
that treats quasiparticle scattering exactly, using a method that
does not rely on the small parameter T /Tr <« 1. The odd-m
decay rates display scaling y ~ T* with super-Fermi-liquid
exponents o > 2. In our analysis we find « values close to 4,
i.e., the odd-m rates are strongly suppressed compared to the
even-m rates, Yodd/Veven ~ (T'/TF )2-

Is there a simple explanation for why the odd-m harmonics
are found to be long lived? These harmonics are essentially
the perturbations in the particle momentum distribution asso-
ciated with angle-resolved current, the quantities odd under
p — —p that can take different values on different patches of
the Fermi surface. The significance of these “tomographic”
quantities is that they are approximately conserved when
two-body collisions have a strongly collinear character. In
comparison, for two-body collisions in a classical gas, the
p-wave (m = 1) harmonic of current is conserved, whereas
higher-order harmonics (m = 3, 5, etc.) are nonconserved.
However, in Fermi gases, as discussed below, the colli-
sions are strongly collinear. This property endows all angular

©2023 American Physical Society


https://orcid.org/0000-0002-3159-5284
https://orcid.org/0000-0002-4268-731X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.L201404&domain=pdf&date_stamp=2023-05-16
https://doi.org/10.1103/PhysRevB.107.L201404

SERHII KRYHIN AND LEONID LEVITOV

PHYSICAL REVIEW B 107, L201404 (2023)

2_
m=2,4,6

w1
=
ok
)
S 01
£
%
e
® 1
>
=1
[
3
B _24

—‘3 T a T T T

-4 -3 -2 -1 0
Temperature, In(T/TF)

FIG. 1. Decay rates for different angular harmonics of particle
distribution, scaled by T2, vs temperature. Shown are dimensionless
eigenvalues A, related to the decay rates through y,, = Ap2F Am [see
Eq. (4) in Supplemental Material [35]]. A double-log scale is used
to facilitate a comparison of disparate timescales. Decay rates for
even-m harmonics obey a T? scaling at T < Ty. Decay rates for
odd-m harmonics are markedly smaller than those for even m and
show “super-Fermi-liquid” scaling strongly deviating from 7. Odd-
m decay rates can be approximated as 7% with « > 2. An even/odd
asymmetry in the rates and the suppression of decays for odd m is
seen already at T < 0.167.

harmonics of the current, that is, the odd-m harmonics of
particle distribution, with exceptionally long lifetimes.

It is worth noting that the absence of Landau’s 72 damping
in odd-m modes may seem to contradict the results in the
literature on excitation lifetimes in 2D Fermi gases, which
predict that quasiparticle lifetimes are diminished by collinear
scattering, as revealed by self-energy calculations of Green’s
functions [28-34]. The predicted decay rates were found to
be faster by a logarithmic factor log(7r/T) compared to the
conventional T? rates. Surprisingly, the self-energy approach
fails to account for the existence of long-lived odd-m exci-
tations. This is unexpected because it is commonly assumed
that there is a single timescale that characterizes decay for
all low-energy excitations. However, as shown in Fig. 1, the
odd-m and even-m modes have drastically different lifetimes
that exhibit different scaling behavior with respect to 7. The
conventional self-energy approach falls short in effectively
addressing this particular situation as it primarily emphasizes
the fastest decay pathways, thereby neglecting the presence of
long-lived excitations. Surprisingly, despite an extensive and
fervent interest in the field of Fermi liquids spanning over 60
years, the long-lived excitations have been overlooked in the
existing literature.

We want to emphasize that the collinear processes that
generate long-lived excitations are universal and largely in-
dependent of the specifics of two-body interactions or particle
dispersion characteristics. The existence of long-lived excita-
tions is a robust property that persists for noncircular Fermi
surfaces, as long as the surface distortion is not significant.
This is due to the presence of inversion symmetry, which

separates Fermi-surface modulations into even- and odd-
parity modes. Similar to the self-energy analysis [28—-34], the
difference in lifetimes between these mode types is identical
to that observed in circular Fermi surfaces.

