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Multiple conduction channels interacting with a quantum impurity—a spin in the conventional “multichannel
Kondo effect” or a topological mesoscopic device (“topological Kondo effect”)—has been proposed as a
platform to realize anyonic quasiparticles. However, the above implementations require either perfect channel
symmetry or the use of Majorana fermions. Here we propose a Majorana-free mesoscopic setup which im-
plements the Kondo effect of the symplectic Lie group and can harbor emergent anyons (including Majorana
fermions, Fibonacci anyons, and Z3 parafermions) even in the absence of perfect channel symmetry. In addition
to the detailed prescription of the implementation, we present the strong coupling solution by mapping the model
to the multichannel Kondo effect associated to an internal SU(2) symmetry and exploit conformal field theory
to predict the nontrivial scaling of a variety of observables, including conductance, as a function of temperature.
This work does not only open the door for robust Kondo-based anyon platforms, but also sheds light on the
physics of strongly correlated materials with competing order parameters.
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Introduction. The realization of fault tolerant quantum
computation is a major goal of present day quantum research.
Amongst the various hardware platforms suitable for this
application, topologically ordered states with anyonic excita-
tions are particularly appealing [1], as the robustness against
noise and errors is a fundamental, intrinsic property of these
quantum many-body phases. A classic platform for realizing
anyons which has gained renewed interest in mesoscopic sys-
tems are frustrated and overscreened Kondo impurity models
[2,3].

The SU(2) Kondo effect is a paradigmatic model of quan-
tum many-body physics [2–7] which merges the physics of
strong electronic correlations and entanglement, while its
strong coupling physics is still amenable to nonperturbative
analytical methods such as Bethe ansatz [8–10], conformal
field theory (CFT) [11,12], and Abelian bosonization [13].
Even though the impurity spin in the conventional Kondo ef-
fect is perfectly screened at strong coupling, the overscreened
multichannel Kondo (MCK) effect, in which k > 2S elec-
tronic baths compete for screening a single spin S, is one of the
earliest examples of quantum criticality and local non-Fermi
liquid (FL) behavior and harbors a remnant zero temperature
impurity entropy [14–16] Simp = ln(gk ), with gk = √

2, (1 +√
5)/2,

√
3, . . . for S = 1/2 and k = 2, 3, 4, . . . consistent

with the quantum dimensions of Ising, Fibonacci, and Z3

parafermionic anyons. It has thus recently been proposed
to exploit these anyons for quantum information theoretical
applications [17–21], but a major technical difficulty is that
multichannel Kondo physics, even with SU(N ) and N > 2, is
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unstable with respect to unequal coupling to different elec-
tronic baths.

Stable overscreened fixed points may be achieved by using
strongly interacting [22,23] or higher spin [24] conduction

FIG. 1. (a) Schematics of proposed implementation for k = 6
with � the proximity-induced gap and EC the charging energy. Light
green squares are the leads and light purple dots are the ends of
one-dimensional topological systems. The light gray square is a
superconducting island. (b) Energy levels as a function of gate volt-
age (as imposed by charge Ng; we take � = 0.4EC). The tunneling
strength t is between the dots and the leads (nearest sites). Dark blue
(light purple) curves correspond to states with even (odd) fermion
parity. The background shading corresponds to different effective
low-energy theories (see legend). (c) Transconductance. The solid
red line interpolates between the low- and high-temperature asymp-
totic behavior. The conductance quantization at T = 0 is universal,
cf. Eq. (9), and equal to (4/3) sin2(π/5) ≈ 0.46e2/h for k = 3. In
the weak coupling regime, the conductance has a logarithmic tem-
perature dependence. (d) Ground state degeneracy. (e) Schematic
RG flow illustrating the duality between Sp(2k) Kondo effect and
k-channel SU(2) Kondo effect at spin S = (k − 1)/2.
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electrons, or by going beyond the conventional SU(2) group.
A recent example of the latter is the orthogonal Kondo ef-
fect in which spin-polarized conduction electrons couple to
an impurity spin transforming under the group SO(M ). The
orthogonal Kondo effect for arbitrary M can be realized with
the use of Majorana Cooper pair boxes [25–28], in which case
it is called the topological Kondo effect. While fascinating,
this implementation is temporarily elusive as the control over
Majorana devices is still developing. Another, Majorana-free
implementation for the special case M = 5 was recently pro-
posed [29,30] and it was argued that Ising anyons (Majorana)
are emergent at the infrared.

