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Flavor symmetry breaking in spin-orbit coupled bilayer graphene
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Recent experimental discovery of flavor symmetry breaking metallic phases in Bernal-stacked bilayer
graphene points to the strongly interacting nature of electrons near the top (bottom) of its valence (conduction)
band. Superconductivity was also observed in between these symmetry breaking phases when the graphene
bilayer is placed under a small in-plane magnetic field or in close proximity to a monolayer WSe2 substrate.
Here we address the correlated nature of the band edge electrons and obtain the quantum phase diagram
of their many-body ground states incorporating the effect of proximity induced spin-orbit coupling. We find
that in addition to the spin/valley flavor polarized half and quarter metallic states, two types of intervalley
coherent phases emerge near the phase boundaries between the flavor polarized metals. Both spin-orbit coupling
and in-plane magnetic field disfavor the spin-unpolarized valley coherent phase. Our findings suggest possible
competition between intervalley coherence and superconducting orders, arising from the intriguing correlation
effects in bilayer graphene in the presence of spin-orbit coupling.
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Introduction. Near the Dirac points, electrons in graphene
mono and multilayer structures acquire an emergent valley
degree of freedom [1–3]. The combined spin-valley flavor
symmetry is often broken spontaneously when the electron-
electron Coulomb interaction is enhanced relative to the
kinetic energy of individual electrons. One of the first ex-
perimental manifestations of such broken symmetries was
the appearance of integer Hall conductance plateaus outside
of graphene’s normal fourfold degenerate quantum Hall se-
quences [4–9]. Here electron kinetic energy is completely
quenched by a strong magnetic field. More recently, the exper-
imental discovery of a plethora of strongly correlated quantum
phases [10–15] in twisted bilayer graphene unveiled the magic
of moiré band engineering that leads to a pair of nearly-
flat bands when the twist angle is close to 1◦. The set of
interaction-induced insulating ground states at integer moiré
band fillings exemplifies the richness of the quantum phenom-
ena that can arise from correlation-induced spontaneous flavor
symmetry breaking.

Not long after the moiré paradigm, people observed
flavor symmetry breaking metallic states, e.g., half and
quartermetals, in both (nonmoiré) Bernal-stacked bilayer
graphene (BLG) [16–20] and rhombohedral-stacked trilayer
graphene [21], indicating their strongly interacting nature at
low electron or hole doping. However, different from previous
examples, these nonmoiré graphene multilayers do not host
narrow or flat bands. The enhanced interaction is believed to
originate from the finite bandgap induced by the vertical dis-
placement field and the associated density of states including
van Hove singularities [22]. More interestingly, proximate to
the transition regions between different metallic phases, su-
perconductivity was also reported [16,19,20,23]. In particular,
in the bilayer case, the superconducting state was found to
be stabilized by either a small in-plane magnetic field [16] or
by close proximity to a WSe2 substrate [19,20]. The nature

of the flavor symmetry breaking phases and its relation to
superconductivity [24–28] remains unclear.

In this Letter, we provide a full account of the quantum
phase diagram of BLG under the influences of screening by
nearby metallic gates and spin-orbit coupling (SOC) induced
by a WSe2 substrate, following recent experiments [16–19]. In
addition to the spin/valley polarized half and quartermetals,
we identify two types of intervalley coherent phases near the
transitions between the metallic states. The SOC breaks the
SU (2) spin rotational symmetry in each valley and therefore
reduces the degeneracies of the flavor symmetry breaking
ground states. The intervalley coherent state without net spin-
polarization is suppressed by the SOC, pointing to possible
competition with superconductivity which is enhanced by
spin-orbit coupling [19].

Symmetries and mean-field Hamiltonian. At low ener-
gies, the noninteracting electronic structure of BLG per spin
(↑/↓) and valley (+/−) can be accurately described by a
four-band effective model in the layer and sublattice ba-
sis. Including the next-nearest neighbor and the third-nearest
neighbor interlayer hopping terms splits the quadratic band
touching into four linear band crossings located around the
Dirac point, and induces a divergence, i.e., the van Hove
singularity, in the density of states (DOS). Application of
an interlayer electric potential, D, gaps out the band cross-
ings and results in flattening of the dispersion near both
bandedges. This field-induced effective bandflattening is the
mechanism for strong correlation effects in this nonmoiré
system. The parameters of the Hamiltonian are taken from
Ref. [29] and detailed descriptions of the noninteracting band-
structure entering our theory is given in the Supplemental
Material [30].

