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Non-Hermitian descriptions often model open or driven systems away from the equilibrium. Nonetheless,
in equilibrium electronic systems, a non-Hermitian nature of an effective Hamiltonian manifests itself as
unconventional observables such as a bulk Fermi arc and skin effects. We theoretically reveal that spin-dependent
quasiparticle lifetimes, which signify the non-Hermiticity of an effective model in the equilibrium, induce the
anomalous Hall effect, namely, the Hall effect without an external magnetic field. We first examine the effect
of nonmagnetic and magnetic impurities and obtain a non-Hermitian effective model. Then, we calculate the
Kubo formula from the microscopic model to ascertain a non-Hermitian interpretation of the longitudinal and
Hall conductivities. Our results elucidate the vital role of the non-Hermitian equilibrium nature in the quantum
transport phenomena.
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Introduction. A description of a material relies on a
Hamiltonian. For an electronic system, it describes the
quantum-mechanical motion of electrons under a crystalline
potential. The wave function in a clean system thus has a
Bloch form, consisting of a plane wave and a short-range
modulation by an underlying crystal. As a wave without
decay, a Bloch function represents a current with the proba-
bility conserved, which is a consequence of the Hermiticity
of the Hamiltonian. In reality, however, a Bloch wave is
not an exact solution in the presence of impurities or disor-
der. It decays during propagation, which we can effectively
describe by a non-Hermitian Hamiltonian [1–4]. Examples
of non-Hermitian effective models for quantum electronic
systems include the electron-phonon coupling [5], disorder
[6,7], or strong correlation [8–10]. In those systems, the non-
Hermiticity causes a Fermi arc terminating with exceptional
points or a drumheadlike flat band encircled by an excep-
tional ring [11,12]. At an exceptional point, the non-Hermitian
Hamiltonian is nondiagonalizable, which never appears from
a Hermitian Hamiltonian [13,14]. Despite such observable
spectral features, little has been known about the role of
non-Hermiticity in a nonequilibrium, in particular a quantum
transport phenomenon in solids [15–17].

Non-Hermitian models appear in a variety of fields other
than quantum systems [18–21], such as photonics [22–39],
electrical circuits [40–43], and mechanical systems [44–56].
In classical open or driven systems, non-Hermiticity arises
from gain and loss, which accompanies the energy flow in
and out of the system in focus. It causes unusual features
in spectrum, resonance, and propagation that never appear in
a Hermitian model; e.g., sharp resonance and unidirectional
transparency. Those resonance and wave propagation proper-
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ties bring about advantages for measurements and detection
through response of the system. Therefore, they are easily
observable as opposed to the spectrum features of quantum
materials.

We investigate the linear response of a two-dimensional
Dirac material with impurities. We consider magnetic
impurities in general, which induce spin-dependent scat-
tering, and derive an effective Hamiltonian from impurity
averaging. It reveals spin-dependent lifetimes leading to the
non-Hermiticity. Independently, we evaluate the Kubo for-
mula using the Dirac model with impurities by means of
the conventional Feynman diagram technique. Our detailed
calculations give the analytical expressions of the longitu-
dinal and Hall conductivities, the latter of which emerges
either from a uniform magnetization or randomly distributed
spin-dependent impurities, along with the spin-orbit cou-
pling embedded in the model. We reveal that the linear
response properties manifest the non-Hermitian nature of the
model; the spin-dependent lifetimes appearing in the effec-
tive Hamiltonian well approximate the longitudinal and Hall
conductivities obtained from the Kubo formula. We also dis-
cuss the effect of skew scattering and the anomalous Hall
effect induced by magnetic impurities without a uniform
magnetization.

Model. We consider the Dirac Hamiltonian in two dimen-
sions,

H0(k) = vk · σ + mσz, (1)

where the Pauli matrices σx, σy, and σz represent the elec-
tron’s spin, and v and m are the Dirac velocity and mass,
respectively. We set h̄ = 1 unless otherwise noted. We may
regard the Hamiltonian as, e.g., a surface state of a topological
insulator [57–59] with the mass m corresponding to a uniform
magnetization perpendicular to the plane induced by doping
or deposition. For m = 0, H0 is invariant under time reversal
T = iσyK with the complex conjugation K as the mass m
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FIG. 1. Diagrammatic representations for the conductivity.
(a) The self-energy captures the effect of time-reversal breaking in
the effective non-Hermitian Hamiltonian. A solid line represents the
Green’s function G(k, ε) and a cross and p(= 2, 3) dashed lines
correspond to the potential with the pth moment. (b) The Kubo for-
mula calculates the longitudinal and anomalous Hall conductivities.
(c) The vertex correction describes the corrections to the scattering
time by impurities.

renders a uniform background magnetization coupled to Dirac
electrons via the exchange coupling.

