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Quasihole excitations in fractional quantum Hall (FQH) systems exhibit fractional statistics and fractional
spin, but how the spin-statistics relation emerges from many-body physics remains poorly understood. Here
we prove a spin-statistics relation using only FQH wave functions, on both the sphere and disk geometry. In
particular, the proof on the disk generalizes to all quasiholes in realistic systems, which have a finite size and
could be deformed into arbitrary shapes. Different components of the quasihole spins are linked to different
conformal Hilbert spaces (CHSs), which are null spaces of model Hamiltonians that host the respective FQH
ground states and quasihole states. Understanding how the intrinsic spin of the quasiholes is linked to different
CHSs is crucial for the generalized spin-statistics relation that takes into account the effect of metric deformation.
In terms of the experimental relevance, this enables us to study the effect of deformation and disorder that
introduces an additional source of Berry curvature, an aspect of anyon braiding that has been largely neglected
in previous literature.
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Introduction. Anyons are theoretically proposed particles
in two dimensions whose adiabatic exchange leads to a phase
between zero and π , interpolating the statistics of bosons and
fermions [1–3]. The topological nature of fractional statistics
promises applications in robust quantum computing [3–6].
One promising platform to realize anyons is a fractional
quantum Hall (FQH) system, where anyons are elementary
excitations [7–11]. The fractional statistics first demonstrated
in the quasiholes of the Laughlin state [2,7] motivated the
search for an anyonic “topological spin” that satisfies the stan-
dard spin-statistics theorem [8,11–16]. However, a complete
understanding of this relation remains elusive [8,11]. More-
over, the scarcity and difficulty of accurate measurements in
experiments of these fractional braiding phases [17–22] raise
the question of how robust this statistical phase is in realistic
experimental conditions.

The proper understanding of the anyonic spin-statistics
relations is important both theoretically and experimentally.
Formally, such a relationship for elementary particles requires
the full machinery of the relativistic quantum field theory
(r-QFT) [23–26]. In its most simplified form, Lorentz invari-
ance (for bosons) and the additional requirement of energy
being bounded from below (for fermions) are needed [23]. On
the other hand, nonrelativistic explanations employ the intu-
itive picture that exchanging two particles involves particle
self-rotation [3,27]. This argument relies on a “string attach-
ment”[27] as shown in Fig. 1(a). While the existence of such a
string cannot be physically justified for point particles, quasi-
particles in condensed-matter systems are not point particles
[28] [see Fig. 1(b)]. Furthermore, since Lorentz invariance is
mostly irrelevant in such systems, we can in principle expect
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a nonrelativistic justification for the spin-statistics relation
[3,8,26,29].

In the context of FQH anyons, the standard spin-statistics
relation, γexc = 2πs, fails. [Here γexc is the phase gained
after exchanging two particles and s is their intrinsic spin.
In this paper we use the term “exchange” to refer to the
process of exchanging two anyons on the two-dimensional
(2D) plane, while “braiding” to refer to the process of wind-
ing one anyon around a second stationary anyon; thus for
a given Abelian anyon species, the braiding phase is twice
the exchange phase.] For an Abelian state at filling factor
ν, the intrinsic spin of a cluster of k quasiholes (also re-
ferred to as “k stacked”), obtained by parallel transport on the
sphere [8,12,14,16,30,31], or from electron density on the disk
[32,33], is shown to take the form

sk = −νk2

2
+ k

2
+ nνk, (1)

where n is the Landau-level (LL) index. It clearly contradicts
the well-known exchange statistics of νπ [7] (e.g., for k = 1,
ν = 1, γexc = π but 2πsk = 2πn).

