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Exceptional van Hove singularities in pseudogapped metals
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Motivated by the pseudogap state of the cuprates, we introduce the concept of an “exceptional” van Hove
singularity that appears when a strong electron-electron interaction splits an otherwise simply connected Fermi
surface into multiply connected pieces. The singularity describes the touching of two pieces of the split Fermi
surface. We show that this singularity is proximate to a second-order van Hove singularity, which can be accessed
by tuning a dispersion parameter. We argue that, in a wide class of cuprates, the endpoint of the pseudogap is
accessed only by triggering the exceptional van Hove singularity. The resulting Lifshitz transition is characterized
by enhanced specific heat and nematic susceptibility, as seen in experiments.
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Introduction. In electronic systems on a lattice, the pe-
riodicity of the potential guarantees the existence of saddle
points of the dispersion εk as a function of the wave vector
k where the velocity vk ≡ ∇kεk vanishes [1,2]. In two di-
mensions such van Hove singularities give rise to a diverging
density of states, which has attracted attention since the early
days of condensed matter physics. Since an electron-electron
interaction is not needed to produce such singularities, they
are typically associated with noninteracting physics. The pur-
pose of the current Letter is to study “exceptional” van Hove
singularities, which are saddle points generated by a strong
electron-electron interaction. As we show below, such a study
is particularly useful to understand some unusual properties
of several hole-doped cuprates close to the doping where the
pseudogap disappears [3–15].

Our main observation is the following. Consider a one-
band system whose Fermi surface is simply connected in the
weakly interacting limit. Then, the saddle points are neces-
sarily located at the high-symmetry points in the Brillouin
zone where the Fermi surface can open or close. A typical
example is the (±π, 0) and (0,±π ) points for a square lattice
when the band extremum is at (0, 0) or (π, π ). This situa-
tion is to be contrasted with the case where the interaction
is strong enough to induce self-energy corrections that are
singular, such as in a pseudogap phase. Then, as shown in
Figs. 1(a)–1(c), the self-energy splits the simply connected
Fermi surface into a multiply connected surface (i.e., Fermi
pockets, or annular Fermi surfaces), and the saddle point is
a result of the touching of two pieces of that surface. In this
case the saddle points are not located on the high-symmetry
points, but they lie on the high-symmetry lines [see arrows
in Fig. 1(b)], which has important consequences. We describe
the resulting interaction-driven van Hove singularity as being
“exceptional,” to distinguish it from ordinary van Hove singu-
larities that are obtained in the weakly interacting limit.

Model. The canonical system to illustrate the physics
of exceptional van Hove singularities is certain underdoped
cuprates in the pseudogap state. Motivated by the Yang-Rice-
Zhang (YRZ) model [16], we describe it by a single band of

electrons whose Green’s function is given by

Gk(iωn)−1 = iωn − εk − P2
k /(iωn − ξk ). (1)

This type of model has been justified through phenomenolog-
ical [16–20] as well as numerical [21–30] cluster dynamical
mean-field studies of the strong-coupling Hubbard model.

FIG. 1. Fermi-surface evolution with doping near the pseudogap
endpoint. Hole occupation is indicated by the blue shade. (a) Sin-
gular self-energy splits a simply connected Fermi surface into hole
pockets. (b) The hole pockets enlarge with doping, and they touch
at exceptional van Hove points (indicated by arrows), located on the
high-symmetry lines, but not on the high-symmetry points. (c) Fur-
ther doping forms annular rings of holes. (d) When the pseudogap
vanishes, a closed electronlike weakly interacting Fermi surface is
recovered.
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An extensive comparison with experiments using the YRZ
model has also been reported in Ref. [31]. Here, εk =
−2t̃ (cos kx + cos ky) − 4t ′ cos kx cos ky − μ is the electron
dispersion, t̃ (p) = t[1 − 4(0.2 − p)] is a hopping parame-
ter modified by the interaction, t = 1, t ′ = −0.15, p is the
hole doping, and μ is the chemical potential. We take ξk =
2t̃ (cos kx + cos ky), where the equation ξk = −ω defines the
points on the Brillouin zone where the electron’s spec-
tral weight is suppressed due to the pseudogap. We model
the pseudogap by Pk(p) = θ (p∗ − p)P0(1 − p/p∗)(cos kx −
cos ky), where θ (x) is the Heaviside step function, P0 = 0.4
is the pseudogap energy at half filling (p = 0), and which de-
creases linearly with hole doping, and terminates at p∗ = 0.2.
All energy scales are in units of t , which we take to be about
300 meV [32] for later estimates.