We add impurities to the clean Dirac Hamiltonian. While
it is common to consider nonmagnetic potential impurities in
massive models [60–65], impurities generally have potential
and magnetic couplings concurrently [66–73]. In the fol-
lowing, we consider spin-dependent impurities, which break
time-reversal symmetry, so that the clean Dirac Hamiltonian
may be massless and time-reversal symmetric for a finite
anomalous Hall effect. We assume here that each impurity has
a magnetic moment perpendicular to the plane, which results
in the impurity potential

Himp(r) = V (r)η, η = η0σ0 + ηzσz =
(

η11 0
0 η22

)
. (2)

Finite ηz describes the magnetic component of impurities.
It breaks time-reversal symmetry microscopically while the
rotational symmetry in the xy plane remains preserved.
The spin-dependent impurities have a correlation between the
charge (σ0) and magnetic (σz ) sectors. For the impurity poten-
tial V (r), we consider the moments of the spatial distribution,

〈V (r)V (r′)〉 = niV2

(2π )2
δ(r − r′),

〈V (r)V (r′)V (r′′)〉 = niV3

(2π )2
δ(r − r′)δ(r′ − r′′), (3)

where 〈·〉 denotes impurity averaging and ni is the impurity
concentration. Vp (p = 2, 3) represents a pth-order moment
per single atomic potential. We set 〈V (r)〉 = 0 as the uniform
component merely renormalizes the chemical potential and
the mass.

Self-energy with impurity averaging. We regard the impu-
rity potential Himp(r) as a perturbation to the clean system
H0(k). We calculate the impurity average to obtain the self-
energy �s(ε), where s = R(A) labels the retarded (advanced)
function. The self-energy follows the self-consistent equa-
tion [Fig. 1(a)], where the solid line represents the full Green’s
function Gs(k, ε) = [ε − H0(k) − �s(ε)]−1 and a cross de-
notes an impurity. In the following, we focus on retarded
functions as Hermitian conjugation gives the corresponding

advanced functions. Without spontaneous symmetry breaking
of the rotational symmetry, the retarded self-energy should
have the form

�R(ε) = [�(ε) − i�(ε)]σ0 + [δm(ε) − iγ (ε)]σz, (4)

where �(ε), δm(ε), �(ε), and γ (ε) are real functions. We
henceforth refer to �(ε) and δm(ε) as real parts, and �(ε) and
γ (ε) as imaginary parts. The real parts renormalize the energy
and the mass as ε̄(ε) = ε − �(ε) and m̄(ε) = m + δm(ε),
respectively. We obtain the explicit form of the self-energy
later.

Non-Hermitian effective Hamiltonian. We define the
retarded effective Hamiltonian after impurity averaging
as

HR
eff(k, ε) = H0(k) + �R(ε). (5)

The effective Hamiltonian recovers translational symmetry,
which is absent in the microscopic model due to the impurities
Himp(r). In compensation, the imaginary parts �(ε) and γ (ε)
violate Hermiticity to describe the decay of Bloch waves. We
note that Hermitian conjugation relates the retarded effective
Hamiltonian not to itself but to the advanced one: HA

eff(k, ε) =
[HR

eff(k, ε)]† �= HR
eff(k, ε).

The Dirac Hamiltonian is known to host the anomalous
Hall effect with a finite mass, which requires time-reversal
symmetry breaking. It is beneficial to examine how the
time-reversal operation T = iσyK acts on the effective
Hamiltonian. Considering that retarded and advanced func-
tions describe forward and backward time evolutions, a
necessary condition for the microscopic model to have time-
reversal symmetry is T HR

eff(k, ε)T −1 = HA
eff(−k, ε), which

we dub statistical time-reversal symmetry for brevity [see
Supplemental Material (SM) for details [74]]. In the ef-
fective Hamiltonian (5), m(ε) and γ (ε) break statistical
time-reversal symmetry, where the former arises from a
uniform magnetization and the latter from spin-dependent
impurity scattering. We will see that both of them con-
tribute to the anomalous Hall effect. We note that �(ε),
which describes the spin-independent part of the quasi-
particle lifetimes, does not break statistical time-reversal
symmetry.

