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QMC-consistent static spin and density local field factors for the uniform electron gas
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Analytic mathematical models for the static spin (G−) and density (G+) local field factors for the uniform
electron gas (UEG) as functions of wave vector and density are presented. These models closely fit recent
quantum Monte Carlo (QMC) data and satisfy exact asymptotic limits. A simple functional form for G− is
developed; the same functional form parametrized for G+ yields an improvement over previous work. The
QMC-computed G± are consistent with a rapid crossover between theoretically derived small-q and large-q
expansions of G±. These expansions are completely determined by rs, the UEG correlation energy per electron,
and the UEG on-top pair distribution function. We demonstrate their utility by computing uniform electron
gas correlation energies over a range of densities. These models, which hold over an extremely wide range of
densities, are recommended for use in practical time-dependent density functional theory calculations of simple
metallic systems. A revised model of the spin susceptibility enhancement is developed that fits QMC data, and
does not show a ferromagnetic instability at low density.
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A critical quantity for evaluating the linear response of
an interacting uniform electron gas (UEG), or simple metal,
are the local field factors (LFFs) G±(rs, q, ω). The UEG
(sometimes called jellium) can be characterized by a Wigner-
Seitz density parameter rs = [3/(4πn)]1/3 and relative spin
polarization ζ = (n↑ − n↓)/n, for total density n = n↑ + n↓.
The density (spin-symmetric) LFF G+(rs, q, ω) governs the
density-density response χ (q, ω) of a many-electron density
to a wave vector q- and frequency ω-dependent perturbation
via [1]

χ−1(q, ω) = χ−1
0 (q, ω) − 4π

q2
[1 − G+(rs, q, ω)]. (1)

χ0(q, ω) is the response function of noninteraction electrons;
for the UEG, this is the Lindhard function [2]. Thus G+ is re-
lated to the exchange-correlation kernel fxc of time-dependent
density functional theory (TD-DFT) [3,4] as G+(rs, q, ω) =
−q2 fxc(rs, q, ω)/(4π ). The spin (antisymmetric) LFF governs
the paramagnetic spin response via [1]

χ−1
SzSz

(q, ω) = χ−1
0 (q, ω) + 4π

q2
G−(rs, q, ω). (2)

There exist many approximate expressions of G+ or fxc,
which range from those which are local in space and time
[5], nonlocal in space only (as in this work) [6,7], nonlocal
in time only [4,8], or nonlocal in both space and time [9–11].
However, there are no realistic expressions of G− other than
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that of Richardson and Ashcroft (RA) [9], which is based
on perturbation theory calculations, and is complicated by
typographical errors. As we make extensive comparisons to
the RA LFFs, we correct these typographical errors in Supple-
mental Material [12] Sec. S6. The RA LFFs are presumably
most realistic at higher densities typical of simple metals, and
less realistic at lower densities.

This Letter provides flexible, analytic expressions for the
static LFFs G±(rs, q) ≡ limω→0 G±(rs, q, ω) based on known
asymptotic limits. Free parameters are then fitted to recent
variational diagrammatic quantum Monte Carlo (QMC) cal-
culations [13]. This QMC data covers the region below q =
2.34kF for rs = 1–5 for G−, but is only available for rs = 1
and 2 for G+. The current model of G+(rs, q) also more
reliably fits older QMC data [14] that covers rs = 2, 5, and
10, but with no data below kF, than the expression due to
Corradini et al. [7], and provides accurate predictions of the
UEG correlation energy.

Both G±(rs, q) are characterized by a rapid crossover be-
tween small- and large-q asymptotics near q = 2kF, with kF =
(3π2n)1/3 the Fermi wave vector. This crossover is likely
responsible for the “2kF-hump” phenomenon [15,16]: A max-
imum in G+(q) may exist for q ≈ 2kF. The presence of a
peak can markedly change the properties of phonon dispersion
[17], superconducting critical temperatures [18], etc., when
using G+(q) to approximate the LFF of simple metals in
TD-DFT. Moreover, explicit inclusion of the spin dependence
of the electronic response via G− is crucial for describing,
for example, pairing of electrons in superconducting phases
[19,20]. Thus a realistic approximation of G− at all possible
densities and wave vectors is needed to understand the spin
dependence of the electronic response. Such a model G−
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would enable realistic calculations of simple metals using the
Kukkonen-Overhauser framework [19] or other theories of
linear response.