In this paper, we propose a mesoscopic setup, see Fig. 1,
realizing the symplectic Kondo effect as a platform for anyons
and potentially for measurement-only topological quantum
computation [31]. Following Cartan’s classification of Lie
groups [32,33], we explore here the third remaining type of
Lie group Sp(2k), i.e., a symplectic Kondo Hamiltonian

HK = λ

k(2k+1)∑
A=1

SAJA, (1)

in which the symplectic impurity “spin” operators SA trans-
form in the fundamental 2k-dimensional representation and
JA = c†

0TAc0 is the symplectic spin of conduction electrons;
the spinor ca = (ca,1,↑, . . . , ca,k,↑, ca,1,↓, . . . , ca,k,↓)T for site
a has 2k components with i = 1, . . . , k denoting the lead
index and σ = ↑,↓ the physical spin. Despite the 2k com-
ponents of the spinor, Eq. (1) is still a one-channel Kondo
model and will therefore not suffer from channel anisotropy.
The 2k × 2k matrices TA = −σyT T

A σy denote Sp(2k) gen-
erators in the fundamental representation [34]. We present
a mesoscopic implementation of this effect for arbitrary k,
the phase diagram for this nanodevice, and characteristic
signatures in transport measurements, as well as a solution of
the symplectic Kondo effect in the strong coupling limit.

From the perspective of materials science, symplectic
Kondo models are theoretically appealing as they allow for a
proper definition of time reversal symmetry and thus for large-
N descriptions of heavy fermion superconductors [35]. At the
same time SO(5) ∼ Sp(4) theories of cuprates are popular ap-
proaches to account for competing orders [36]. From the view-
point of quantum information theory, the symplectic Kondo
effect allows for the arguably most robust way of realizing
anyons in impurity models: in addition to the aforementioned
stable implementation of nontrivial anyons, earlier work using
CFT [29,30,33] demonstrates that—contrary to standard mul-
tichannel Kondo phenomenology—the leads behave FL-like
(suggesting relatively strong decoupling of anyons and con-
duction electrons) and that Fibonacci anyons (which are the
simplest anyons allowing for universal quantum computation)
cannot be realized in the simplest realization of the topological
Kondo effect, but are accessible in the present Sp(6) setup.

Implementation of the Sp(2k) Kondo model. We consider
k spinful fermionic zero-energy states coupled to a float-
ing s-wave superconductor; see Fig. 1(a). These states may
stem from a time-reversal symmetric higher-order topological
insulator, resonant levels of quantum dots, or a set of Su-
Schrieffer-Heeger chains. The low-energy Hamiltonian of our

FIG. 2. (a) 2k-degenerate ground state in the odd parity sector
is given by a BCS state supplemented by one unpaired electron.
(b) Illustration of k charge degenerate ground states in the extreme
strong coupling limit t ′ = 0 and (c),(d) the corresponding energy
spectrum.

topological quantum dot is

Hd = EC (2N̂C + n̂d − Ng)2

− 1

2
�

k∑
i=1

∑
σσ ′

e−iφd†
i,σ (σy)σσ ′d†

i,σ ′ + H.c., (2)

where n̂d = ∑
i,σ d†

i,σ diσ is the total charge in the edge
states and N̂C = −i∂φ is the number operator of the Cooper
pairs of the s-wave superconductor. The Hamiltonian Eq. (2)
conserves the total number of electrons N̂tot = 2N̂C + n̂d , con-
trollable by the gate charge Ng. We assume that the island
size exceeds the superconducting coherence length, so that
crossed-Andreev reflection as well as hybridization of zero
modes can be neglected and that the proximity-induced gap
� on the boundary states of the topological wires is less than
the bulk gap, allowing us to ignore quasiparticle states of the
parent superconductor in Eq. (2). We also take the gap to be
smaller than the charging energy, � < EC , enabling a ground
state with an odd number of electrons. We ignore additional
mutual charging energies between the zero modes, which is a
good assumption when the central superconducting island has
a large normal-state conductivity [37,38].