Despite the non-Hermitian effective Hamiltonian, we
can write the Green’s function in the eigenstate ba-
sis. As the effective Hamiltonian equation (5) is non-
Hermitian, we have distinct left and right eigenvec-
tors Ls(k, ε) and Rs(k, ε) with s = ± corresponding to
the two complex eigenvalues ER

s (k, ε) = �(ε) − i�(ε) +
s
√

v2k2 + [m + δm(ε) − iγ (ε)]2 [74]. The projection opera-
tor on an eigenstate is Ps(k, ε) = RT

s (k, ε)Ls(k, ε). It is non-
Hermitian and satisfies the completeness

∑
s=± Ps(k, ε) = σ0.

Then, we obtain the Green’s function [74]

GR(k, ε) = P+(k, ε)

ε − ER+(k, ε)
+ P−(k, ε)

ε − ER−(k, ε)
. (6)

Spin-dependent lifetimes. Though a self-consistent solution
requires a numerical calculation, we can analytically find a
perturbative solution of the self-energy for weak impurities.
As we will see later, the imaginary parts play an important
role in the transport properties. The perturbative solutions of
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the imaginary parts are

�(ε) ≈ α2π

2

[(
η2

11 + η2
22

)|ε| + (
η2

11 − η2
22

)
m sgn(ε)

]

−πα3��

ε0

[(
η3

11 + η3
22

)|ε| + (
η3

11 − η3
22

)
m sgn(ε)

]
,

(7a)

γ (ε) ≈ α2π

2

[(
η2

11 − η2
22

)|ε| + (
η2

11 + η2
22

)
m sgn(ε)

]

−πα3��

ε0

[(
η3

11 − η3
22

)|ε| + (
η3

11 + η3
22

)
m sgn(ε)

]
,

(7b)

for ε2 > m2. Here, we introduce the dimensionless constant
for the impurity strength αp = np/2

i Vp/(4πv)p/2 and the en-
ergy unit ε0 =

√
4πv2ni. Since we have obtained the Green’s

function in the eigenstate basis Eq. (6), we impose energy
cutoffs separately for the conduction and valence bands, �+
and �−, respectively. The difference of the energy cutoffs
�� = �+ − �− appears at order α3. We retain the terms at
order α3 because α3��/ε0 can be comparable to α2 even for
|α3| � α2 [74].

Importantly, the present impurity model generates spin-
dependent lifetimes, defined by the imaginary part of the
self-energy as

τ↑ = 1

2(� + γ )
, τ↓ = 1

2(� − γ )
. (8)

γ (ε) represents their difference, and importantly, it arises
regardless of a uniform magnetization but by impurities with
η11 �= η22, when the impurity scattering depends on spin. We
note that the relation �(ε) � |γ (ε)| must hold as the system
is not driven by an external force. In other words, the two
lifetimes are positive and hence quasiparticles always decay.

Conductivity calculations. Now we calculate the conduc-
tivity σab (a, b = x, y) from the microscopic model H0 + Himp

using the Kubo formula. It is convenient to decompose the
formula as in the Kubo-Středa formula [75,76], which leads
to analytic solutions. At zero temperature [77], we write
the electric conductivity at the Fermi level ε as σab(ε) =
σ

(Ia)
ab (ε) + σ

(Ib)
ab (ε) + σ

(II)
ab (ε) [Fig. 1(b)], where the three

terms are σ
(Ia)
ab (ε) = ∫

k tr[ jaGR(ε) jbGA(ε)]/(2π ), σ
(Ib)
ab (ε) =

− ∫
k tr [ jaGR(ε) jbGR(ε) + jaGA(ε) jbGA(ε) ] / (4π ), and

σ
(II)
ab (ε) = ∫

k

∫ ε

−∞ dε′ tr[ jaGR(ε′) jb∂ε′GR(ε′) − ja∂ε′GR(ε′) jb
GR(ε′) + ja∂ε′GA(ε′) jbGA(ε′) − jaGA(ε′) jb∂ε′GA(ε′)]/(4π )
with