In the absence of SOC, BLG has time reversal symmetry
T , total charge conservation U (1)c, valley charge conservation
U (1)±, and independent spin rotational symmetry SU (2)± in
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FIG. 1. Phase diagram of Bernal-stacked bilayer graphene as a
function of interlayer electric potential D and carrier density n. We
identify spin-valley polarized (SVP) phases with one (SVP1) or three
(SVP3) partially filled flavors and spin (or valley) polarized phases
(SP/VP) with two partially filled flavors. The intervalley coherent
(IVC) state is spin un-polarized while the IVC-SP state has a fixed
spin polarization in each valley. The interaction parameters are taken
to be d = 30 nm and ε = 10.

each valley. The interaction Hamiltonian takes the form

HI = 1

2A

∑

α,β

∑

k,k′,q

V (q)ĉ†
α,k+qĉ†

β,k′−q
ĉβ,k′ ĉα,k, (1)

and respects all the symmetries of BLG. In Eq. (1), α, β

are composite indices {l, σ, s, τ } of layer (l = 1, 2), sub-
lattice (σ = A, B), spin (s =↑ / ↓), and valley (τ = ±),
respectively. A is the area of the system. We consider
the gate-screened (long-ranged) Coulomb interaction V (q) =
2πe2/(εq) tanh (qd ) where ε is the dielectric constant of the
environment and d is the distance to the dual metallic gates.
We take both ε and d as variables in our theory to control the
strength of Coulomb interaction.

The mean-field Hamiltonian includes the electrostatic
Hartree contribution, accounting for the electric potential gen-
erated by the interlayer charge polarization, and the Fock
(exchange) contribution,

HF (k) =
3∑

i, j=0

�i j (k)τi ⊗ s j, (2)

where τi and s j are Pauli matrices for the valley and
spin degrees of freedom. �i j (k) is a 4 × 4 matrix
whose elements are given by [�i j (k)](l ′σ ′ ),(lσ ) = −∑

k′ V (k −
k′)〈ĉ†

l,σ,s,τ,k′τ
ττ ′
i sss′

j ĉl ′,σ ′,s′,τ ′,k′ 〉/4A, where repeated indices are
summed over. We perform self-consistent mean-field calcu-
lations to study the evolution of the ground states as the
carrier density and the interlayer potential are independently
tuned.

Flavor symmetry breaking phase diagram. Our theoretical
approach is guided by experimental observations of flavor
symmetry breaking metallic states in the low density regime
where Coulomb interaction becomes important. Figure 1 sum-
marizes the phase diagram as a function of the interlayer
potential D and the charge density n, assuming typical exper-
imental values for the gate distance d = 30 nm and dielectric

FIG. 2. Dependence of the phase diagram on Coulomb interac-
tion parameters: (a) screening by metallic gates at a distance d and
(b) environmental dielectric constant ε. The color scheme is the same
as in Fig. 1. In both (a) and (b), the interlayer potential is set at
D = 50 meV; ε = 10 is used in (a) and d = 30 nm is used in (b).

constant ε = 10. In the high density limit, the ground state,
as expected, is the normal Fermi liquid with a paramagnetic
(PM) response because of the dominance of the kinetic energy
over Coulomb interaction.

As the hole density decreases, the ground state undergoes
consecutive correlation-driven transitions into a cascade of
flavor ordered phases. The ground states with spin polariza-
tion (SP) or valley polarization (VP) partially occupy two
flavors, leaving the other two flavors empty of holes, and are
degenerate in energy. The SP state is a spin magnet with
extra degeneracies due to the SU (2)± symmetry. The VP
state, in contrast, has a net orbital magnetization arising from
the valley-contrasting Berry curvature. On the other hand,
the spin-valley polarized (SVP) ground states spontaneously
break both spin and valley degeneracies and partially occupy
either one (SVP1) or three (SVP3) out of the four flavors.
They have both spin and orbital magnetizations and are ex-
pected to exhibit anomalous Hall effect due to nonzero Berry
curvatures.

In the transition regions between the SVP and the SP/VP
states, two types of intervalley coherent states emerge. The
IVC state is spinunpolarized and typically has two identical
(valley coherent) Fermi surfaces for the two spin flavors. The
IVC-SP state inherits the tendency toward spin polarization
at low densities and has only one Fermi surface. Both the
IVC and IVC-SP states have degeneracies generated by the
SU (2)+ × SU (2)− spin rotation.