It is worth noting that in certain electron systems, collinear
dynamics can accelerate quasiparticle decay by allowing par-
ticles, by traveling side by side, to interact more strongly. This
is well documented in Dirac bands where collinear dynamics
arising from linear band dispersion shortens carrier lifetimes
and accelerates dynamics [36—43]. In our problem, an entirely
different behavior arises due to collinear scattering and phase-
space constraints, the effects that dominate at a 2D Fermi
surface but are of little importance for highly excited states
in Dirac bands.

The analysis presented below is based on the Fermi-liquid
transport equation that accounts for the kinetics of two-body
collisions constrained by fermion exclusion,

d
% +UHI =) (Wiosnn — win ), Q)
212

where f(p,r,t) is fermion distribution, [f, H] denotes the
Poisson bracket V,fV,e — V,eV,f. The right-hand side is
the rate of change of the occupancy of a state p,, given as a
sum of the gain and loss contributions resulting from the two-
body scattering processes 12 — 1’2" and 1’2" — 12. Fermi’s
golden rule yields

2
Wy 1y = 7|v12,1,2,|25€5,,(1 - A =fifr, (2

where the delta functions 8. = (e + €2 — €y — €2), 8, =
§@(p, + p, — py — py) account for the energy and momen-
tum conservation. The gain and loss contributions are related
by the reciprocity symmetry 12 <> 1'2’. Here, Vi3 12 is the
two-body interaction, properly antisymmetrized to account
for Fermi statistics. Interaction V), - depends on momentum
transfer k on the k ~ kp scale; this k dependence is inessential
and will be ignored. In what follows we consider a spatially
uniform problem setting [f, H] = 0. The sum over momenta
2, 1/, 2 represents a six-dimensional integral over p,, p,,, and
P, which is discussed below.

For a weak perturbation away from equilibrium, Eq. (2) lin-
earized by the standard ansatz f(p) = fo(p) — %n(p), where
fo(p) denotes the equilibrium Fermi distribution, yields a
linear integrodifferential equation fo(1 — fo)‘% = I.e[n] with
the operator I, given by

2w
Lelnl =) 7|V|2F121'2f5e5p(771' +nmy—m—mn). O
212

Here, Y ,,, and |V|* denote the six-dimensional integral
f %w and the interaction matrix element |Vio 2|2,
whereas the quantity Fjp;» is a product of the equilibrium
Fermi functions flofzo(l — fIQ)(l — fzo,).

Different excitations are described as eigenfunctions of
the collision operator I.., with the eigenvalues giving decay
rates equal to inverse lifetimes. Because of the cylindrical
symmetry of the problem, the eigenfunctions are products of
angular harmonics on the Fermi surface and functions of the
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FIG. 2. (a) Angular distribution ¢ (6) for two-body quasiparticle scattering at the Fermi surface [Eq. (5)] at different temperatures.
Restricted phase space gives rise to collinear scattering, producing sharp peaks in the forward and backward directions, # =0 and =.
Temperature values used: 7/Tr = 1072 x [0.25,0.5, 1,2, 4, 8, 16, 32, 64, 128]. (b) The backscattering peak in o (6) near § = 7 for the same
temperatures as in (a). The angle is given in T -dependent units 67 = T /Ty to illustrate the linear 7 dependence of the peak width. The intensity
o () is multiplied by T /T to illustrate the linear T dependence of the peak height. This translates into ~7'? scaling for the peak area. (c) The
dependence of peak height vs 7' confirms asymptotic linear scaling at low 7.

radial energy variables x; = B(e; — ),

NP, 1) =Y e e yu(x), €

where y,, and y,,(x) are solutions of the spectral problem
_meO(l - fO)Xm(x) = ee[Xm(x)]-

Before we proceed with diagonalizing the operator I, we
note that one more reason for why the long-lived modes have
been missed in the literature undoubtedly lies in the difficulty
of a direct calculation. This problem proves to be quite de-
manding for several reasons. First, the eigenstates of . are
localized in a peculiar phase-space region, an annulus at the
Fermi surface of width proportional to T owing to the fermion
exclusion effects (see Sec. A in Supplemental Material [35]).
Sampling this “active part” of p space requires a mesh which
is adjusted with temperature. Second, capturing the kinematic
constraints that lead to collinear collision effects, requires
“high-finesse” sampling of the near-collinear momenta as
compared to the generic momenta in the annulus (see Sec. B
in Supplemental Material [35]). The situation is made even
more complex by the fact that the angular width of the active
collinear region also varies with temperature, decreasing as
T. To tackle this problem, we make use of the cylindrical
symmetry of our system and link the decay rates for different
modes to the angular distribution for scattering induced by
a test particle injected in the system. Computing the angular
distribution as described below, we Fourier transform it in 0 to
find the decay rates for individual modes. This scheme allows
us to directly diagonalize the collision operator [Eq. (3)],
finding the results shown in Fig. 1 (the relevant technical steps
are described in Secs. C and D of the Supplemental Material).