∫
k = ∫

d2k/(2π )2. We omit k in the Green’s function
and the trace acts on the Pauli matrices for spin. ja is the
current operator and its bare form without impurity scattering
is ja = −evσa. Since we include the effect of scattering in
the Green’s function as a self-energy, we need to incorporate
the vertex correction for a self-consistent calculation [78].
In the following, we discuss the calculation of the conductivity
at a low impurity concentration, i.e., consider an expansion
with respect to ni. Then, we should retain the vertex correction
in σ

(Ia)
ab while those in σ

(Ib)
ab and σ

(II)
ab give higher-order

corrections [61]. We should thus replace one current operator
ja in σ

(Ia)
ab with ja = −ev�a(ε), which we should determine

according to the self-consistent equation [Fig. 1(c)] [74].

By evaluating the Kubo formula, we obtain the analytic
expression of the conductivity [74]

σ
(Ia)
ab (ε) = e2

4π2
[�(ε)�(ε)]ab, σ

(Ib)
ab (ε) = e2

4π2
δab, (9a)

σ
(II)
ab (ε) = − e2

4π2
εabz Im ln

ε̄ − m̄ + i� + iγ

ε̄ + m̄ + i� − iγ
. (9b)

The matrices �(ε) and �(ε) are related to the vertex and
ladder functions:

� = {1 − α2η11η22� − α3η11η22

× [
(η11 + η22) Re IR

0 + (η11−η22) Re IR
z

]
� − α3η11η22

× [
(η11 − η22) Im IR

0 + (η11 + η22) Im IR
z

]
�ε}−1, (10)

� = Im lnζ

Im ζ
[(ε̄2 + �2 − m̄2 − γ 2)1 − 2(m̄� + ε̄γ )ε],

(11)

where we use (1)ab = δab and (ε)ab = εzab with the Levi-
Civita symbol εabc. We also define the functions ζ (ε) = (m̄ −
iγ )2 − (ε̄ + i�)2 and

IR
0 (ε) = −��

ε0
− ε̄ + i�

ε0
ln

�+�−
ζ

, (12a)

IR
z (ε) = − m̄ − iγ

ε0
ln

�+�−
ζ

. (12b)

We note that �(ε), �(ε), and IR
0,z(ε) are dimensionless func-

tions.
σ

(Ib)
ab contributes only to the longitudinal conductivity and

σ
(II)
ab to the Hall conductivity. Roughly speaking, the Hall

conductivity inside the band gap (ε̄2 < m̄2) comes from σ
(II)
ab

to give σxy ≈ −e2/(2h) with the Planck constant h(= 2π h̄)
recovered. For large doping |ε| � |m|, ε0, σ (Ia)

ab predominantly
contributes to the conductivity. For |α3| � α2 when skew
scattering is not dominant, we find the approximate forms

σxx(ε) ≈ e2

8π

|ε|
�(ε)

φ, (13a)

σxy(ε) ≈ − e2

4π

γ (ε)

�(ε)
φ2 sgn(ε). (13b)

The constant φ = [1 − η11η22/(η2
11 + η2

22)]−1 originates from
the vertex correction and hence characterizes transport quan-
tities. From σxx(ε), we can identify τtr(ε) = φ/[2�(ε)] as the
transport scattering time [79,80]. On the other hand, it is worth
emphasizing that the approximate form of the anomalous Hall
conductivity σxy relies on γ (ε). We recall that a finite γ (ε)
manifests the spin-dependent lifetimes (τ↑ �= τ↓) and the ab-
sence of time-reversal symmetry of the impurity model in the
equilibrium. Using τ↑,↓, we find σxy ∝ (τ↑ − τ↓)/(τ↑ + τ↓)
along with the spin-orbit coupling embedded in the Dirac
model. The approximate forms, Eqs. (13), provide a non-
Hermitian interpretation of the electric conductivity for both
longitudinal and transverse components.

