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Efficient method for quantum impurity problems out of equilibrium
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We introduce an efficient method to simulate the dynamics of an interacting quantum impurity coupled
to noninteracting fermionic reservoirs. Viewing the impurity as an open quantum system, we describe the
reservoirs by their Feynman-Vernon influence functionals (IFs). The IFs are represented as matrix-product states
in the temporal domain, which enables an efficient computation of the dynamics for arbitrary interactions.
We apply our method to study quantum quenches and transport in an Anderson impurity model, including
highly nonequilibrium setups, and find a favorable performance compared to state-of-the-art methods. The
computational resources required for an accurate computation of the dynamics scale polynomially with evolution
time, indicating that a broad class of out-of-equilibrium quantum impurity problems are efficiently solvable. This
approach will provide additional insights into the dynamical properties of mesoscopic devices and correlated
materials.
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Introduction. Nonequilibrium many-body dynamics is ac-
tively investigated in condensed matter and synthetic quantum
systems such as ultracold atoms [1]. The aim of the ongo-
ing quest is to find regimes where a nonequilibrium system
exhibits desired physical properties, which may be qual-
itatively different compared to equilibrium. Theoretically,
out-of-equilibrium many-body problems are extremely chal-
lenging, both for analytical and numerical methods [2,3].

Quantum impurity models (QIMs), where a small quan-
tum system is coupled to reservoir(s) of itinerant electrons,
naturally arise in a variety of systems, including mesoscopic
conductors [4] and ultracold atoms [5,6]. Even simple QIMs
such as the Anderson impurity model (AIM) [7] exhibit rich
many-body physics including the Kondo effect whereby the
impurity spin is screened by itinerant electrons [8]. Fermionic
QIMs also play a central role in dynamical mean-field theory
(DMFT), where the material properties are expressed via a
self-consistent QIM [3,9].

A large number of methods for nonequilibrium QIMs have
been developed in recent years. These include iterative path-
integral approximations [10–12], non-Markovian [13,14] or
auxiliary master equations (AMEs) [15,16], hierarchical equa-
tions of motion (HEOM) [17–19], time-dependent numerical
renormalization group (NRG) [20–22] and density matrix
renormalization group (tDMRG) [23–28], various variants of
quantum Monte Carlo (QMC) [29–34], as well as variational
[35,36] techniques. Recent advances including the inchworm
algorithm [37] and increasingly sophisticated high-order dia-
grammatic calculations [38,39] ameliorated the sign problem
of QMC, thereby giving access to longer evolution times.
However, the current methods cannot provide guarantees of
computational efficiency for out-of-equilibrium QIMs, which
remain a subject of active research.

*These authors contributed equally to this work.

Here, we present a nonperturbative approach for fermionic
QIMs with efficiency guarantees; a companion paper [40]
provides additional technical background. Our approach uses
insights from recent developments in describing interacting
quantum baths [41–52] and free bosonic environments [53,54]
but the methodology and field of applicability differ signif-
icantly. We treat the impurity as an open quantum system
coupled to the “bath” that consists of fermionic leads (Fig. 1).
Their effect is represented by the fermionic Feynman-Vernon
influence functional (IF) [55] which is obtained in closed
form for arbitrary bath geometry [3,14,40]. As a key ingre-
dient of our approach, the IF can be efficiently represented
as a matrix-product state (MPS) in the temporal domain with
controlled bond dimension, owing to the favorable scaling
of temporal entanglement [40,44]. This enables an efficient
computation of time-dependent observables at the impurity lo-
cation (e.g., charge, spin, currents) via straightforward tensor
contraction.

We demonstrate the efficiency of our method for paradig-
matic nonequilibrium QIM setups, including (i) a quantum
quench, where an impurity site is connected to equilibrium
leads at time t = 0, and (ii) a biased AIM with two imbalanced
leads. In all cases, our method is capable of reproducing and
going beyond the state-of-the-art results obtained by inch-
worm and diagrammatic QMC.