Experimental studies of the anyon statistics are further
complicated by the coupling of the quasihole charge to the
magnetic field. The Berry phase from the exchange of two
anyons in QH systems is γBerry = γB-field + γstats where γB-field

is the Aharonov-Bohm (AB) phase from the background
magnetic field, and γstats encodes the exchange statistics of
the anyons. Probing the latter quantities experimentally re-
quires observing a discrete change in the total Berry curvature
[19,20,34] or measuring the scattering amplitude from anyon
colliders [21,22]. In both cases the quasiholes propagate along
the edge, which has been shown to be robust for certain sim-
ple cases [35]. However, a microscopic understanding of the
effect of disorder on anyonic statistics is lacking, especially
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FIG. 1. (a) The “attached string” argument: exchanging the po-
sitions of two particles must be followed by self-rotation. (b) Two
particles (electrons or anyons) in a single LL slightly deforms each
other, allowing a well-defined “string attachment.”

for quasiholes that reside completely in the bulk. A very
important aspect of anyons is that they are not point parti-
cles but occupy a finite area with a shape that can be easily
deformed. While previous studies have drawn attention to the
correction to the braiding phase due to the overlapping tails
of the quasiholes [36–40], even in the large-separation limit
where the quasiholes are well-separated, deforming the shapes
of the quasiholes themselves can lead to further correction
to the Berry phase. This has important implications to the
experimental braiding of anyons and the potential realization
of robust universal topological quantum computers.

In this Letter, we propose an intuitive and rigorous un-
derstanding for the relationship between the intrinsic spin
and statistics for all types of Abelian anyons. These include
not only the special cases of fermions and bosons but also
anyons from k-stacked quasiholes that occupy a finite area,
as well as those with an arbitrary shape (e.g., deformed by
external potential or disorder). A modification to the standard
spin-statistics relation, which generalizes to the braiding of a
k stack around a k′ stack, has been proposed as [31,32,41]

θk,k′ = 2π (sk + sk′ − sk+k′ ). (2)

Here we prove it analytically by treating the adiabatic
exchange as a perturbation to some rotationally invariant
Hamiltonian. Furthermore, in the case where k = k′ (identical
particles) it is natural to define a physically relevant intrinsic
spin, of which the topological spin [30,31] is the special case,
so that the standard spin-statistics relation is recovered. We
also discuss the effect of disorder on the Berry phase measure-
ment on a quantum Hall (QH) droplet. While our discussion is
limited to quasiholes in Abelian phases, we can easily gener-
alize to Abelian quasi-electrons [42,43] and Abelian braiding
of non-Abelions [44,45], and in principle the intrinsic spin is
well-defined for such cases.

k-stacked quasiholes on the sphere. We first look at a
QH fluid realized on the spherical geometry with a magnetic
monopole at the center [46,47], generalizing the original ar-
guments in Ref. [16]. Inserting a k-stacked quasihole into
the ground state of a generic quantum Hall phase with Ne

electrons results in the total number of fluxes Nφ = ν−1Ne −
sc − s f + k, where sc, s f are the cyclotron and guiding center
topological shifts [48,49]. We can then take the difference of
the adiabatic rotation phase about the z axis between the two
states, a k-stacked quasihole at the north pole (γ1) and at the

south pole (γ2) [44], from the difference between their angular
momentum:

�γ21 = γ2 − γ1 = 2πkνNφ + 4π
(
γs1 + γs2 + γs3

)
, (3)

γs1 = νk

2
sc, γs2 = νk

2
s f , γs3 = −ν

2
k2. (4)

The first term on the right-hand side (RHS) captures the cou-
pling of the k-stacked anyon to the total magnetic flux. The
additional terms are understood as the parallel transport on
the sphere inducing a self-rotation of the quasihole due to the
presence of the Gaussian curvature [30,31,48]. For the special
case of the Laughlin state, s f = ν−1 − 1 and the three terms
in Eq. (4) sum up to Eq. (1).

On the disk this quantity corresponds to the Berry phase of
a k stack moving in an infinitely large circle [50]. The north
pole is mapped to the center of the disk while the south pole is
mapped to infinity. A 2π rotation of the quasiholes about the
z axis on the sphere corresponds to their adiabatic dragging
in a circular loop on the disk. It is important to note that only
�γ21 is measurable as the AB phase since the curvature is
zero everywhere on the disk. This is contrary to the naive view
that, since a quasihole moving in a circular loop on the disk is
equivalent to rotating the entire system, the associated Berry
phase should be given by only γ2 [8,16]. Subtracting from γ2

the angular momentum of the neutral ground state [8] gives
the angular momentum of the quasihole [32], but still does not
give the right phase. Instead, the measurable quantity is the
excess angular momentum from that of the quasihole placed
at the rotation center.