In this Letter, we present the formulas for G+ and G− for
all wave vectors given only the density rs. The details of the
curve fitting, asymptotic behavior, and code are given in the
Supplemental Material [12] (see also Refs. [21–24] therein).
The formulas may look complex, but are simple to implement
computationally; a documented PYTHON implementation is
provided in the public code repository [25]. More, the models
with optimized parameters can be accessed from PyPI by pip
installing “AKCK_LFF.”

The QMC data for both G+ and G− closely follow the
theoretical asymptotic behavior of varying as q2 at small q.
The coefficients of q2 are determined by the compressibility
and susceptibility sum rules. The QMC data rise somewhat
faster than q2 to about 2kF, and then fall rapidly. Theory pre-
dicts that the large-q behavior of G± is B± + Cq2. Although
B+ and B− differ, they are determined by rs and the on-top
pair correlation function. C is the same for both G±. The
qualitatively similar behaviors of the LFFs permit us to use
the same analytically simple expressions, defined below in
Eqs. (3) and (4), to model G+ and G−.

The fitting process, partially described below, simply al-
lows the small-q behavior to rise above q2, combined with an
adjustable exponential cutoff near 2kF. This cutoff modulates
the transition to the large q asymptotics. The recent QMC data
stops at 2.34kF, but is consistent with the large-q asymptotic
behavior, assuming a simple transition. The following equa-
tions completely specify the local field factors.

Let x ≡ q/kF, then we model both G± as

Gj (rs, q) = x2[Aj (rs) + α j (rs)x4]H (x4/16; a3 j, a4 j )

+[C(rs)x2 + Bj (rs)][1 − H (x4/16; a3 j, a4 j )],

(3)

α j (rs) = a0 j + a1 j exp(−a2 j rs), (4)

where j = +,−. The smoothed step function

H (y; β, γ ) = (eβγ − 1)e−βy

1 + (eβγ − 2)e−βy
(5)

is constructed to satisfy three limits: H (0; β, γ ) = 1,
H (γ ; β, γ ) = 1/2, and H (∞; β, γ ) = 0. While H has no
physical basis, it represents a simple and reasonable transition
from the low-q behavior of the QMC data to the large-q
asymptotics. The ai j parameters are fitted to QMC data.

Equation (3) satisfies the exact small-q expansions (SQEs)
of G±, which are identical in structure. For G+, this is the
compressibility sum rule,

lim
q→0

G+(rs, q) = A+(rs)x2 + O(x4), (6)

A+(rs) = − k2
F

4π

∂2eLDA
xc

∂n2
(rs), (7)

with eLDA
xc the local-density approximation [26–28] for the

UEG exchange-correlation energy density. Unless specified,
we use hartree atomic units, h̄ = me = e2 = 1; 1 hartree en-
ergy unit is 2 Ry, or 27.211 386 eV; 1 bohr length unit
is 0.529 177 Å [29]. The SQE of G− is the susceptibility

sum rule [1]:

lim
q→0

G−(rs, q) = A−(rs)x2 + O(x4), (8)

A−(rs) = − 3π

4kF

∂2εLSDA
xc

∂ζ 2
(rs, 0). (9)

For simple polynomial approximations of A±(rs) valid for
1 � rs � 5, see Eqs. (6) and (7) of Ref. [13]. εLSDA

xc is the local
spin-density approximation for the UEG exchange-correlation
energy per electron, for which we use the Perdew-Wang ap-
proximation (PW92) [28]. The quantity

αxc(rs) ≡ ∂2εLSDA
xc

∂ζ 2
(rs, 0) (10)

is often called the spin stiffness [30]. The exchange con-
tribution to the spin stiffness can be shown to be αx(rs) =
−kF/(3π ) [26,27,31].