Besides conceptual simplicity, the method presented here
has a number of advantages. First, computational complexity
grows only polynomially with evolution time, implying that
QIMs are efficiently solvable even out of equilibrium [56,57].
Furthermore, the method is nonperturbative, in contrast, e.g.,
to QMC, which involves perturbative expansions either in the
impurity-reservoir hybridization or in the on-site Coulomb
interaction. In addition, once an efficient MPS representation
of the reservoirs’ IF is found, the dynamics of impurities with
an arbitrary choice of time-dependent local Hamiltonian can
be computed with modest effort.
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FIG. 1. Top: Illustration of a single-impurity Anderson model
[Eq. (1)] with an impurity (red) tunnel-coupled to two reservoirs
(gray). Bottom: Tensor-network representation of a time-dependent
observable 〈Ô(t )〉. The dynamical influence of the environment is
encoded in one IF per orbital (here, two gray tensors for σ =↑, ↓,
left) which can be efficiently represented as MPS in the temporal
domain (right) and hence contracted with the local impurity evo-
lution (product of red tensors). The foreground (background) layer
represents the forward (backward) branch of the Keldysh contour.

Description of the method. We consider the single-impurity
Anderson model, described by the Hamiltonian

H =
∑

k
σ=↑,↓
α=L,R

[(tkd†
σ ck,α,σ + H.c.) + εkc†

k,α,σ
ck,α,σ ] + Himp, (1)

with Himp = (εd − U/2)
∑

σ d̂†
σ d̂σ + Ud̂†

↑d̂↑d̂†
↓d̂↓. The impu-

rity level described by fermions dσ is coupled to two baths
(α = L, R) of free fermions ck,α,σ with identical dispersion
εk and tunnel couplings tk , initially in thermal equilibrium
(see the top illustration in Fig. 1). The Coulomb interac-
tion U �= 0 in Himp gives rise to strong correlations. We are
primarily interested in the real-time evolution of an impu-
rity observable 〈Ô(t )〉 starting from a factorized initial state
ρ(0) = ρL ⊗ ρimp ⊗ ρR, with ρL,R equilibrium states at in-
verse temperatures βL,R and chemical potentials μL,R. While
conventional tensor-network approaches attempt to compactly
represent ρ(t ) [2], we instead express 〈Ô(t )〉 as a Keldysh path
integral over Grassmann trajectories of impurity and baths.
Gaussian integration over the bath trajectories gives

〈Ô(t )〉 ∝
∫ ⎛

⎝∏
σ,τ

d η̄σ,τ dησ,τ

⎞
⎠O(η̄t , ηt )

× exp

{∫
C

dτ

[∑
σ

η̄σ,τ ∂τ ησ,τ − iHimp(η̄τ , ητ )

]}

×ρimp[η̄0, η0]
∏

σ=↑,↓

× exp

(∫
C

dτ

∫
C

dτ ′η̄σ,τ
(τ, τ ′)ησ,τ ′

)
. (2)

Here, η̄τ = (η̄↑,τ , η̄↓,τ ) and ητ = (η↑,τ , η↓,τ ) parametrize
the impurity trajectory. The IF is the last exponential in
Eq. (2), defined by the hybridization function 
(τ, τ ′) =∑

α 
α (τ, τ ′), where 
α fully encodes the dynamical influ-
ence of the bath α,


α (τ, τ ′) =
∫

dω

2π
(ω)gα

τ,τ ′ (ω). (3)

The latter is determined by the bath’s spectral density (ω) =
2π

∑
k |tk|2δ(ω − εk ) and noninteracting Green’s function

gα
τ,τ ′ (ω) = [nα

F (ω) − �C (τ, τ ′)]e−iω(τ−τ ′ ), where nα
F is the

Fermi distribution at inverse temperature βα and chemical
potential μα and �C is the Heaviside step function on the
Keldysh contour C (see, e.g., Ref. [3]). Equation (2) is the
starting point of advanced techniques such as AME, HEOM,
or QMC.