In the absence of �, each state with even Ntot is degenerate,
with allowed values nd = 0, 2, 4, . . . , 2k and all possibilities
to distribute these electrons over the topological edge states.
Similarly, the states with odd Ntot are also degenerate with
nd = 1, 3, 5, . . . , 2k − 1 allowed. The presence of � lifts the
degeneracy as it allows one to connect different states and
favors a single BCS-like ground state |BCS〉d in the even
sector (see Supplemental Material [39] for details). In the odd
sector, there are 2k ground states given in which one of the
k spin-degenerate boundary states is singly occupied, while
the remaining k − 1 are occupied by a BCS-like state; see
Fig. 2(a). The ground state energy of the even sector is

Eeven(Ntot ) = EC (Ntot − Ng)2 − �k, (3)

while Eodd = Eeven + �. These energies are plotted in panel
(b) of Fig. 1 (there, all energies E are measured with respect
to −�k).

In the 2k-fold degenerate odd sector the quantum dot
acts as an effective Sp(2k) impurity. We will therefore con-
sider Ng close to 1, where the 2k odd parity states with
Ntot = 1 are lowest in energy, while the lowest excited states
(with Ntot = 0, 2) are separated by an energy gap �E± =
Eeven(Ntot = 1 ± 1) − Eodd(Ntot = 1). To derive the effective
Kondo interaction, we next consider tunneling between the
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electrons on the dot and the first site (a = 0) of the lead,
Ht = −∑k

i=1

∑
σ=↑,↓ tic

†
0,i,σ diσ + H.c. At low temperatures

and bias voltages in the weak tunneling limit, kBT, eV, ti 	
�E±, the dot occupation cannot change and Ht induces an ef-
fective Kondo interaction in second order perturbation theory.
When we fine-tune all ti = t (∀i = 1, . . . , k), we get [39]

Heff = −λ1(d†c0)(c†
0d ) − λ2(d†σyc∗

0 )
(
cT

0 σyd
)
, (4)

where c∗
a = (c†

a )T and Gutzwiller projection to the 2k Ntot =
1 states is understood. The coupling constants are λ1 =
2t2/(�E−) > 0 and λ2 = 2t2/(�E+) > 0. Exactly at Ng = 1,
and after using the completeness relation of symplectic gener-
ators,

∑
A T i j

A T kl
A = [δilδ jk − (σy)ki(σy) jl ]/2, Eq. (4) becomes

a Kondo-type interaction, Eq. (1), with (bare) coupling con-
stant λ = 2λ1 = 2λ2 = 4t2/(EC − �). As we will see below,
the anisotropy of tunneling strength ti is irrelevant.

Weak and strong coupling. Perturbation theory in the
Kondo term HK leads to the usual logarithmic divergence
at second order [40]. We therefore use the renormalization
group (RG) technique to analyze Eq. (1) upon lowering the
bare bandwidth/cutoff D0 ∼ EC − � to a running cutoff D =
D0e−l [41,42]. We find the RG equation,

dλ

dl
= (k + 1)ρ0λ

2, (5)

where ρ0 = (π h̄vF )−1 denotes the lead density of states per
spin per length and vF is the Fermi velocity. Equation (5) im-
plies that λ flows towards stronger coupling upon reducing the
energy cutoff (set by, e.g., the temperature). We estimate the
strong coupling scale to be TK ∼ (EC − �)e−1/[ρ0λ(D0 )2(k+1)]

in terms of the bare coupling.
Given that the isotropic weak-coupling fixed point (λ=

0) is unstable, with RG flow towards strong coupling, we
will next investigate the stability of the strong-coupling fixed
point, where the local Kondo interaction (1) is the dominant
term in the Hamiltonian and we can treat kinetic energy t ′ ∼
1/ρ0 of the leads perturbatively. On the bare level, this cor-
responds to the limit t ′ 	 t2/�E± of the mesoscopic device
introduced above; see Fig. 2(a).

