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We introduce a quantum error mitigation technique based on probabilistic error cancellation to eliminate
errors which have accumulated during the application of a quantum circuit. Our approach is based on applying
an optimal “denoiser” after the action of a noisy circuit and can be performed with an arbitrary number of extra
gates. The denoiser is given by an ensemble of circuits distributed with a quasiprobability distribution. For a
simple noise model, we show that efficient, local denoisers can be found and we demonstrate their effectiveness
for the digital quantum simulation of the time evolution of simple spin chains.
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Introduction. Quantum information processing has been
theoretically shown to hold great promise and quantum al-
gorithms were developed which can in principle achieve an
exponential speedup over their classical counterparts, both
for general purpose computing [1–4] and quantum simulation
[5–9]. However, present day quantum computing prototypes
still suffer from significant noise processes which hinder the
execution of many potentially groundbreaking quantum algo-
rithms [10]. Nontrivial quantum algorithms typically require
large sequences of quantum gates, each of which introduces
dissipation and hence an overall loss of coherence, eventually
rendering the results useless.

Until quantum error correction [11,12] becomes practical,
quantum error mitigation seems to be more feasible to in-
crease the accuracy of expectation values. Here the goal is to
induce the (partial) cancellation of errors that stem from noisy
quantum gates by extending the circuit corresponding to the
desired algorithm with an ensemble of gates [13,14], sampled
from a quasiprobability distribution.

The traditional way to accomplish this is with the gate-wise
method from [13,14], where noise is mitigated by inverting
the noise channel of each gate separately, i.e., the cancellation
of errors is performed for each gate on its own. Here the
local noise channel is approximated in a way such that it can
be easily inverted analytically, e.g., using Pauli twirling [14].
Gates are then sampled from the inverted noise channel by in-
terpreting it as a quasiprobability distribution. Because in this
gatewise approach every noisy gate has to be modified sepa-
rately, the sign problem is exponentially large in the number of
gates, limiting the practicality of the mitigation. The success
of the gatewise approach resulted in a large body of work
concerning these methods [15–23], including extensions for
simultaneous mitigation of multiple gates by Pauli-twirling
entire layers [24,25] or variationally constructing a mitigating
matrix product operator [26].

In principle, errors during the execution of a circuit
can propagate and accumulate. These propagated errors can
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potentially blow up and lead to large errors for the circuit as
a whole [27,28]. Here we introduce a mitigation technique
that takes into account the propagation of errors, can be per-
formed with a tunable number of extra gates, and works for
non-Clifford local noise channels since the inversion of the
accumulated global noise channel is implicit. We first execute
the targeted noisy circuit completely, letting the noise propa-
gate and accumulate, and only afterwards we apply an extra
random circuit sampled from a quasiprobability distribution.
We call the corresponding ensemble of random circuits a
denoiser and we construct it such that upon averaging the
accumulated errors cancel. Essentially, the denoiser inverts
a global noise channel. Since we will construct it as a lo-
cal brickwall circuit, following the classical preprocessing
approach from [29], we call this compressed quantum error
mitigation.

Method. Due to the inevitable coupling of a quantum pro-
cessor to its environment, every qubit operation is affected
by noise. Therefore, the simplest technique to minimize the
impact of the resulting noise is to minimize the number of
operations when performing a quantum algorithm. In [29] we
showed that many-body time evolution operators can be ef-
ficiently compressed into brickwall circuits with high fidelity
per gate.

In this Letter, we consider the noise explicitly by treat-
ing quantum operations as (generally nonunitary) quantum
channels, corresponding to completely positive and trace
preserving (CPTP) maps [30]. For example, instead of a
noiseless two-qubit gate G, which acts on a quantum state
|ρ〉〉 in superoperator form as G|ρ〉〉 = G ⊗ G∗|ρ〉〉, we get
the noisy channel G̃ = NG, where the noise channel N
implements the two-qubit noise [31]. These channels are
used to construct a “supercircuit” C̃ = ∏NG

i=1 G̃i, consisting
of NG channels, which is affected by multiqubit accumu-
lated noise. This supercircuit encodes an ensemble of circuits
[31]. For simplicity, we assume that the noisy channels
G̃i in each half brickwall layer are lattice inversion and
translation invariant, such that we can construct a denoiser
with these properties, limiting the number of variational
parameters.
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FIG. 1. Example of the quantum error mitigation procedure used
in this work for the time evolution of the wave function of a spin
chain. The ideal second-order Trotter supercircuit C of depth Mtrot =
1 (light blue) is approximated by applying a denoiser D̃ of depth
M = 1 (red) to the noisy Trotter supercircuit C̃ (dark blue). Because
the denoiser is applied after fully executing the noisy Trotter su-
percircuit, it represents an approximate inverse of the global noise
channel with a precision tunable by the depth of the denoiser.