The difficulty in evaluating the path integral arises from
the combination of non-Gaussianity (in Himp) and time non-
locality [in 
(τ, τ ′)]. In our approach, we interpret Eq. (2)
as a scalar product of fictitious states and operators defined
in a fermionic Fock space on a temporal lattice. We note
that the textbook expression in Eq. (2) is defined as the limit
M → ∞ of a discrete-time expression, obtained by dividing
the full time evolution window [0, T ] into M steps of size
δt = T/M; we fix a sufficiently large M. It is convenient
to use a Trotter scheme that further splits the Trotter step
into impurity and hybridization, leading to 8M variables per
spin species along the Keldysh contour [see Supplemental
Material (SM) [58]]. We arrange these in two arrays, ησ =
(ησ,0+ , ησ,0− , . . . , ησ,(2M−1)+ , ησ,(2M−1)− ) and analogously η̄σ ,
with degrees of freedom alternating on the forward (+) and
backward (−) branch of the Keldysh contour. A series of
manipulations with the discrete-time path integral [59] allows
us to rewrite Eq. (2) as a scalar product (see SM [58]):

〈Ô(t )〉 ∝
∫ (∏

σ

d η̄σ dησ

)

×I[η↓]e−η̄↓η↓DO,t [η̄↓, η↑]e−η̄↑η↑I[η̄↑]

≡ 〈I| D̂Ô,t |I〉 . (4)

Here, the non-Gaussian kernel DO,t [η̄↓, η↑] describes the im-
purity’s own dynamics and is local in time. This gives rise to a
product operator D̂Ô,t = D̂1 ⊗ · · · ⊗ D̂M , where each D̂m is a
16 × 16 matrix (except the first and last; see superimposed red
tensors in Fig. 1) and D̂m∗=t/δt contains Ô. The discrete-time
IF has a Gaussian form, I[ησ ] = exp(ηT

σ B ησ ), where the
antisymmetric matrix B is related to the time discretization
of 
(τ, τ ′) (see SM [58]). The Gaussian many-body wave
function |I〉 associated with I (gray tensors in Fig. 1, bottom
left) is obtained by replacing Grassmann variables by corre-
sponding creation operators acting on the Fock space vacuum,
c† ≡ (c†

0+ , c†
0− , . . . , c†

(2M−1)+ , c†
(2M−1)− ),

|I〉 = exp(c†T
B c†) |∅〉 . (5)

Such a state formally has a Bardeen-Cooper-Schrieffer form,
regardless of the fermion-number conservation of the original
problem [cf. Eq. (2)]. We note that particle number conserva-
tion shows up as a sublattice symmetry in Eq. (5).
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Next, we aim to represent the state |I〉 as a MPS. Corre-
lations of this state reflect non-Markovianity of the bath. The
possibility of a compact MPS representation is determined by
the entanglement properties of a wave function; in Ref. [40]
we show that Gaussian IF wave functions arising in QIM
exhibit at most logarithmic scaling of temporal entanglement
with evolution time for both equilibrium and certain nonequi-
librium initial states of the reservoirs. This suggests that such
wave functions can be described by a polynomial-in-T num-
ber of parameters.

Previous works [60,61] proposed algorithms for represent-
ing a fermionic Gaussian wave function as a MPS. Here, we
apply the Fishman-White (FW) algorithm [60], extended to
BCS-like wave functions [40]. We first approximately rep-
resent the Gaussian state determined by B [Eq. (5)] as a
quantum circuit of nearest-neighbor Gaussian unitary gates
applied to the vacuum. The approximation is controlled by
a threshold parameter ε of the algorithm [40,60], which de-
termines the maximum number D of gates acting on a given
site in this circuit (the “local depth”). Second, we com-
press the circuit with standard singular-value truncations to
produce a MPS approximation of |I〉 with bond dimension
χ � 2D. Once the MPS is obtained (gray tensors in Fig. 1,
bottom right), the impurity’s reduced density matrix time
evolved with an arbitrary (possibly time-dependent) impurity
Hamiltonian Himp can be efficiently computed by tensor con-
traction in the time direction. This method is straightforwardly
applicable to the computation of multitime observables,
e.g., the impurity Green’s function, as well as currents
(see below).

A quantum quench. As a first application of our method,
we study a local quantum quench, where tunneling between
impurity and the bath—initially in equilibrium at equal β and
μ—is turned on at time t = 0. We monitor the real-time evo-
lution of the impurity level population at t > 0. In the Kondo
regime (strong interaction and low temperature), strong corre-
lations develop in real time between the impurity and the bath,
corresponding to the formation of a local screening cloud over
a nonperturbatively long timescale [20,21,24,35,62].