Microscopically, this can be understood by considering a
realistic system where the quasihole is trapped and rotated
by some potential profile. Consider a local trapping potential
Ĥ (θ ) = Ĥ0 + Ĥ1(θ ) where Ĥ1 is a θ -dependent perturbation
to the rotationally invariant trapping potential Ĥ0. The ground
state |ψ (θ )〉 can be written as

|ψ (θ )〉 = λ0|ψ0〉 + λ1|ψ1(θ )〉, 〈ψ0|ψ1(θ )〉 = 0, (5)

where |ψ0〉 is the ground state of Ĥ0. Tuning θ rotates
the ground state, giving the Berry connection [44] Aθ =
−[〈ψ (θ )|Lz|ψ (θ )〉 − 〈ψ0|Lz|ψ0〉]. This depends only on the
excess angular momentum. Intuitively, we cannot physically
rotate a perfectly symmetric object on a flat surface. Only a
deformed quasihole can be rotated, and the Berry phase comes
from the change in angular momentum caused by deforma-
tion.

Derivation of the spin-statistics theorem. Let us now start
by inserting (k + k′) fluxes into a FQH ground state at the
north pole, creating a (k + k′)-stacked anyon there. Next we
pull k of the fluxes to the south pole, leaving behind k′ fluxes at
the north pole. The 2π rotation gives the phases γ3 = −(k +
k′)Neπ , γ4 = (k − k′)Neπ , respectively. The phase difference
between these two scenarios is [44]

�γ43 = γ4 − γ3 = �γ21 − 2πνkk′ (6)

= �γ21 − 2π
(
stopo

k + stopo
k′ − stopo

k+k′
)
, (7)

where �γ21 is the single k-stacked anyon contribution from
Eq. (3). The extra term is the braiding phase reexpressed in
Eq. (7). Here we define a topological spin sk compatible with
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FIG. 2. (a) Schematic diagram of the braiding process on the sphere. The inset shows a sample heatmap of the electron density on the
sphere calculated for a two-quasihole Laughlin state. (b) Total Berry phase for braiding two Laughlin quasiholes shows an 
-dependent
part (linear as 
 → 4π ) and an 
-independent part. The latter can be extracted as the braiding phase. (c) Braiding phase of two Laughlin
quasiholes calculated for different system sizes. (d) Braiding phase of two Abelian Moore-Read quasiholes (two half-fluxes) calculated for
different system sizes.

the clustering of anyons [11,30]:

stopo
k = −νk2

2
. (8)

This topological spin originates from an intrinsic spin that we
justify later. While Eq. (7) agrees with Eq. (2), our calculation
reveals the microscopic origin of each term. For rotationally
invariant quasiholes, this formula gives a braiding phase of
2πνkk′ for an adiabatic braiding of a k-stacked anyon around
a k′-stacked anyon.

The analytical derivation above is consistent with nu-
merical calculations, which also allow us to go beyond the
Laughlin and study other FQH states [see Figs. 2(a)–2(c)].
In Fig. 2(d) we show some results for the braiding of two
Moore-Read quasiholes (charge e/4) [18,19,45]. Adding one
additional magnetic flux to the Moore-Read ground state
gives a quasihole of charge e/2, which can be split into
two half-fluxes of charge e/4 each without any punishment
by V 3bdy