Superficially, Eq. (1) is reminiscent of two hybridizing
bands, namely the physical electrons with dispersion εk and
pseudofermions with dispersion ξk. Thus, it can be written as

Gk(iωn) = A1k/(iωn − ω1k ) + A2k/(iωn − ω2k ), (2)

where ω1k,2k = [εk + ξk ±
√

(εk − ξk )2 + 4P2
k ]/2. The

weight factors A1k = (ω1k − ξk )/(ω1k − ω2k ), and A2k =
(ξk − ω2k )/(ω1k − ω2k ). For the doping range studied here
only the lower band ω2k contributes to the Fermi surface in
the form of hole pockets that evolves with doping [see Fig. 1
and Fig. S4 in the Supplemental Material (SM) [33]].

Exceptional van Hove singularity. As shown in Fig. 1,
with increasing doping the hole pockets grow and eventually,
at a doping pev ≈ 0.185, the pockets touch at the van Hove
points (0,±kev ) and (±kev, 0), where kev �= π [see arrows
in Fig. 1(b)]. The resulting Lifshitz transition describes hole
pockets merging to form hole rings [see Fig. 1(c)].

In the vicinity of such saddle points, say, the one at (0, kev ),
the dispersion can be expressed as ω2k ≈ αk2

x − βk2
y − γ kyk2

x ,
where (α, β, γ ) are parameters with dimension of energy,
and γ �= 0 indicates that the saddle point is not on a high-
symmetry location. The peak in the density of states ρ(ω) ≡
−(1/π )

∑
k Im Gk(ω + i�) near the singularity is given by

ρ(ω) ≈ 4ρsp(ω), where

ρsp(ω) = 1

2π2
√

αβ

[
Re

[
1

(1 + u)1/4
K (r1)

]

−Im

[
1

(1 + u)1/4
K (r2)

]]
. (3)

Here, u = (ω + i�)/E0, E0 = α2β/γ 2, r2
1,2 = [1 ± 1/(1 +

u)1/2]/2, and K (r) ≡ ∫ π/2
0 dθ/

√
1 − r2 sin2 θ is the complete

elliptic integral of the first kind, and � = 0.01t is a frequency-
independent inverse lifetime.

In Fig. 2 we show the evolution of the peak in the density
of states with doping. As p → pev , the peak position moves
from negative energies ω < 0, and approaches the chemi-
cal potential ω = 0. However, for the cuprates, increasing
doping also implies a reduction in the pseudogap strength
Pk(p). Therefore, the strength of the singularity decreases
upon approaching the Lifshitz transition. This is seen as the
diminishing peak height of ρ(ω) with doping in Fig. 2.

Proximity to second-order van Hove singularity. This is
a consequence of γ �= 0. In Fig. 3(a) we plot the curvature

FIG. 2. Density of states ρ(ω) for various dopings. The excep-
tional van Hove singularity manifests as a peak which is at negative
energies ω for low doping. The peak height diminishes as the pseu-
dogap potential decreases with doping. The peak crosses ω = 0 at
pev ≈ 0.185.

αk ≡ ∂2ω2k/∂k2
x along the (0, 0)-(0, π ) direction for various

dopings. We notice that, when the pseudogap is sufficiently
small (p � 0.16), α(0,ky ) has positive values at ky ∼ 0, and it
has negative values at ky ∼ π , implying it goes through zero
at ky = k2 ∼ α/γ .