Here, we benchmark the state-of-the-art results of inch-
worm QMC in Ref. [37]: We consider a bath defined by a
flat band with smooth edges, (ω) = /[(1 + eν(ω−ωc ) )(1 +
e−ν(ω+ωc ) )] with ωc = 10 and ν = 10/. Moreover, we set
β = 50/, μ = 0. We prepare the impurity in a singly oc-
cupied state ρimp = |↑〉 〈↑|, with εd = 0 and U = 8, and
couple it to the bath at time t = 0. In Fig. 2 we report
our results for the evolution of the diagonal components of
the impurity’s reduced density matrix. Data are converged
with respect to all simulation parameters (see the caption),
demonstrating accuracy beyond the data of Ref. [37]. These
results showcase the ability of our method to capture the slow
dynamical formation of a spin singlet in the Kondo regime,
which will be further investigated elsewhere.

Nonequilibrium transport. The system described by Eq. (1)
with a temperature or chemical potential bias between the
L and R reservoirs models paradigmatic nonequilibrium se-
tups with correlated nanodevices. Capturing the full transient
charge and spin dynamics after a quench toward the nonequi-
librium stationary state is a recurrent challenging test for novel
advanced numerical techniques [22,38,63–65].

FIG. 2. Real-time evolution of the impurity density matrix after a
quench. The plot reports diagonal entries ραα , with α = ∅, ↑, ↓,↑↓
as a function of time. The environment is modeled as in Ref. [37] (see
main text), with β = 50/ and μ = 0. Simulation parameters: Bond
dimension χ = 256 per spin species, FW threshold ε = 5 × 10−13,
Trotter step δt = 0.02/.

Here, we benchmark the state-of-the-art computation of
the system’s current-voltage characteristics in Ref. [38].
We model the reservoirs as two homogeneous tight-binding
chains with nearest-neighbor hopping thop = 1, coupled to the
impurity with tunneling amplitude t ′

hop = 0.3162, correspond-
ing to a resonance width (εd = 0) = 0.1 (cf. Ref. [24]). We
initialize the two reservoirs at zero temperature and chemi-
cal potentials ±V/2, and monitor the time-dependent current
flowing through the impurity for several values of U , until the
stationary state is reached.

Unlike the contraction illustrated in Fig. 1 and used above
for the quench simulation, computing the current into either
reservoir requires one to keep track of the separate influence
of reservoirs L and R. A suitable Trotter decomposition (see
Ref. [40] and SM [58]) allows us to couple the two reser-
voirs with the impurity alternatively in discrete time steps δt .
The current of spin σ electrons flowing into reservoir α can
then be computed as 〈Iα,σ (t )〉 = 1

δt [〈d†
σ (t + δt )dσ (t + δt )〉 −

〈d†
σ (t )dσ (t )〉], where the impurity interacts only with reservoir

α during the time step from t to t + δt .
Keeping track of L and R separately results in a tensor con-

traction with four IF MPS. This considerably limits the bond
dimension we can afford for each IF, as the final impurity evo-
lution entails storing matrices acting on a 16χ4-dimensional
space (while it was 16χ2 before). Nonetheless, we found that
the value of the current is converged over the full transient to
the stationary state for bond dimension as low as χ = 32 (see
the inset of Fig. 3).

Figure 3 shows the results of our computations, as well as
the corresponding data from Fig. 15 of Ref. [38]. We find a
fairly good agreement throughout the wide explored param-
eter regime. The unit slope of the dotted line represents the
universal Landauer linear-response conductance, I = (e2/h)V
(recall e = h̄ = 1 in our units). We note that small discrep-
ancies are to be expected at large biases V �  due to the
nonuniversal effects of the finite bath bandwidth (thop = 10

here). We further remark that for small bias and large in-
teraction the nonequilibrium Kondo regime is approached,
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FIG. 3. Current-voltage characteristics of an AIM. Reservoirs L
and R are tight-binding chains as in Refs. [24,38] (see the main text),
of L = 600 sites each, at zero temperature and chemical potentials
±V/2. Simulation parameters: Bond dimension χ = 32 per reservoir
per spin species, FW threshold ε = 1 × 10−12, Trotter step δt =
0.007/. For all values of V and U we evolve until time T = 4.2/

and verify that at this time a stationary state is reached. Inset: At fixed
V/ = 14.8 and U/ = 2, we demonstrate convergence in bond
dimension for all four components of the transient current, 〈Iα,σ (t )〉
with α = L, R and σ =↑, ↓.

characterized by slow relaxation. Accordingly, in the compu-
tation with the smallest bias V = 0.36 and largest interaction
U = 8 in Fig. 3, the time-dependent current has not yet fully
reached its stationary value at time T .