3 (model Hamiltonian for the Moore-Read state).
The two-quasihole Hilbert space is isomorphic to the two-
quasihole Laughlin Hilbert space, and in principle, one would
expect an Abelian braiding. (The non-Abelian property of
the Moore-Read state only manifests when there are four or
more quasiholes.) For the Moore-Read state, it is difficult to

reproduce the analytical calculation as above, since one
cannot have a single isolated quasihole. However, the two-
quasihole states can be constructed numerically by finding the
ground state of two local potentials on the sphere [44]. The
braiding phase can be extracted as the solid angle-independent
part of the total Berry phase when rotating two-quasihole
states about the z axis. Our numerical results show the in-
trinsic spin of the Moore-Read state is still a well-defined
quantity and the spin-statistics relation still holds when the
quasihole manifold is Abelian. The implication of the intrinsic
spin to non-Abelian braiding remains a subject for future
study.

The generalized spin-statistics relation can also be un-
derstood as a special case of Eq. (5), where we deform a
rotationally invariant Ĥ0, of which the (k + k′)-stacked anyon
is the ground state. This deformation pulls a k-stacked anyon
far away from the center of rotation, and again we rotate
the entire system with Ĥ1 parametrized by θ , and measuring
�γ43 as the excess angular momentum from the perturbation
[44]. Given that anyons are not point particles, the “string
attachment” shown in Fig. (1) is physical even when Ĥ1

consists of two well-separated, perfectly circular confining
potentials, since their deformed tail, while exponentially sup-
pressed by the separation, allows us to “attach” the string and
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FIG. 3. (a) CHS hierarchy [43]: A - full many-body Hilbert space, B - a single LL, C - sub-CHS. (b) Comparing the electron densities of
a Laughlin quasihole (solid line) and the neutral ground state (dashed line) shows the origin of (i) γs2 and (ii) γs3 . Electron density of (c) the
IQH hole squeezed by the guiding center metric and (d) the Laughlin quasihole squeezed by the V̂ 2bdy

1 null-space metric [44].

track the self-rotation during the exchange. In this picture,
the relationship between spin (adiabatic self-rotation) and
statistics (adiabatic exchange) can be rigorously established
without r-QFT, for any types of Abelian anyons in the QH
systems.

Conformal Hilbert-space angular momentum. To justify
that stopo

k fully captures the Berry phase of the self-rotation
of the rotationally invariant k-stacked quasihole, we note in
Eq. (4) that the intrinsic angular momentum can be separated
into three parts: Lcy = γs1 is the cyclotron angular momen-
tum associated with different LLs; γs2 comes from the FQH
topological shift, related to the dipole moment at the edge
of the QH fluid [49] and vanishes for the IQHE. Here LLL =
γs2 + γs3 is the total guiding center angular momentum within
a single LL, as illustrated in Fig. 3(a).

The separation of Lz into Lcy and LLL is due to LLL being
well-defined within a sub-Hilbert space (a single LL). For any
physical operation within a single LL, only LLL is physically
accessible. A single LL is an example of the conformal Hilbert
space (CHS) introduced in Ref. [43]. Thus LLL is the angu-
lar momentum defined within this conformal Hilbert space,
characterized by the guiding center metric, or the “shape”
of the CHS. We can deform the shape of a hole within a
single LL with a local potential, thus changing the expectation
value of LLL, while keeping Lcy invariant, i.e., in the limit of
large magnetic field so there is no LL mixing [see Fig. 3(c)].
Thus only the deformed guiding center density can be
measured.

Similarly we can further separate LLL into γs2 and γs3 ,
where the latter is the angular momentum defined within a

sub-CHS, the null space of V̂ 2bdy
1 interaction denoted as H1

[43]. Only γs3 is physically relevant if we braid or deform
anyons within H1 with a local potential much smaller than the
incompressibility gap (i.e., V̂ 2bdy

1 gives the dominant energy
scale), so only the metric characterizing γs3 is relevant, while
that of γs2 will be invariant. An example is given in Fig. 3(d),
showing a Laughlin quasihole deformed by an elliptical po-
tential well in the null space of V̂ 2bdy

1 , in complete analogy
to Fig. 3(c). For Abelian FQH phases, γs3 can be explicitly
computed from a unitary transformation to the composite
fermion (CF) basis [44,51]. By construction the CFs are par-
ticles within H1, and the k-stacked CF holes give the CHS
angular momentum of γs3 [51].