If αk = 0 and vk = 0 are simultaneously satisfied, the sys-
tem has a second-order van Hove singularity [37–42]. The
density of states has a power-law singularity, obtained by
taking α → 0 in Eq. (3), instead of the usual log singularity.
In our case these two points are located close by on the same
high-symmetry lines, i.e., kev ∼ k2, implying that the system
is close to the second-order singularity, and therefore the
prefactor of the log is large. Indeed, we find that as p → p∗,
the wave vectors kev and k2 come closer, as shown in Fig. 3(b).
As shown in Figs. S1 and S2 of the SM [33], the conversion to
second-order singularity can be readily achieved by varying a
third-nearest-neighbor hopping parameter which, a priori, is
feasible in cold atom systems.

FIG. 3. (a) Plot of αk ≡ ∂2ω2k/∂k2
x along the (0, 0)-(0, π ) di-

rection for various dopings. For p > 0.162 in the current model,
the curvature αk vanishes at (0, k2) and symmetry equivalent points.
(b) Variation of k2 and kev with doping. Near the pseudogap endpoint
the exceptional van Hove singularity is close to a second-order one,
and the prefactor of the log in the density of states is large.
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Note, for a single-band system with a simply connected
Fermi surface, no such proximity to a second-order van Hove
singularity is expected. Thus, in such systems, this proxim-
ity distinguishes an interaction-induced exceptional van Hove
singularity from a weakly interacting ordinary one. In multi-
band systems, however, higher-order van Hove singularities
can arise from noninteracting physics alone [37–42].

Exceptional van Hove singularity near pseudogap end-
point. In the rest of this Letter we examine the relevance
of exceptional van Hove singularities for the cuprates in
the vicinity of the hole doping p∗ where the pseudogap
terminates.

First, we explain why, for a large class of cuprates, the
chemical potential necessarily crosses the exceptional van
Hove singularity as the pseudogap endpoint is approached
from the underdoped side. As a function of doping (or equiv-
alently the chemical potential) the evolution of the Fermi
surface can be tracked by solving the equation Re[Gk(ω =
0)−1] = 0. In the absence of any pseudogap term, the self-
energy corrections are analytic, and therefore the Fermi
surface is bound to cross the (0, π ) and (π, 0) points at a
doping p0 where the ordinary (or the weakly interacting)
van Hove singularity crosses the chemical potential, thereby
transforming from an open to a closed Fermi surface of elec-
trons. In the presence of the pseudogap, however, at ω = 0 the
Fermi surface cannot cross these points since the pseudogap
term is a divergent repulsive potential on the manifold ξk = 0
where these points lie. Generally, there are three possible
ways in which the Fermi-surface evolution can respond to this
divergence.

The first is the possibility that the pseudogap terminates
at a doping exactly where the chemical potential crosses the
ordinary van Hove singularity, i.e., p∗ = p0. In this case the
open Fermi surface can close smoothly by crossing the (0, π )
and (π, 0) points. However, this will occur only if the system
is fine tuned. Since such a coincidence is unlikely in general,
we do not discuss it further.

The second possibility is that the pseudogap terminates
before the ordinary van Hove singularity is reached, i.e., p∗ <

p0. In this case, for the doping range p0 > p > p∗, the pseu-
dogap term is zero, the self-energy is analytic, and therefore
the open Fermi surface can close smoothly by crossing the
(0, π ) and (π, 0) points. A recent study has shown that this
is indeed the case for cuprates for which |t ′/t | is sufficiently
large, such as YBa2Cu3O7−δ (YBCO), Tl2Ba2CuO6+δ , and
HgBa2CuO4+δ [27].

The third possibility, namely p∗ > p0, triggers the
exceptional van Hove singularity studied here. It is
relevant for cuprates for which |t ′/t | is sufficiently
small, such as Bi2Sr2CaCu2O8+δ , (Bi, Pb)2(Sr, La)2CuO6+δ ,
La2−xSrxCuO4 (LSCO), and (Nd, Eu)-LSCO [27]. In this
case, the hole pockets grow with increasing hole doping, but
simultaneously the Fermi surface avoids the (0, π ) and (π, 0)
points, since Pk �= 0. In such a situation there is invariably
a doping pev , with p∗ > pev > p0, for which the chemical
potential crosses the exceptional van Hove singularity and the
hole pockets touch at points which lie on the high-symmetry
lines such as (0, 0) − (0, π ) [see Fig. 1(b)]. Beyond the Lif-
shitz transition, for p∗ > p > pev , the hole pockets merge into

a ring of holes with annular Fermi surfaces [see Fig. 1(c)].
Then, as p → p∗, the inner Fermi surface of the hole ring
merges with εk = 0 and the outer Fermi surface of the hole
ring merges with the line of Luttinger zeros ξk = 0 [see
Fig. 1(d)].