We start by finding the unperturbed ground state of Eq. (1),
without kinetic terms. Similarly to Nozières’ [43] description
of the conventional SU(2) Kondo problem, the strong cou-
pling ground state is given by singlets formed by the impurity
and the conduction electrons. We systematically derived the
spectrum [39] of this problem using representation theory,
and additionally explicitly constructed the singlet ground state
wave functions for all k and the excited states for k = 2, 3; see
Figs. 2(c) and 2(d). We find that the Sp(2k) Kondo Hamil-
tonian is overscreened, with k degenerate ground states at
t ′ = 0; e.g., for k = 2 these are the Sp(2k) singlets,

|N = 1〉singlet = −i(d†σyc∗
0 ) |0〉c ⊗ |BCS〉d , (6a)

|N = 3〉singlet = (d†c0) |4〉c ⊗ |BCS〉d , (6b)

where |4〉c is the state in which all electronic states on
the first site of the lead are filled, while |0〉c is the empty
state. For generic k, the degeneracy is a consequence of the
symplectic symmetry associated to superconductivity [44]:
given that |N = 1〉singlet is a singlet, the states (c†

0σyc∗
0 )|N =

1〉singlet, . . . , (c†
0σyc∗

0 )k−1|N = 1〉singlet transform trivially

under Sp(2k), as well [45]; see Fig. 2(b). The above
states, Eqs. (6a) and (6b), are related by particle-hole
symmetry (PHS). More generally, PHS implies an inherent
SU(2) symmetry in Nambu space for the symplectic Kondo
Hamiltonian [35], which can be made apparent by writing the
Sp(2k) currents as symmetric form,

JA = 1

2

[
c†

0 cT
0 (iσy)

](TA 0
0 TA

)(
c0

(−iσy)c∗
0

)
, (7)

which is invariant under SU(2) rotations in particle-hole
space. We used here the property T T

A = −σyTAσy of Sp(2k)
generators. After having established the t ′ = 0 ground states,
we now incorporate the nearest-neighbor hopping HNN =
−t ′ ∑k

i=1

∑
σ=↑,↓(c†

0,i,σ c1,i,σ + c†
1,i,σ c0,i,σ ) as a perturbation

to study the stability of the strong coupling fixed point. HNN

will couple the degenerate strong coupling ground states,
Eqs. (6a) and (6b), in second order perturbation theory, while
preserving the SU(2) symmetry. Inspired by the SU(2) sym-
metry in the particle-hole space [see Eq. (7)] and the k singlets
distributing in all odd-number particle sectors [39], we thus
conjecture that the strong coupling Hamiltonian takes the
form of the channel-isotropic k channel Kondo model,

Hs = λ̃S ·
k∑

i=1

si, (8)

where the impurity SU(2) spin-(k − 1)/2 operator S acts in
the k-dimensional subspace [spanned by Eqs. (6a) and (6b) for
k = 2], si = f †

i (σ/2) fi and fi = ( fi↑, fi↓)T ≡ (c†
1,i,↑, c1,i,↓)T ,

with i = 1, . . . , k labeling the effective channel of conduction
electrons. Since S = (k − 1)/2 < k/2, the MCK Hamilto-
nian (8) is overscreened [46]. We have explicitly proven the
conjecture for k = 2 (k = 3) by second-order perturbation
theory (Schrieffer-Wolff transformation), for which virtual
fluctuations into the 62 (381) excited states lead to λ̃ =
24t ′2/(5λ) [λ̃ = 128t ′2/(21λ)], respectively [39]. In this con-
text it is also worthwhile to point out a hidden (larger) Sp(2k)
symmetry in the k-channel SU(2) Kondo effect [47].

Since the weak-coupling limit of the overscreened mul-
tichannel SU(2) model is unstable [46,48], the above map
relating it to the strong-coupling limit of the symplectic
Kondo model implies also the instability of the latter fixed
point; see Fig. 1(e). Together with the instability of the
weak-coupling fixed point of the Sp(2k) Kondo problem, see
Eq. (5), these findings indicate a single stable fixed point
between the two, i.e., at an intermediate coupling. Our conjec-
ture of a single fixed point is supported by the low-temperature
impurity entropy (below) which is found to have the same
value, when approaching from the weak [Sp(2k)] and strong
[k-channel SU(2)] coupling sides. Since Sp(2) is isomorphic
to SU(2), our model provides an example of the level-rank
duality [33] relating the weak and strong coupling theories.

Observables: Thermodynamics. Above, we argued that,
near strong coupling, the model can be mapped to an over-
screened k-channel spin-(k − 1)/2 Kondo model, which has
a stable intermediate coupling fixed point. We can use the
impurity entropy [49] to characterize the effective residual
ground state degeneracy gk of this fixed point. The ground
state degeneracy associated to screening a spin (k − 1)/2 with
k spin-1/2 channels is well known, gk = 2 cos[π/(k + 2)]
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[14–16,49]. This result agrees with the impurity entropy of the
Sp(2k) Kondo problem, calculated using CFT [33] and Bethe
ansatz [50].