We are now ready to explicitly write down the general spin-
statistics relation:

γk1,η1;k2,η2 = 2π
(
S̄k1,η1 + S̄k2,η2 − stopo

k1+k2

)
, (9)

giving the phase obtained by adiabatically braiding a cluster of
k1 quasiholes around a cluster of k2 quasiholes. Here η1 and
η2 parametrize the deformation, or the internal structure of
the quasiholes; S̄ki,ηi denotes the intrinsic spin of the cluster ki

with deformation ηi. For rotationally invariant k1 stack, we get
S̄k1,η1=0 = stopo

k1
in Eq. (8). However, Eq. (9) also includes the

effect of the internal quasihole structure, encoded in parame-
ters η1 and η2, which may present an additional contribution
to the measured statistics (see subsequent section).

For identical particles (k1 = k2 = k and η1 = η2 = η),
Eq. (9) can be simplified to the more familiar form

γk,η = −4π S̃k,η, (10)
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FIG. 4. (a) Deviation from fermionic statistics at different squeezing ratios (crosses) compared with the deviation of the intrinsic spin
from topological spin (dashed line). (b) Self-rotation phase of a single squeezed Laughlin quasihole (crosses) compared with its intrinsic spin
(dashed line) at different squeezing ratios. (c) Different contributions to the total Berry phase. The intrinsic spin captures both topological and
self-rotation phases.

which recalls the standard spin-statistics relation in relativistic
quantum field theory (the minus sign signifies that the quasi-
hole is a deficiency of electrons). For a rotationally invariant
k stack, S̃k,η=0 = stopo

k = −νk2/2. For the more general cases
(e.g., deformed quasiholes) the intrinsic spin of the quasi-
hole is modified as S̄k,η = stopo

k + �sk , so the braiding phase
becomes −4π S̃k,η = −4π (stopo

k − �sk ). The additional factor
−4π�sk comes from the self-rotation of the two quasiholes,
which becomes nontrivial if their intrinsic shape deviates from
the rotationally invariant wave packet.

Deformation of anyons. Since each CHS comes with an
intrinsic geometric degree of freedom [43], the quasihole can
be arbitrarily deformed while still remaining inside the null
space of the model Hamiltonian. In practice, this can be done
by implementing a trapping potential within the null space of a
given model Hamiltonian, and the metric is determined by the
potential profile [44]. We consider here an elliptical well that
“squeezes” the quasiholes into elliptical shapes [see Figs. 3(c)
and 3(d)].

We first illustrate our results with the squeezed holes at
filling factor ν = 1. Here there exist two possible exchange
schemes. When the two holes are exchanged along a circle by
pure translation, we observe a fermionic statistics expected of
the ν = 1 phase [44]. However, when each hole self-rotates
along the exchange path, there is a deviation as shown in
Fig. 4(a), the amount of deviation from fermionic statis-
tics exactly matches the deviation of the intrinsic spin from
the topological spin, multiplied by 2π . When self-rotation
is involved in the exchange procedure, the exchange phase
contains both a topological component that depends only on
the topological indices of the FQH phase, and a self-rotation
component that depends on the internal shape of the quasi-
holes [see Fig. 4(c)]. To observe only the topological phase
in real experiments, one must ensure that the quasiholes are
not rotated by any additional potentials in the system, such
as disorder. This is actually difficult to avoid as we will show
later.

For FQH states, the physics is analogous once we replace
the guiding center angular momentum and the corresponding
deformation in the lowest Landau level (LLL) with that of the
respective null spaces. For example, with the Laughlin ν =
1/3 quasiholes, the intrinsic spin is taken to be the V̂ 2bdy

1 null-
space angular momentum, exploiting the isometry between
the LLL and the V̂ 2bdy

1 null space [43]. This intrinsic spin
can be computed from the fermionization process [43,44].
Figure 4(b) shows the Berry phase from the self-rotation of
a squeezed Laughlin quasihole agrees very well with its in-
trinsic spin. In particular, Fig. 4(c) readily generalizes to all
Abelian FQH phases.