Equation (3) also satisfies the large-q expansions (LQEs)
of G±, again identical in structure. For G+ [7],

lim
q→∞ G+(rs, q) = C(rs)x2 + B+(rs) + O(x−2), (11)

C(rs) = − π

2kF

∂

∂rs

[
rsε

LDA
c (rs)

]
. (12)

The function B+(rs) is parametrized as [14]

B+(rs) = 1 + (2.15)r1/2
s + (0.435)r3/2

s

3 + (1.57)r1/2
s + (0.409)r3/2

s

. (13)

The LQEs of G− and G+ are connected as [1,9,32,33]

lim
q→∞ G−(rs, q) = C(rs)x2 + B−(rs) + O(x−2), (14)

B−(rs) = B+(rs) + 2g(rs) − 1, (15)

i.e., they differ only by the on-top pair distribution function
g(rs), which we approximate as [34]

g(rs) = 1

2

1 + 2(0.193)rs

{1 + (0.525)rs[1 + (0.193)rs]}2
. (16)

To fit Eq. (3) for G±, we minimize the deviation from the
QMC-computed values of G±, weighted by their correspond-
ing uncertainties. The fitting method is described fully in
Supplemental Material Sec. S1. Table I presents fitted param-
eters ai j and their uncertainties estimated using a bootstrap
method. This method is described in Supplemental Material
Sec. S1. We recommend using the full precision of the pa-
rameters rather than truncated values based on uncertainty
estimates.

Figure 1 compares our fitted G+ to the data of Ref. [13] and
to the older QMC data of Moroni et al. [14] for rs = 2. The
quality of fit is excellent, lying within the uncertainty of the
QMC data at all computed points. The LFF of Corradini et al.
[7], although fitted to the Moroni et al. data, fits it poorly. The
LFF developed here, fitted to the Moroni et al. data at rs = 5
and 10 only, fits it rather well.

The Supplemental Material presents further plots of G+
that demonstrate the quality of fit to the data of Refs. [13,14]
in Figs. S1–S3. Supplemental Figs. S8 and S9 show that our
model realistically extrapolates to values of rs for which there
are no QMC data. For surface plots of G+ at metallic densities,
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TABLE I. Fit parameters ai j for the model LFFs of Eq. (3) and the estimated uncertainties in the parameters. i = 0, 1, 2, 3, 4, and j = + for
the G+ parameters, and j = − for the G− parameters. The rightmost column uses a revised parametrization for the correlation spin stiffness,
described below. Only a0− is sensitive to the choice of αc, although that may be due to its relatively larger uncertainty.

j = + (G+) − (G−) − (G−), new αc

a0 j −0.00451760 ± 0.002 −0.00105483 ± 0.0008 −0.000519869 ± 0.0008
a1 j 0.0155766 ± 0.002 0.0157086 ± 0.0006 0.0153111 ± 0.0005
a2 j 0.422624 ± 0.2 0.345319 ± 0.05 0.356524 ± 0.05
a3 j 3.516054 ± 0.5 2.850094 ± 0.1 2.824663 ± 0.1
a4 j 1.015830 ± 0.04 0.935840 ± 0.02 0.927550 ± 0.02

see Figs. S12 and S13. At a very high density, rs = 0.1 in
Fig. S8, our model and the RA G+(rs, q) exhibit very similar
behaviors: a simple interpolation between small- and large-q
asymptotics with a hump near 2kF. At a very low density,
rs = 100 in Fig. S9, our model tends to a smooth, hump-
free interpolation between the two regimes, but the RA G+
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FIG. 1. Comparison of the model G+ of Eq. (3) (blue, solid
line) and Table I with the QMC data of Ref. [13] (black circles
with vertical uncertainties) and [14] (magenta squares with vertical
uncertainties) for rs = 2. (a) presents G+ and (b) 4πG+(kF/q)2 =
k2

F fxc(q). The latter quantity, essentially the exchange-correlation
kernel, is a sensitive test of the fit quality. Also shown are the LFFs of
Corradini et al. [7] (gray, dashed-dotted), which is fitted to the data
of Ref. [14], and of RA [9] (green, dashed). The small-q expansion
(SQE) of Eq. (6) (teal, dotted) and large-q expansion (LQE) of
Eq. (11) (orange, dashed) are also shown.

exhibits likely unphysical oscillations. This latter behavior of
RA is consistent with its derivation from perturbation theory.