In particular, we note that the case k = 3 has g3 = (1 +√
5)/2 = ϕ, the golden ratio, indicating an emergent Fi-

bonacci anyon. Crucially, in our symplectic Kondo model this
Fibonacci anyon occurs even in the single-channel case [in the
sense that our model, Eq. (1), is of level 1] and is therefore
not subject to instability due to channel anisotropy, unlike
previous examples in the three-channel Kondo [47,51] and
two-channel topological Kondo [52] models.

Despite this appearance of the same anyon-like ground-
state degeneracies and an unstable strong coupling fixed point
which is equivalent to the k-channel spin-(k − 1)/2 SU(2)
Kondo model, we emphasize that in our model due to PHS,
not all operators of the SU(2) Kondo model are effective. For
example, the symplectic susceptibility involves the excitation
of states outside the low-energy manifold Eqs. (6a) and (6b),
leading to less singular behavior than for the SU(2)k sus-
ceptibility [39]. More generally, we expect that the irrelevant
operator of scaling dimension 1 + 2/(2 + k) is forbidden for
the dual Kondo problem, Eq. (8). This implies Fermi-liquid-
like temperature and field dependence of thermodynamic
quantities, consistent with results [29,30,33,50] based on the
weak coupling Hamiltonian, Eq. (1).

We note that CFTs in which certain operators are sym-
metry disallowed are well known in the theory of (e.g.,
confinement-deconfinement) phase transitions in gauge the-
ories and usually denoted by an asterisk [53–55]. In view
of the relationship between deconfining gauge theories and
overscreened Kondo impurities [56], we borrow the notation
employed for the latter phenomena and denote the boundary
CFT describing the dual Kondo problem, Eq. (8), as SU(2)∗k .

Observables: Transport. We propose to test the nontrivial
nature of the symplectic Kondo effect in a charge transport
experiment across the mesoscopic island. As we explicitly
demonstrate [39] using the CFT method [12,49,57–63], the
fixed point off-diagonal conductance, Eq. (9), of Sp(2k)
Kondo model and the spin-1/2, k-channel SU(2) charge
Kondo model [64,65] are identical up to normalization [66].
Nevertheless, we emphasize that our result is valid far from
the charge degeneracy points, in the regime of elastic cotun-
neling akin to spin Kondo effect [67]. At low temperatures,
T 	 TK , near the intermediate coupling fixed point, the off-
diagonal Sp(2k) charge conductance is

Gi �= j (T ) = 4e2

hk
sin2

(
π

k + 2

)[
1 + ci j

(
T

TK

)2
]
, (9)

where the T = 0 value is obtained in Ref. [39]. For k = 2
we have exactly half of the maximum conductance, analogous
to halving of the conductance in the spin two-channel Kondo
effect [68] and also similar to the conductance in the quarter-
filling SU(4) Kondo model [69]. The finite-temperature
correction with its dimensionless coefficient ci j and the Kondo
temperature TK are determined from the microscopic physics;
see below Eq. (5) for the latter. The temperature dependent
transconductance (including larger temperature regimes) is
plotted in Fig. 1(c). The exponent in the finite-temperature
correction to Gi j (T = 0) is determined by the scaling

dimension �LIO of the leading irrelevant operator. Impor-
tantly, in the one-channel Sp(2k) model the leading irrelevant
operator [29,30,33] is local density-density interaction with
�LIO = 2, giving a FL-like temperature dependence while
it is non-FL like for SU(2)k . As explained above, also for
SU(2)∗k the operator responsible for non-FL power laws is
absent and we expect the exponent in Eq. (9) to be the same
regardless of whether we approach the stable intermediate
(T = 0) fixed point from weak or strong coupling. The exotic
zero-temperature conductance value Gi �= j (0) reminiscent of
the multichannel charge Kondo effect [3,4,64,65,70] together
with FL corrections to it are unique signatures of the Sp(2k)
intermediate fixed point.