Numerical results. We show the longitudinal conductiv-
ity σxx and the Hall conductivity σxy in Fig. 2. We evaluate
the analytic expressions of the conductivity Eq. (9) with
the self-energy numerically obtained from the self-consistent
equation [Fig. 1(a)]. We use the conductivity unit e2/(2π h̄) =
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FIG. 2. Fermi level dependence of the conductivity. The upper panels show the longitudinal conductivity σxx and the lower panels the
Hall conductivity σxy. (a)–(d) correspond to different impurity spin components and masses: (a) η = σ0 (nonmagnetic), m = ε0 (massive);
(b) η = σz (magnetic), m = ε0 (massive); (c) η11 = √

3/2, η22 = √
1/2 (spin dependent), m = ε0 (massive); and (d) η11 = √

3/2, η22 = √
1/2

(spin dependent), m = 0 (massless). We keep η2
11 + η2

22 constant for all cases. We choose the dimensionless constants for the impurity strength
as α2 = 0.01, α3 = 3 × 10−6 for the colored lines, while the gray lines correspond to the cases without skew scattering α2 = 0.01, α3 = 0.
Different colors represent different energy cutoffs; see the legend. The cutoff dependence is as weak as logarithmic for α3 = 0. The solid lines
represent the exact solutions, Eq. (9), and the dashed lines the approximate results with a non-Hermitian interpretation, Eq. (13).

e2/h with the Planck constant h recovered. We present the
results for various impurity types, masses, and energy cutoffs.
We also depict the approximate results of Eqs. (13) in the same
figure using the dashed lines, revealing a good agreement
at relatively large doping from the Dirac point. It corrobo-
rates the non-Hermitian interpretation of the longitudinal and
Hall conductivities. The approximation deviates from the self-
consistent solution for |ε| � |m|, which coincides with the
region where the semiclassical approximation breaks down.

The dimensionless parameter α3 characterizes the skew-
ness of the impurity potential distribution whereas α2

characterizes the impurity potential strength. We note that
α3 is a major source of skew scattering [81,82]. With the
symmetric energy cutoffs for the conduction and valence
bands (�� = 0), the effect of skewness is tiny with the ratio
α3/α

2
2 = 0.04; compare the green and gray lines in Fig. 2. Its

dependence is as weak as logarithmic, which we can infer
from Eq. (12). However, asymmetric cutoffs (�� �= 0) en-
hance the effect of skewness (red and blue lines in Fig. 2)
as it appears with a potentially large factor ��/ε0 in the
self-energy Eq. (7) and the vertex correction Eq. (10). They
modify the conductivity through the quasiparticle lifetime and
the scattering time, respectively.

Now we discuss the effect of the magnetic properties of
impurities. For nonmagnetic impurities [Fig. 2(a)], our result
coincides with the previous result with symmetric energy
cutoffs [61,64,65,74]. In this case, a uniform magnetization
that yields a finite mass breaks time-reversal symmetry to
induce finite anomalous Hall effect. The skewness α3 makes
the conductivity asymmetric about the charge neutrality ε = 0
as it breaks electron-hole symmetry. We observe a larger con-
ductivity in the conduction band where α3η0ε > 0, because
the scattering amplitude by an impurity is smaller when the
impurity potential is repulsive [65,83]. Also, we tend to ob-
serve a larger conductivity for �+ > �−, when the band in
which the impurity potential is repulsive has a wider energy

range. The peak structure of the conductivity implies broad
resonance of scattering [65], which is contained in the vertex
correction, Eq. (10), in the present analysis. For magnetic
impurities [Fig. 2(b)], the conductivity is reduced compared
to the nonmagnetic impurity case with the same potential
strength. Here we observe certain electron-hole symmetry,
which we will discuss later.

In reality, a magnetic impurity induces both potential
and magnetic scatterings at a single site (η0, ηz �= 0); in
other words, impurity scattering becomes spin dependent
[Fig. 2(c)]. Then, the anomalous Hall effect appears even
without a uniform magnetization m = 0 [Fig. 2(d)]. The
magnetism of impurities imparts time-reversal symmetry
breaking, giving rise to δm and γ [see Eq. (7) and SM [74]].
The effect is prominent and realistic for η0, ηz �= 0 while
purely magnetic impurities (η0 = 0, ηz �= 0) without magne-
tization (m = 0) can generate finite σxy with α3 �= 0 [74]. The
longitudinal conductivity shows a weak dependence on the
Fermi level with a sharp dip at ε = 0 to σxx � e2/(2π2) [74].