Screening. The Coulomb interaction strength in our theory
is controlled by the distance d to the dual metallic gates and
the dielectric constant ε of the barrier material. The gate
screening suppresses the long range part of the Coulomb
interaction with momentum q < d−1. As d increases, the fla-
vor symmetry breaking transitions shift toward higher hole
densities as shown in Fig. 2(a). When d reaches a value
about dc = 15 nm, the phase diagram becomes nearly inde-
pendent of d , suggesting the critical density (D dependent)
for the cascade of transitions is d−2

c = 0.4 × 1012 cm−2.
When the interelectron spacing becomes less than dc, the
gate screening no longer affects the phase transitions. We
note that the paramagnetic Sym-12 state observed in exper-
iments [16,19,20] appears in the phase diagram at small gate
distances [Fig. 2(a)], suggesting that the Sym-12 state signi-
fies strongly screened Coulomb interaction.
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FIG. 3. (a) Self-consistent mean-field bandstructure of the IVC-
SP ground state at n = −0.27 × 1012 cm−2 and D = 30 meV. Solid
(dashed) line represents the dispersion of the occupied (empty) spin
flavor, and the line color indicates the wavefunction weight on each
valley. The black dashed line marks the Fermi energy. (b), (c) The
amplitude (b) and phase (c) of the intervalley coherence order pa-
rameter for the IVC-SP ground state shown in (a). (d), (e) Schematic
illustrations of the two types of valley anisotropy scenario: (d) easy
axis and (e) easy plane.

Unlike the gate screening, the dielectric constant sup-
presses the full range of the Coulomb interaction uniformly
independent of interelectron spacing. As a consequence, when
ε−1 (proportional to the interaction strength) increases, the
flavor symmetry breaking phases expand to ever larger hole
densities as shown in Fig. 2(b). Most importantly, Fig. 2(b)
shows that increasing the interaction strength disfavors the
intervalley coherent phases, including both the IVC and the
IVC-SP phases, relative to the flavor polarized phases. Com-
pared to flavor polarization, forming intervalley coherence
saves kinetic energy at the cost of gaining less exchange
interaction energy; therefore, increasing interaction strength
will eventually favor flavor polarized phases.

Intervalley coherence. In the transition regions between the
SVP phases and the SP/VP phases, the ground state tends to
form spontaneous coherence between the two valleys, giving
rise to valley hybridized bands. Figure 3(a) plots the typical
bandstructure for the IVC-SP phase where only one spin fla-
vor is occupied (solid line). For the unoccupied spin flavor
(dashed line), no intervalley coherence is established and the
bands from the two valleys remain decoupled. On the other
hand, for the IVC phase, the intervalley coherence is equal in
magnitude for both spin copies. For both the IVC-SP and the
IVC phases, because of the SU (2)+ × SU (2)− symmetry, in-
dependent rotation of spin directions in each valley generates
degenerate ground states, and the spin polarization directions
in the IVC-SP phase, for example, can be different in the two
coupled valleys.

To understand the symmetry of the intervalley coherence,
we define the order parameter: ρIV

ss′ (k) = 〈ĉ†
+,s′,kĉ−,s,k〉, where

ĉ†
τ,s,k is a vector in sublattice and layer basis. We can decom-

pose ρIV as

ρIV(k) = ρ⊥(k)
, (3)

where ρ⊥(k) is the valley coherence and 
 describes the spin
structure in the two valleys. Figures 3(b) and 3(c) provide the
amplitude and phase of ρ⊥(k) = |ρ⊥(k)|eiφk as a function of

momentum. The amplitude |ρ⊥(k)| drops sharply to nearly
zero at the Fermi surface [Fig. 3(b)]. The phase φk varies only
slightly around a spontaneous value φk ≈ φ and the ground
state is degenerate for arbitrary angle φ.