Therefore, we predict that, in the narrow doping range
pev < p < p∗ separating the Lifshitz transition from the pseu-
dogap endpoint, the holes form an annular ring bounded by
two Fermi surfaces [see Fig. 1(c)], with the physical elec-
tron weight mostly on the inner Fermi surface. From an
angle-resolved photoemission perspective this is a state with
a closed Fermi surface, but where the (π, 0) point is still
pseudogapped. Note, this narrow doping range may be dif-
ficult to resolve in an experiment. In that case it will appear
that the Lifshitz transition and the closing of the pseudogap
occur at the same doping, as reported in the recent literature
[6–8,27,28].

Experimental signatures. Recently, signatures of unusual
thermodynamics have been reported for several cuprates
close to the pseudogap endpoint p∗. Thus, the specific-
heat coefficients γ (T ) of LSCO, (Nd, Eu)-LSCO, Ca-doped
YBCO, and Bi2+ySr2−x−yLaxCuO6+δ show a logarithmic T
dependence [4,15], while the nematic susceptibility χB1g of
Bi2Sr2CaCu2O8+δ increases considerably in this doping range
[5,6]. Both these observations can be potentially explained
by the presence of a nematic quantum critical point (QCP)
around p∗, but no such QCP has been identified until now.
Moreover, even though an ordinary van Hove singularity can
lead to γ (T ) ∼ log T , the observed anomaly was deemed too
sharp for such an explanation [4,15]. As we show below, the
above experimental puzzles can be resolved if we assume the
presence of an exceptional van Hove singularity, i.e., these
systems follow the third possibility discussed above.

We compute the specific-heat coefficient γ (T ) = C(T )/T
using

C(T ) =
∫ ∞

−∞
dω

ω2/T 2

cosh2[ω/(2T )]
ρ(ω),

and we show its (p, T ) evolution in Fig. 4. As p → pev ,
there is a distinct upturn in the T dependence of the specific-
heat coefficient, reminiscent of what has been reported for in
Refs. [4,15] with γ (T ) ∼ log T . In our computation there is
indeed such a logarithmic component. However, the overall T
dependence in our theory is way more complex, just as is the
frequency dependence of the density of states in Eq. (3).

The p dependence of γ (T → 0, p) is also similar to what
has been reported in Refs. [4,15]. As shown in the inset of
Fig. 4, it has sharp maxima around p = pev , which is close
to but not coincident with p∗. This sharp feature can be con-
trasted with the weak-coupling case by setting the pseudogap
term Pk = 0. As shown by the red dotted line in the inset
of Fig. 4, the peak is broader and far less pronounced for
an ordinary van Hove singularity compared to an exceptional
one. This is because the latter is close to a second-order van
Hove instability. Also, the bands are flatter than usual for the
exceptional case since the velocity vanishes at two proximate
points (0, kev ) and (0, π ), instead of only at (0, π ).
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FIG. 4. Specific-heat coefficient γ as a function of temperature
and doping. Arrows indicate that γ increases as p → pev , where the
exceptional van Hove singularity is on the chemical potential. At p =
pev , the saturation of γ (T ) with temperature is pushed to lower T .
The inset shows the doping dependence of γ (T → 0) (black dots)
with a sharp peak at p = pev . The red dotted line is the calculation
for an ordinary van Hove singularity obtained for pseudogap Pk =
0, and shifted horizontally and vertically for better comparison. The
peak is sharper and more pronounced for an exceptional van Hove
singularity.