Moreover, from Figs. 1 and S1–S3, one can see that the
QMC data validate the theoretically derived asymptotic ex-
pansions in the small-q limit, and are also consistent with the
large-q limit. This is direct validation of the compressibility
sum rule. All parameters in G+(rs, q) are completely deter-
mined by rs and the UEG correlation energy per electron.

Figure 2 plots the errors in the UEG correlation energies
computed using this model and a few common approx-
imations for G+. The model of this work systematically
overestimates the correlation energies, but makes errors
comparable to any of the LFFs presented there. More ac-
curate correlation energies require a frequency-dependent
G+(rs, q, ω), such as those of Refs. [9–11]. The method of
computation is described in Supplemental Material Sec. S5,
and a validation of our method using the random phase
approximation (RPA, GRPA

+ = 0) is given in Supplemental
Table S2.

Figure 3 compares our fitted G− to the Kukkonen-Chen
QMC data [13] for rs = 4. The quality of fit is again excel-
lent, lying within the QMC uncertainties at all points. The
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FIG. 2. Percent deviation (PD) from the Perdew-Wang ap-
proximation [28] of the UEG correlation energy, using a few
common approximations for G+. We define the PD as (100%)[1 −
εapprox

c /εPW92
c ]. The solid blue curve is computed using Eq. (3) and

Table I. The dashed green curve is the static limit of the RA LFF
[9], and the dotted green curve is its frequency-dependent form. The
dashed-dotted gray curve is due to Ref. [7], and the dashed-dotted
yellow curve to Ref. [11]. The numeric integration for both variants
of the RA LFF appears to become unstable for rs � 45.
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FIG. 3. Comparison of the model G− of Eq. (3) (blue, solid
curve) and Table I with the QMC data of Ref. [13] (black cir-
cles with vertical uncertainties) for rs = 4. (a) presents G− and
(b) 4πG−(kF/q)2. The static RA [9] LFF is also shown (green,
dashed). The small-q expansion (SQE) of Eq. (8) (teal, dotted) and
the large-q expansion (LQE) of Eq. (14) (orange, dashed) are also
shown.

transition between small- and large-q asymptotics is apparent
from Fig. 3(b). Equation (3) avoids the unusual oscillations
present in the RA LFF, which is a rational polynomial in q2.

Supplemental Figs. S4–S7 demonstrate the high quality
of fit to G−(rs, q) at other values of rs ∈ {1, 2, 3, 5}. Ex-
trapolations to the same high, rs = 0.1, and low, rs = 100,
densities are made in Figs. S10 and S11, respectively. The
same conclusions regarding G+ hold for G−: Our model and
RA’s are consistent at high densities, but RA’s model becomes
unphysically oscillatory at low densities. For surface plots of
G− at metallic densities, see Fig. S14.

These figures also show that the QMC data validate the
asymptotic expansions of G−, and thus the spin-susceptibility
sum rule. Note that G−(rs, q) depends on the parameters of
G+(rs, q) and the UEG on-top pair distribution function via
Eq. (15).