Effect of disorder. The microscopic calculations in this
work also allow us to study the effect of disorder on the Berry
phase measurement in the bulk. Qualitatively, any disorder in
the system can deform the shape of the quasiholes, therefore
changing its intrinsic spin. When a quasihole moves past a
region with disorder, a self-rotation is induced in general,
leading to an additional contribution to the Berry phase as
described above. The effect of disorder on Berry phase any-
where on the QH droplet can be studied by calculating the
local Berry curvature. We emphasize that our analysis applies
to both quasiholes in the bulk and in the edge, as opposed to
previous studies which focus quasiholes carried by the edge
currents. In general, the Berry curvature contains three distinct
distribution: the Aharonov-Bohm term from the background
magnetic field, the presence of any extra quasiholes, and the
presence of disorder [see Fig. 5(a)].

While the Berry curvature is uniform in a clean system far
from other quasiholes, local disorder induces fluctuation on
the Berry curvature. If a quasihole travels along the edge, far
away from the disorder in the bulk, the total Berry curvature
fluctuation sums to zero as a result of Gauss-Bonnet theorem
[44], consistent with the analysis in Ref. [35]. Any disorder
at the edge can deform the quasihole shapes and thus mod-
ifies the Berry phase of those propagating along the edge,
although the phase difference when an addition or removal
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FIG. 5. (a) The total Berry phase consists of the AB phase, the statistical phase, and the self-rotation phase. The last term coming from a
self-rotation induced by disorder near the path of the quasihole (b) Random potential profile V (x, y) modeling a disordered system [44]. The
quasiholes are trapped and manipulated by two additional potential pins (e.g., an AFM tip) illustrated on the right panel (c) Deviation of local
Berry curvature from average for a dirty system (d) Deviation of local Berry curvature from average for a clean system with an extra quasihole
pinned at the center. Calculations done on a ν = 1 system with 30 electrons [44].

of another quasihole in the bulk will not be affected by such
disorder.

However, procedures within the bulk may result in path-
dependent Berry phases even if the loops encircle the same
area and the same number of quasiholes. This effect is at-
tributed to the deformed internal structure of the quasihole and
can be seen in the Berry phase fluctuation around the disorder
points in Fig. 5(c). This could be one of the main sources
of noise in quantum computation from anyon braiding. Our
analysis brings attention to the influence of disorder to the
internal structures of quasiholes, and our method provides a
tool to quantify such effects.

Conclusion and outlook. In this paper, we have proposed
the microscopic mechanism for the generalized spin-statistics
for Abelian anyons in quantum Hall fluids. We have defined
the intrinsic spin for quasiholes of the FQH phase from the
algebra of the conformal Hilbert spaces (CHS), with the

special case of identical quasihole clusters giving the standard
spin-statistics relation. This intrinsic spin also applies to de-
formed quasiholes and can be detected from the proper Berry
phase measurements. It should be noted while our discussion
was limited to quasiholes in Abelian phases, the CHS algebra
generalizes to Abelian quasi-electrons and charged excitations
of non-Abelian phases [42,43] and, in principle, the intrinsic
spin is well-defined for such cases. The hierarchy of CHS
reveals the relationship between different FQH phases with
interesting physical consequences; the implication of this on
quasihole statistics remains to be studied, especially regard-
ing non-Abelian anyons which are of interest to quantum
computing. Our analysis poses questions about whether truly
robust braiding in bulk is possible in a realistic system because
quasiholes are not point particles but objects with internal
structures that can be influenced by disorder. The methods
we proposed provide tools to quantify such effects, which we
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explicitly illustrated with a new source of Berry phase from
the local disorder deforming the shape of the quasiholes. In
dirty systems where deviation from topological behavior is
detected, our calculation can help to identify potential sources
of errors and potentially devise methods to mitigate such
effects.
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