To best illustrate the SU (2)± symmetry, we express 
 in
terms of the spin SU (2) rotation operator: R± = eiθ±n±·s/2,
acting on the +K and −K valleys, respectively. n± are ar-
bitrary unit vectors. For the IVC-SP phase, we have only one
copy of spin polarization occupied, 
 = R+|+↑〉〈−↑|R−1

− .
For the IVC phase, the two orthogonal spin copies are equally
occupied, 
 = R+|+↑〉〈−↑|R−1

− + R+|+↓〉〈−↓|R−1
− . The

ground states generated using arbitrary n± and θ± are all
degenerate in the absence of SOC. Intervalley coherent states
have also been identified theoretically in rhombohedral tri-
layer graphene [31–33], where the order parameter has a
nonzero phase winding [31] in contrast to the nearly uniform
phase here.

The competition between flavor polarized phases and inter-
valley coherent phases can be understood in terms of n and D
dependent valley anisotropy. Figures 3(d) and 3(e) schemati-
cally illustrate two types of valley anisotropy scenarios. Valley
polarized phases are favored by easy axis valley anisotropy.
Intervalley coherent phases, corresponding to in-plane valley
ordering, are favored when valley anisotropy is easy plane
type, analogous to an XY magnet. One can write down a
phenomenological Ginzburg-Landau energy functional as

Eani = K⊥|ρ⊥|2 + Kzρ
2
z , (4)

where ρz = ρ+ − ρ− is the valley polarization density. K⊥ and
Kz are in-plane and out-of-plane valley anisotropy constants.
Based on mean-field calculations, we find that the ground
state energy is isotropic with respect to in-plane polariza-
tion angle φ. Similar to spin polarization in a ferromagnet,
the anisotropy constant toward valley-polarization takes the
form Kz = N−1

0 − IV P
ex where N0 is the DOS per flavor at

Fermi energy and IV P
ex ∝ V 〈ĉ†

τ ĉτ 〉 is the exchange interaction
constant. Kz < 0 corresponds to the Stoner criteria for valley-
polarization instability. On the other hand, forming valley
coherence does not cost kinetic energy but instead gains an
exchange energy so that K⊥ = −IIV

ex , where IIV
ex ∝ V 〈ĉ†

τ ĉ−τ 〉.
When K⊥ < Kz and K⊥ < 0, the ground state prefers to have
finite ρ⊥; when Kz < K⊥ and Kz < 0, valley polarization is
preferred. The competition between the kinetic energy cost
and the exchange energy gain determines the type of valley
anisotropy, and therefore selects the ground state as D, n and
interaction strength are varied.

Ising spin-orbit coupling. Placing the graphene bilayer in
close proximity to a WSe2 substrate introduces SOC via inter-
facial van der Waals interaction. The induced SOC includes
two contributions: the Ising contribution inherited from the
WSe2 layer and the Rashba contribution arising from inver-
sion symmetry breaking at the interface. Because the Rashba
SOC is offdiagonal in sublattice, it has a negligible effect
on the states near the bandedges of bilayer graphene where
electronic wave function is sublattice polarized. Therefore, we
focus on the Ising SOC which is diagonal in sublattice and a
has dominant effect on the band-edge states.

The Ising SOC Hamiltonian is given by

Hso = 1
2λsoτzszPl=1, (5)
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FIG. 4. (a) Phase diagram of bilayer graphene with proximity
induced Ising SOC. The SOC strength is λso = 1.0 meV. The color
scheme is the same as in Fig. 1. (b) Dependence of the phase dia-
gram on the SOC strength λso. The interlayer potential is fixed at a
typical value of D = 70 meV. (c) Schematic illustration of the total
energy differences without and with the presence of the Ising SOC.
�Eso ≈ |n|λso/2 for the SVP1, IVC-SP, and SP phases.

where λso is the SOC strength and Pl=1 projects to the bottom
layer (l = 1) which is closest to the WSe2 substrate. Hso

introduces a spin quantization axis perpendicular to the layer
and breaks the SU (2)± symmetries.

Figure 4(a) plots the mean-field phase diagram in the pres-
ence of the Ising SOC. Different from the diagram in Fig. 1
in the absence of Ising SOC, the ground states no longer
have spin rotational symmetries. The Ising SOC selects a
particular spin-valley configuration for each type of flavor
symmetry breaking phases as listed in Table I. Because of
the flavor-dependent band splitting caused by Ising SOC, the
three occupied flavors in the SVP3 phase have unequal hole
populations (n/3 + δn, n/3 + δn, n/3 − 2δn). For the IVC
phase, the Ising SOC tilts the valley order to have a small
out-of-plane component, ±δn, which is opposite for opposite
spins [34]. In both cases, δn ∝ N0λso when λso is small (See
Fig. S4 of the Supplemental Material [30]).