Symmetries. Some numerical results are symmetric or anti-
symmetric about the charge neutrality (ε = 0), which we can
understand from the symmetries of the model. We consider
the following three symmetry operations: (i) time reversal
T = iσyK, (ii) charge conjugation C = σxK, and (iii) their
product S = T C = σz. For convenience, we refer to S as
“sublattice” symmetry [84]. S is a local operation acting on
a spin, which we may view as reflection (z �→ −z) about
the two-dimensional system embedded in a three-dimensional
space for the present model. The clean Hamiltonian H0(k) has
electron-hole symmetry

CH0(k)C−1 = −H0(−k), (14a)

while the impurity potential transforms as

CV (r)(η0σ0 + ηzσz )C−1 = −V (r)(−η0σ0 + ηzσz ). (14b)

L201116-4



ANOMALOUS HALL EFFECT FROM A NON-HERMITIAN … PHYSICAL REVIEW B 107, L201116 (2023)

FIG. 3. Scaling relations between the longitudinal and Hall con-
ductivities. We use the same color scheme as that of Fig. 2. We
show the scaling plots by varying (a) the Fermi level (0 < ε/ε0 <

100) and (b) the impurity concentration ni at ε/ε0 = 3. We choose
spin-dependent impurities (η11 = √

3/2, η22 = √
1/2) and the mass

m = ε0. (a) corresponds to the positive energy region in Fig. 2(c), and
the points in (b) indicate the impurity concentration used in Fig. 2(c).

If η0 = 0, the entire system preserves electron-hole sym-
metry C(H0 + Himp)C−1 = −(H0 + Himp). Therefore, the con-
ductivity with magnetic impurities is symmetric about the
charge neutrality as we have seen in Fig. 2(b). The operator C
swaps the energy cutoffs for the conduction and valence bands
as well. For η0 �= 0 and ηz = 0, the conductivity remains
electron-hole symmetric if α3 = 0, since the distribution of
the impurity potential retains electron-hole symmetry [see
gray lines in Fig. 2(a)]. In other words, converting V (r) to
−V (r) does not change α2; i.e., electron-hole symmetry is
statistically preserved.

In the gapless case, on the other hand, S transforms the
Hamiltonian as

SH0(k)S−1 = −H0(k) (m = 0), (15a)

SHimp(r)S−1 = Himp(r). (15b)

If α3 = 0, the model statistically preserves the “electron-
hole” symmetry imposed by S . As S is virtually a reflection
about the plane, the Hall conductivity changes sign under
S and hence it becomes antisymmetric about the charge

neutrality whereas the longitudinal conductivity remains sym-
metric [Fig. 2(d)]. See SM for more details [74].

Scaling. Figure 3 shows the scaling plots by varying the
Fermi level ε and the impurity concentration ni. For other pa-
rameters, we use the same values as those for Fig. 2(c). When
we increase the Fermi level from the band edge [Fig. 3(a)],
the longitudinal conductivity σxx gradually increases
while the Hall conductivity σxy remains around e2/(2h).
For e2/h � σxx � 10e2/h, there seems a scaling region with
|σxy| ∝ σ 0.2

xx [74]. As σxx grows, it begins to saturate because
of the artifact of short-range impurities [80], but σxy keeps
growing linearly with the energy owing to skew scattering
[74], resulting in a rapid upturn in the scaling plot. On
the other hand, the scaling plot by varying the impurity
concentration reveals the known behavior. As σxx increases
with smaller ni, we observe the side-jump, intrinsic, and
skew-scattering regions, where we find the approximate
scaling relations |σxy| ∝ σ 1.6

xx , |σxy| ∼ const, and |σxy| ∝ σ 1
xx,

respectively [60].
Discussions. In Fig. 2(d), we observed the anomalous Hall

effect in the absence of a uniform magnetization (m = 0). It
relies on the spin-dependent scattering (η0, ηz �= 0), leading
to spin-dependent lifetimes τ↑ �= τ↓ and thus non-Hermiticity
of the effective model. In reality, random magnetic impurities
may have a finite uniform magnetization considering that the
magnetic component ηz arises from the exchange coupling.
We note that the gapped and gapless cases [Figs. 2(c) and
2(d)] are continuously connected. In addition, one might con-
cern the violation of the Onsager reciprocal relation, when
the Hall conductivity is finite without a uniform magnetiza-
tion. However, finite anomalous Hall effect requires magnetic
impurities, which microscopically break time-reversal sym-
metry, so that our results comply with the Onsager reciprocal
relation. Lastly, it is worth pointing out that the gapless Dirac
model does not have a finite Berry curvature, so that it is
natural to attribute finite σxy to scattering-related phenomena
rather than the intrinsic origin.
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