Next, we study the nematic susceptibility in the B1g or the
(x2 − y2) symmetry channel, which is given by

χB1g = −Im

[∑
k

h2
k,B1g

∫ ∞

−∞

dω

2π
tanh

( ω

2T

)
Gk(ω + i�)2

]
,

with hk,B1g = ∂2εk/∂k2
x − ∂2εk/∂k2

y . In Fig. 5 we present the
(p, T ) dependencies of χ−1

B1g
. It has weak T dependence away

from the critical doping pev , while at pev it decreases con-
siderably with lowering temperature [equivalently, χB1g (T )
increases with lowering T ], which can be fitted to a Curie-
Weiss behavior above a temperature cutoff. Taking t ∼
300 meV, the temperature range of the Curie-Weiss behavior
in our calculation is 100–300 K, which matches well with
the range seen in the experiments. Thus, our result is quali-
tatively close to what has been reported for Bi2Sr2CaCu2O8+δ

in Fig. 2(b) of Ref. [5]. Note, the low-temperature downturn
in χ−1

B1g
for p ∼ pev seen in Fig. 5 is a theoretical prediction

that can be checked by performing Raman spectroscopy at
lower temperatures. Finally, the inset of Fig. 5 shows the
doping dependence of T0 ≡ χ−1

B1g
(T = 0). Once again, the

nonmonotonic p dependence, with T0 coming close to zero
(equivalently, large χB1g) around p ∼ pev , captures what is
reported in Fig. 3 of Ref. [5].

FIG. 5. Temperature and doping dependence of the inverse ne-
matic susceptibility χ−1

B1g
in the (x2 − y2) channel. The T dependence

enhances considerably around pev , with Curie-Weiss 1/T scaling
above a cutoff temperature (black dashed line). The inset shows the
doping dependence of T0 ≡ χ−1

χB1g
(T → 0) with a peak near pev .

Conclusion. In summary, motivated by the pseudogap
state of the cuprates, we introduced the concept of a strong
interaction-driven “exceptional” van Hove singularity. It ap-
pears when the single-particle dispersion has a singular
correction that splits an otherwise simply connected Fermi
surface into multiply connected pieces. The exceptional van
Hove singularity describes the touching of two pieces of the
split Fermi surface. The associated saddle points of the renor-
malized dispersion are located, not on the high-symmetry
points, but on the high-symmetry lines of the Brillouin zone.
This feature is proximate to a second-order van Hove singu-
larity. Consequently, the logarithmic divergence of the density
of states is guaranteed to have a large prefactor. Most impor-
tantly, we argued that several hole-doped cuprates necessarily
encounter an exceptional van Hove point as they approach the
pseudogap endpoint, and we showed that the signatures of
the singularity can explain recent experiments [4–6,15]. We
expect the electronic dispersion to show features of the ex-
ceptional van Hove which can be detected by photoemission
[43,44] (see the discussion associated with Figs. S3– S5 of the
SM for further details [33]).

Finally, our work can be extended in two directions in
the future: first, to study interaction-driven second van Hove
singularities, and second, to study exceptional van Hove sin-
gularities in heavy fermions, where the Kondo coupling with
the localized spins provides a singular correction to the con-
duction electron dispersion.

Acknowledgments. We are thankful to M. C. O. Aguiar, Y.
Gallais, F. Piéchon, A. Sacuto, and L. Taillefer for insightful
discussions. We acknowledge financial support from French
Agence Nationale de la Recherche (ANR) Grant No. ANR-
19-CE30-0019-01 (Neptun).

L201121-4



EXCEPTIONAL VAN HOVE SINGULARITIES IN … PHYSICAL REVIEW B 107, L201121 (2023)

[1] L. van Hove, Phys. Rev. 89, 1189 (1953).
[2] See, e.g., N. W. Ashcroft and N. D. Mermin, Solid State Physics

(Saunders College Publishing, Philadelphia, 1976), Chap. 8.
[3] For reviews, see, e.g., C. Proust and L. Taillefer, Annu. Rev.

Condens. Matter Phys. 10, 409 (2019); I. M. Vishik, Rep. Prog.
Phys. 81, 062501 (2018); M. R. Norman and C. Pépin, ibid. 66,
1547 (2003).

[4] B. Michon, C. Girod, S. Badoux, J. Kačmarčík, Q. Ma, M.
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