The most prominent feature in Fig. 4(a) is the suppression
of the IVC phase when Ising SOC is included. To best illus-

TABLE I. Flavor configurations for different symmetry break-
ing phases without (λso = 0) and with (λso �= 0) proximity induced
spin-orbit coupling. For flavor polarized phases, the table element
represents the valley diagonal component of the density matrix; for
intervalley coherent phases it represents valley off-diagonal compo-
nent of the density matrix. η = sin θ cos θ represents the out-of-plane
tilting of the valley pseudo-spin by an angle of θ . (See the Sup-
plemental Material [30] for detailed discussions.) R± indicates spin
rotation degeneracy of the ground states.

Phases λso = 0 λso �= 0

SVP1 R+|+↑〉〈+↑|R−1
+ |+↓〉〈+↓|

IVC-SP R+|+↑〉〈−↑|R−1
− |+↓〉〈−↑|

SP
∑

τ Rτ |τ↑〉〈τ↑|R−1
τ /2 (|+↓〉〈+↓| + |−↑〉〈−↑|)/2

IVC
∑

s R+|+, s〉〈−, s|R−1
− /2 (|+↑〉〈−↑| − |+↓〉〈−↓|)η

SVP3 (I − R+|+↑〉〈+↑|R−1
+ )/3 (I − |+↑〉〈+↑|)/3

trate this trend, we plot the phase diagram as a function of
λso in Fig. 4(b). It can be understood approximately assuming
that the Ising SOC splitting projected to the band basis is
moment independent, which is indeed the case for states near
the bandedges [30]. The total energy decrease caused by Hso

is nearly identical, �Eso ≈ |n|λso/2, for the SVP1, SP, and
IVC-SP phases as schematically shown in Fig. 4(c). In the
IVC phase, the total energy change is dominated by kinetic
energy cost associated with the the out-of-plane tilting and
is a second order correction ∝ N0λ

2
so (See Fig. S4 of the Sup-

plemental Material [30]). For the SVP3 phase, the total energy
change to the first order in λso is roughly −�Eso/3. Clearly the
IVC phase is disfavored relative to its neighboring phases as
λso increases. The SVP1/IVC-SP and the IVC-SP/SP phase
boundaries, however, remain nearly unchanged because these
phases gain the same amount of energy from Ising SOC.

In-plane magnetic field. Applying a small in-plane mag-
netic field has been shown to stabilize superconductivity [16].
Here we consider its effect on flavor symmetry breaking.
Because of the small interlayer spacing in bilayer graphene,
a low in-plane magnetic field has negligible orbital ef-
fect [35,36] (also see the Supplemental Material [30] for
details). What remains dominant is the Zeeman effect with
magnitude ∼10−1 meV for B ∼ 1T . The Zeeman Hamiltonian
is

HZ = 1
2 EZszτ0, (6)

where EZ is the Zeeman splitting. Analogous to the effect of
the Ising SOC, HZ breaks the spin degeneracy of the ground
state. It selects a set of ground states with different spin con-
figurations compared to those in Table I. However, the total
energies for the flavor breaking quantum phases change in
the same manner as shown in Fig. 4(c) (see the Supplemental
Material [30] for detailed discussion). Therefore we expect
the phase diagram in the presence of such in-plane magnetic
field will look qualitatively the same as in Figs. 4(a) and (b).
Note that the preferred spin axis under the Ising SOC and the
in-plane field are orthogonal to each other.

Discussion. Superconductivity in BLG so far relies on ei-
ther the proximity induced SOC or an applied small in-plane
magnetic field. Our mean-field calculations find that both of
these effects suppress the IVC phase relative to its neighboring
flavor polarized phases, which points to possible competition
between the IVC order and the superconducting order. We
believe that this suppression of the competing IVC phase is
what leads to superconductivity in BLG. Moreover, experi-
mental observations of flavor symmetry breaking phases vary
from device to device depending sensitively on the parameter
details as shown in the current work. Our predicted phase
diagrams should be tested in future experiments.

Flavor symmetry breaking transitions have also been found
in magic angle bilayer graphene, which features a similar hi-
erarchy of sequentially flavor broken phases. The superlattice
gap limited one-electron-per-moiré-cell electron filling allows
correlated insulating states separating the cascade of flavor
transitions.
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