Computational efficiency. Finally, we report on the compu-
tational efficiency of our method. Previous works found that
for Gaussian ground states [60] and IFs [40], the FW algo-
rithm produces a quantum circuit of “local depth” D = D(T )
that scales at most logarithmically with evolution time T . We
note that the FW control parameter ε affects the prefactor of
log T scaling of D. In turn, D puts an exact upper bound on the
bond dimension of the corresponding MPS as χ � 2D [40,60],
indicating that the computational complexity of the algorithm
scales at most polynomially with evolution time.

We found that compression of the FW circuit using con-
ventional singular-value truncation typically leads to a further
significant reduction of the required computational resources.
For the data shown in Fig. 2, we find a maximum “local depth”
D = 28 which sets the hard upper bound χ � 228. However,
this circuit could be accurately approximated by a MPS with
a much smaller bond dimension χ = 256 = 28.

In order to assess the a posteriori error of observables
due to MPS compression, we considered an environment
that consists of a single tight-binding chain [66]. Having
fixed an extremely low FW threshold ε (which makes this
source of error negligible), we estimated the residual error of
time-dependent observables in t ∈ [0, T ] due to the truncated
bond dimension, as the trace distance e(t, χ ) = ||ρ (χ )

imp(t ) −
ρ

(∞)
imp (t )||1 between the reduced density matrix computed with

a cutoff χ on the IF MPS and the fully converged result
(computed using a much higher χ = 512).

The behavior of the error e as a function of t and χ is
illustrated in Fig. 4. We observe that the bond dimension χ =
χ (t ) required to achieve a fixed error e grows approximately

FIG. 4. Error e(t, χ ) of the time-evolved impurity density matrix
as a function of bond dimension and evolution time (see the main
text), for an impurity starting from ρimp(0) = |↑〉 〈↑| and coupled
with tunneling amplitude t ′

hop = 0.3162 to a single tight-binding
chain of L = 400 sites with homogeneous nearest-neighbor hopping
thop = 1, initially at zero temperature and half filling (cf. Ref. [24]).
The constant-error e = 10−5 dashed line indicates that the required
bond dimension grows slowly with simulation time. Here, we fixed
T = 4, δt = 0.01, ε = 10−12.

linearly with t , indicating the efficiency of the approach. We
similarly found in other cases that a moderate bond dimen-
sion is sufficient to accurately compute impurity observables.
Thus, we conclude that our approach indeed has polynomial
complexity [40,44], allowing one to access long-time impurity
dynamics with present-day computational resources.

Summary and outlook. To summarize, we introduced a
method for studying dynamics of QIM, based on a tensor-
network representation of the reservoir’s IF. We applied this
approach to paradigmatic quantum quenches in AIM, demon-
strating that it compares favorably to state-of-the art QMC
computations. The approach is nonperturbative and offers
several other advantages: In particular, it applies to both equi-
librium and highly nonequilibrium QIM setups. Moreover,
once a MPS form of the IF is obtained, arbitrary choices of im-
purity interactions can be analyzed with modest extra effort.

We showed that the required computational resources scale
polynomially with the evolution time, suggesting the effi-
ciency of our approach for a broad range of QIM problems.
The approach can straightforwardly be extended to differ-
ent setups, including multiorbital impurities and initial states
with entanglement between impurity and reservoirs. Another
promising application is to DMFT, which will require an
imaginary-time extension of the technique introduced here.
We expect the computational efficiency of the approach to
enable long-time simulations of dynamics in such setups as
well, opening the door to analyzing nonequilibrium behavior
of mesoscopic devices and quantum materials.

Note added. Recently, we became aware of a related work
by Ng et al. [67].

Data relating to this article is archived in YARETA [68].
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