Last, we discuss the accuracy of the PW92 parametrization
of the correlation spin stiffness αc(rs). It can be observed
from either Fig. 4 or Table S1 that the enhancement of the
interacting spin susceptibility χs, over the noninteracting spin
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FIG. 4. Susceptibility enhancement χs/χ
(0)
s computed with

QMC [13,35] (black dots with almost imperceptible error bars), us-
ing Eq. (17) with the Perdew-Wang (PW92) [28] approximation for
αc (orange, dashed), the reparametrized form motivated here (blue,
solid), or the older expression due to Perdew and Zunger (PZ81) [38]
(green, dashed-dotted). Although PZ81 includes no explicit informa-
tion on αc, it is often used in solid-state and time-dependent density
functional calculations. The inset shows the range 0.5 � rs � 6.

susceptibility χ (0)
s (both per unit volume),

χs

χ
(0)
s

=
{

1 −
(

4

9π

)1/3 rs

π
+ 3

(
4

9π

)2/3

r2
s αc(rs)

}−1

, (17)

predicted by PW92 is not consistent with QMC calculations
for rs > 10 bohrs [13,35]. For all applications besides low-
density jellium, extensive tests have shown PW92 to be robust.
In units of the electron spin moment, χ (0)

s = 3n/k2
F. Recent

QMC calculations of χs/χ
(0)
s and of the UEG correlation

energy at low densities [36] make it possible to accurately fit
αc directly. The Perdew-Wang model of αc(rs) is

αc(rs) =2A(1 + α1rs)

× ln

[
1 + 1

2A
(
β1r1/2

s + β2rs + β3r3/2
s + β4r2

s

)
]
,

(18)

where A, β1, and β2 are constrained to ensure the analytic
high-density expansion [30]

lim
rs→0

αc(rs) ≈ − 1

6π2
ln rs + 0.035 474 401. (19)

We have recomputed the constant term. To refit αc, we
minimized the deviation from the tabulated values of the sus-
ceptibility enhancement [13,35], and from approximate values
of the spin stiffness at low densities [36]. See Supplemental
Material Sec. S1 for a description of this method. Table II
presents fitted parameters and expansion coefficients. Our
parametrization is recommended only for applications where
a higher precision of αc(rs > 10) is needed: Our model and
PW92 appear to differ at most by about 3.3% at rs = 18.3
bohrs. We still use the PW92 parametrization of αc in our
model G− via Eq. (9). Table I also provides model parameters
for G− using the current parametrization of αc. Consistent
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TABLE II. Left two columns: Parameters appearing in Eq. (18)
for the correlation spin stiffness, αc(rs ). Right two columns:
Expansion coefficients derived using these parameters, such
that limrs→0 αc(rs ) = c0 ln rs − c1 + c2rs ln rs − c3rs + · · · and
limrs→∞ αc(rs ) = −d0/rs + d1/r3/2

s + · · · .

αc parameter Expansion coefficient

A 0.016886864 c0 −0.016886864
α1 0.086888870 c1 0.035474401
β1 10.357564711 c2 0.001467281
β2 3.623216709 c3 0.005782963
β3 0.439233491 d0 0.210976870
β4 0.411840739 d1 0.225009568

with the improvements in αc, the quality of fit is numerically
improved, although the two variants of G− are visually indis-
tinct.

Consistent with recent QMC-driven analyses of the low-
density phases of the UEG [36,37], our parametrization of αc

yields no divergence in the susceptibility enhancement. The

present and PW92 parametrizations of αc both predict near
divergences in χs/χ

(0)
s . Such a divergence would indicate a

ferromagnetic instability in the low-density UEG, whereby
a transition from the paramagnetic to ferromagnetic fluid
phases is possible. Both Refs. [36,37] find that a transition
to a Wigner crystal phase occurs before a transition to the
ferromagnetic fluid phase.

In summary, this Letter presents straightforward analytic
models of the static density (spin-symmetric) and spin (an-
tisymmetric) local field factors of the uniform electron gas
(UEG), which are fitted to recent QMC data [13]. These
models hold at an extremely wide range of densities, and the
model of G+ predicts UEG correlation energies with accuracy
sufficient to recommend use in practical calculations of simple
metallic systems. We have also reparametrized the correlation
spin stiffness of the UEG using QMC data [13,35,36], which
shows no transition to a ferromagnetic fluid phase.

A.D.K. thanks Temple University for support from a pres-
idential fellowship. We acknowledge helpful discussions with
John P. Perdew.
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