The angular distribution of particles scattered after a test
particle has been injected in the system at an energy near the

Fermi level, f;(6) = Jy8(6 — 6;), is given by

de’ , , Jo
1O = $ 5@ =060 = 3200 ~0). (S
2 2
where f;(0) describes the injected beam and the scattering
angle 6 parametrizes the Fermi surface. Here, Jy is a T-
independent intensity of the injected beam and, for simplicity,
we suppressed the width of the distribution in the radial direc-
tion. As discussed above, excitations with different lifetimes
are represented as normal modes of the two-body collision
operator linearized in the deviation of the distribution from
the equilibrium state I.[f,(0)] = —Vmfu(0), where y,, are
the decay rates (inverse lifetimes) for different excitations.
Due to the cylindrical symmetry of the problem, the normal
modes are the angular harmonics f,,(6) = ™ times some
functions of the radial momentum variable [35]. Comparing to
Eq. (5), we see that the quantities y,, are related to the Fourier
coefficients of the angle-resolved cross section,

a(0) =3, ¢" " (v — w), (6)

where the term —y, describes particle loss from the injected
beam. We use the basis functions introduced above to compute
o (0) and then use the relation in (6) to obtain the lifetimes of
different modes.

The angular dependence, shown in Fig. 2, features sharp
peaks centered at & = 0 and 7, describing forward scattering
and backscattering, respectively. The angular widths 67 of
the peaks scale as T at T < Tr. Notably, the backscattering
peak is of a negative sign, representing backreflected holes. At
T < Tr the values o (0) at generic 6 within the peak scale as
T. Multiplying this by the peak width 67 ~ T /Ty yields the
net backscattering rate that scales as T2 /T, as expected from
Fermi-liquid theory. This behavior is detailed in the insets in
Fig. 2.
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The decay rates y,, for odd-m modes, obtained from the
relation in (6), show a significant departure from a 7% scaling.
The even-m and odd-m rates, shown in Fig. 1, are similar at
T ~ Tr but have a very different behavior at T < Tp. This dif-
ference originates from the collinear character of scattering,
manifesting in prominent peaks in o (9) in the forward and
backward directions. The near-equal areas of these peaks and
the negative sign of the backscattering peak suppress the odd-
m Fourier harmonics of o (0), yielding small decay rates for
these harmonics. The T dependence for the even-m harmonics
agrees well with the T2 law. The odd-m harmonics, to the con-
trary, have decay rates decreasing at low 7" much faster than
T2. For these harmonics, we observe scaling y,, ~ T% with
o slightly below 4. This represents a “super-Fermi-liquid”
suppression of the decay rates for odd-m harmonics.

It is interesting to mention that collinear scattering, mani-
festing in the sharp peaks in o(0) at 8 = 0 and r, is directly
responsible for the log enhancement of the quasiparticle de-
cay rates predicted from the self-energy analysis [28-34].
Indeed, the angle dependence near & = 0 and m is of the
form o (6) ~ T?/|0| and T?/|6 — 7|, with the 1/|0| singular-
ity rounded on the scale §6 ~ T /T, as illustrated in Fig. 2.
Integrating the angle-resolved cross section over 6 yields a
log(Tr/T)T? total scattering cross section. This illustrates
that the abnormally long-lived excitations with the decay rates
that scale as T* rather than T2, described in this Letter, and the
seminal log(Tr /T )T? decay rates [28—34], originate from the
same phase-space constraints. Restricted phase space renders
quasiparticle scattering a highly collinear process even when
the microscopic interactions have a weak angular dependence.