Effect of anisotropy and PHS breaking. When deriving
the Sp(2k) Kondo interaction, we required fine-tuning of the
tunneling strengths ti = t (∀ i = 1, . . . , k) and particle-hole
symmetry Ng = 1. Although these parameters can be con-
trolled in experiments, we will discuss next what happens
when we deviate from the requirements. We show that the
former requirement can be relaxed but the deviation from
PHS will drive the system towards an SU(2k) Kondo fixed
point. Let us first discuss the anisotropy of the tunneling
amplitudes, while keeping the system PHS [39]. When we
consider the anisotropic version of the effective Hamilto-
nian Eq. (4), the anisotropic tunneling strength ti > 0 can
be absorbed into the operators d̃ = ηd and c̃0 = ηc0, where
η = I ⊗ diag(

√
t1, . . . ,

√
tk )/

√
t , where t now denotes the ge-

ometric mean of ti. The anisotropic Hamiltonian then takes
the same form as Eq. (4), with the replacement d, c0 → d̃, c̃0.
Upon using the completeness relation and restoring the physi-
cal operators d, c0, we obtain transformed generators ηTAη in
the operators SA and JA. The transformed generators are still
Sp(2k) generators because the matrix η commutes with (σy ⊗
I); thus (σy ⊗ I)(ηTAη)T (σy ⊗ I) = −ηTAη according to the
properties of Sp(2k) generators [34]. Then, we can expand
the transformed generators by the original generators: ηTAη =∑

B κABT B. From this we see that the anisotropy of tunnel-
ing amplitudes is equivalent to the “exchange” anisotropy of
the Sp(2k) Kondo model, HK = λ

∑
A,B κABSAJB. Using the

generalized version [39], weak anisotropies |κAB − δAB| 	 1
can be shown to be irrelevant on general grounds. The same
situation occurs with SO(M ), in the topological Kondo model
[25,26,71–73], where the isotropic direction dominates the
RG flow. We note however that in the effective strong coupling
multichannel SU(2) model, Eq. (8), time-reversal symmet-
ric tunneling anisotropy (unequal t ′

i ) corresponds to channel
anisotropy which is a relevant perturbation. Thus the strong
coupling multichannel Kondo physics requires fine-tuning of
the Sp(2k) symmetry.

While at weak coupling anisotropy in the tunnelcouplings
is harmless, the Sp(2k) is more sensitive to breaking of PHS.
We first consider Ng �= 1 (λ1 �= λ2) in Eq. (4), while still
requiring t 	 �E± [regime of pink shading of Fig. 1(b)].
Then, we can rewrite Eq. (4) as a potential scattering term
for conduction electrons and an anisotropic SU(2k) Kondo
interaction. This SU(2k) Kondo model is exactly screened
and has a FL fixed point and thus the non-FL fixed point of
the Sp(2k) Kondo model will be unstable. An example with
k = 2 has been discussed in Ref. [30]. Also, the term arising
from λ1 �= λ2 maps to an effective magnetic field in the SU(2)
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Kondo model in the strong coupling regime, similar to the case
in charge Kondo [70]. Near the intermediate coupling fixed
point such a perturbation is relevant, with a scaling dimension
�H = 2/(2 + k), and drives the system to a FL fixed point
[47]. Hence we conclude that the PHS breaking anisotropy
(Ng �= 1) is relevant. As Ng is further detuned from unity to a
regime t ∼ �E± and further, we first enter an SU(2k) mixed
valence regime [dark gray in Fig. 1(b)], in which odd and even
parity states are of comparable energy, and ultimately reach
the regime in which the impurity ground state is nondegener-
ate. In the infrared, FL behavior persists; see Fig. 1(d).

Summary and conclusions. In summary, we proposed a
mesoscopic implementation of the symplectic Kondo ef-
fect, in which the group Sp(2k) naturally describes spin-1/2
fermions in k orbitals in a Coulomb blockaded island hosting
k spinful topological Andreev states. We couple each Andreev
state to a spinful fermion lead and found the symplectic Kondo

Hamiltonian Eq. (1) for an odd-parity charge state of the
Coulomb blockaded island.

Interesting open questions about the symplectic Cooper
pair box setup include the Coulomb blockaded transport be-
yond Ng = 1 and complementary analytical, numerical, and
experimental studies which should help shed light on the
anyonic signatures and their quantum-information theoretic
potential.
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