Given these findings, there is a clear interest to find a
simple explanation for the unique properties of long-lived
excitations. To accomplish this, we have employed a clever
method developed 50 years ago in Refs. [44—47] to tackle
transport in 3D Fermi liquids. This approach involves lin-
earizing the kinetic equation near thermal equilibrium at 7 <
Tr to transform it into a time-dependent Schrodinger equa-
tion with a reflectionless sech? potential, which can be solved
exactly to predict the transport coefficients at 7 < Tr. We use
this framework to explore the modification of this equation in
the 2D case and find that, although the decay rates of most
excitations follow the 72 scaling, a unique set of nondecaying
excitations emerge due to zero modes originating from the
supersymmetric quantum mechanics, with one mode per each
odd angular momentum.

In general, the six-dimensional integral operator I in Eq.
(3) has a complicated structure which in a general case is
difficult to analyze. However, at T < Ty the part of phase
space in which transitions 12 <> 1’2’ are not restricted by
fermion exclusion is a thin annulus of radius pr and a small
thickness dp ~ T /v <« pr. One can therefore factorize the
six-dimensional integration over p,, p;,, and p, in I into
a three-dimensional energy integral and a three-dimensional
angular integral, and integrate over angles to obtain a closed-
form equation for the radial dependence x (x). This is done by
noting that the delta functions 6.8, together with the condi-
tions |p| = |p,| = |py| = |py| = pr imply that the states 1,
2, 1/, and 2’ form two anticollinear pairs

pitp,~0, py+py=0. @)

The azimuthal angles therefore obey 6, ~ 6, + 7, ;) =~ 0, +
7. In a thin-shell approximation dp < pp, this gives two
delta functions 8(6; — 0, — ), 6(6; — 6y — ) that cancel
two out of three angle integrals in I, allowing us to rewrite
the quantity ny + ny — 11 — 12 as

M [x (x1) + (=) x ()] — €™ [ (x1) + (=) x (x2)],
®)

where x is a shorthand for y,,. Here, as above, the variables
x; denote particle energies scaled by temperature, x = S(€; —
). Subsequent steps differ for the even and odd m, because
the contributions of x (x;/) and x (x») to I, cancel out for odd
m and double for even m, since the quantity F in Eq. (3) is
symmetric in x; and x. Focusing on the odd m and carrying
out integration over the angle between p, and p, yields

dx(x1)
dt

where F = fy(1 — f) and 8, = 8(x; + x, — x1r — x»). Here,
T? originates from nondimensionalizing the energy variables
x; in the integral and the delta function, the dimensionless
factor g is a result of angular integration, and the quantity F' is
defined above. Integration over energy variables x,, xy/, xp ex-
tends throughout —oco < x; < 00, as appropriate for T <K Tp.

As a first step, we reverse the signs of the 1’ and 2 vari-
ables: x;y — —xy, xp = —xp. This transforms the integral
equation in Eq. (9) to

_dx

FE = gT? / dxadxydxy Fiap 8 [x(x1) — x (x2)],

Fiaro = fo(x1)fo(x2) fo(x1r) fo(xa ), (10)
where 8 = §(x; + x> + x1 + x2). Next, we use the identities
1 x? 4+ 72

/dedxl’dXZ’fO(XZ)fO(xl’)fO(XZ’)aj =1

21 4e
X1+ x2

/ dxvdxs fola) folen)8F = ——2 12 (1

I — e~

F

_ 72 / dxodxydxy Fgsx(x) — x ()], (9)

. (1D

to carry out integration over xp, X/, x» in the first term and
over x, xp in the second term. The equation can be further
simplified using the substitution

x(x) = 2 cosh (%){(x) = (e ), (13)
which gives an equation

dex) _ _gTz[x% +

2
E T”:(xw/dxz

~_(x)
X ’
sinh)"cg 2
where ¥ = (x; + x2)/2. Next, we reverse the sign of x,, which
brings the integral operator to the form of a convolution,
separately for the even and odd functions ¢ (x,). For an even
function ¢ (—x;) = ¢(x,) we have

/ dvr =g ()
Xp——/———————(C(X2).
*2sinh 5= g
After Fourier transforming ¢ (x) = f dke™ (k) this gives a
time-dependent Schrodinger equation with a sech? potential,

72 n?

1
(k) = gTz[Ew”(m - (— -

e AL U
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Unlike the 3D case, where after a similar transformation the
T? scaling translates into a 72> dependence of the decay rates,
here the operator in (14) has a zero mode, Vy(k) = m
Being a zero mode, this mode does not relax. The asso-
ciated xo(x) can be found from the identity f dé% =
co#ﬂy, giving xo(x) = 1. Returning to the energy variable,
this yields the Fermi-surface-displacement mode & f(x) =
dfo/dx = fo(1 — fo), identical for all odd m.

In a similar manner, for odd functions ¢(—x;) = —¢(xp),
upon changing x, to —x,, a minus sign appears in front of the
integral operator:

X1 — X2
— | doo——— .
/ 272 sinh x—‘;ng(h)

Carrying out the Fourier transform ¢ (x) = f dke”‘"tﬂ(k) gives
a time-dependent Schrodinger equation for a sech? potential
of an opposite sign,
2 1 " T : >

oy (k) = &T [21” (k) ( 2 + cosh® k
In this case, physical solutions correspond to the eigenfunc-
tions that are odd in k. For a repulsive sech? potential these
functions are in the continuum spectrum and asymptotically
have the form of plane waves. As a result, the behavior of the
eigenfunctions that are odd in x is quite different from that of
the even-x eigenfunctions discussed above.

For even m, analysis proceeds in an overall similar manner,
yielding analytic expressions for the eigenstates and asso-
ciated eigenvalues. However, the 1D Schrodinger operators
obtained for even m feature no zero modes. As a result, the
analysis yields a normal T scaling of the decay rates. This is
so because for even m the terms x (x}) and x (x) in (8) are of
equal signs and do not cancel out. As a result, the even-m and
odd-m harmonics show a very different behavior: The odd-m
rates vanish in the zero-thickness approximation for the active
shell at the Fermi surface, whereas the even-m rates remain
finite in this limit, scaling as T2.

We would like to note that, while the 1D quantum mechan-
ics approach is fully adequate for tackling even-m excitations,
the problem of odd-m excitations remains open and requires
further investigation. Infinite lifetimes found for odd-m modes
and interpreted in terms of zero modes, merely indicate that
the decay rates for these modes vanish at order 72. However,
the supersymmetry that protects zero eigenvalues is a prop-
erty that only appears in the limit of zero thickness of the

)W(k)}. 5)

thermally broadened Fermi surface. Therefore, it is unlikely
that this property holds outside of this limit, and we expect
the lifetimes of odd-m modes to be finite. Our numerical
results indicate that the decay rates for these modes scale
as T%, with o > 2. However, determining the values of «
analytically may require a framework that extends beyond
the approximations considered in our 1D quantum mechanics
approach.

Further research is needed to understand the behavior of
odd-m excitations, and we hope that our work will inspire
future forays into this intriguing problem. The relation with
the 1D supersymmetric quantum mechanics can be employed,
in principle, to study a variety of other problems of interest,
e.g., the thermal transport effects such as thermal conduction,
the Joule-Thomson effect, and convective thermal drag. A
comprehensive understanding of these transport effects would
require deriving transport equations for these quantities sup-
plied with suitable boundary conditions and connecting them
to observables. This is an interesting topic for future work.

In summary, the kinematic restrictions of the phase space
for quasiparticle scattering at the Fermi surface lead to highly
collinear dynamics, even if the microscopic interactions have
weak angular dependence. This gives rise to several notable
effects, such as the emergence of abnormally long-lived ex-
citations and strong backscattering features in the angular
distribution for two-body collisions. The resulting unusual
kinetics is especially relevant for 2D systems that are currently
being investigated for electron hydrodynamics and related
collective phenomena. Long-lived degrees of freedom can
amplify the response to weak perturbations, giving rise to
long-lasting collective memory effects and new hydrodynamic
modes. This is illustrated by a family of viscous modes with
non-Newtonian viscosity and transport phenomena due to
these modes described in Ref. [27]. This area of transport
theory is rapidly evolving, and a robust understanding of the
fundamental physics behind collinear collisions is crucial to
grasp the electron behavior in various transport phenomena.
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