The purpose of quantum error mitigation is to modify the
ensemble of circuits described by C̃ in a way that we can use
it to obtain the noiseless expectation values. In superoperator
language, we do this by following the supercircuit C̃ with a
denoiser supercircuit D̃, such that D̃C̃ is as close to the noise-
less supercircuit C = C ⊗ C∗ as possible. Here C is the target
unitary circuit. Because the noise channel N is nonunitary,
hence making the supercircuit C̃ nonunitary, we need to use a
nonunitary denoiser to retrieve the unitary C.

We illustrate the mitigation procedure in Fig. 1, where
a denoiser with one layer is used to mitigate errors for a
second-order Trotter supercircuit with one layer. This circuit
architecture is commonly used to simulate the time evolution
of a quantum many-body system, until some time t , with
controllable precision [29,32–42], and we will use it to bench-
mark the denoiser. In practice, we cannot directly implement
a supercircuit, and so we have to utilize its interpretation as an
ensemble of circuits. Essentially, after executing a shot of the
noisy circuit we sample the denoiser and apply it. The goal is
to construct the denoiser in a way that averaging over many
of its samples cancels the accumulated errors and gives us a
good approximation of the noiseless expectation values.

It should be noted that our approach requires more gate
applications on the quantum processor than with the gate-
wise scheme, since there each sample from the mitigation
quasiprobability distribution can be absorbed into the original
circuit, whereas our approach increases the circuit depth. We
take this into account by imposing the same noise on the de-
noiser. Furthermore, within our scheme, the dimensionality of
the quasiprobabilistic mitigating ensemble can be controlled,
in contrast to the gatewise approach where it is equal to the
gate count.

To facilitate the stochastic interpretation we parametrize
each two-qubit denoiser channel Gi as a sum of CPTP maps,
such that we can sample the terms in this sum and execute
the sampled gate on the quantum processor. Concretely, we
use a trace preserving sum of a unitary and a nonunitary
channel. For the unitary part we take a two-qubit unitary chan-
nel U ( �φi ) = U ( �φi ) ⊗ U ∗( �φi ), with U ( �φi ) a two-qubit unitary
gate parametrized by �φi. For this we take the two-qubit ZZ
rotation exp[−iα(σz ⊗ σz )] with angle α, which can be ob-
tained from native gates on current hardware [43], and dress
it with four general one-qubit unitaries, only two of which

are independent if we want a circuit that is space inversion
symmetric around every bond. The resulting gate has seven
real parameters �φi.

For the nonunitary part, which is essential because D̃
has to cancel the nonunitary accumulated noise to obtain
the noiseless unitary circuit, we use a general one-qubit
measurement followed by conditional preparation channel
M(�ζi )|ρ〉〉 = ∑

l Kl ⊗ K∗
l |ρ〉〉. It has Kraus operators K1 =

|ψ1〉〈ψ | and K2 = |ψ2〉〈 ψ̄ | if we measure in the orthonormal
basis {|ψ〉, |ψ̄〉}, where |ψ̄〉 is uniquely defined by |ψ〉 as they
are antipodal points on the Bloch sphere. If the measurement
yields |ψ〉 we prepare |ψ1〉 and if we measure |ψ̄〉 we prepare
|ψ2〉. These states can be arbitrary points on the Bloch sphere,
i.e., |ψ1〉 = V (�κ1)|0〉, |ψ2〉 = V (�κ2)|0〉, and |ψ〉 = V (�κ3)|0〉,
with V a general one-qubit unitary and each �κi a three-
dimensional vector, resulting in a real nine-dimensional �ζi.
This yields the two-qubit correlated measurement M(�ζi ) ⊗
M(�ζi ).

With these parts we construct the parametrization

Gi = η0U ( �φi) + η1M(�ζi ) ⊗ M(�ζi ), (1)

with coefficients ηi ∈ R that satisfy η0 + η1 = 1 because Gi

is trace preserving. Note that here the tensor product symbol
corresponds to combining two one-qubit channels to make a
two-qubit channel, whereas in most of the paper it is used
to link the column and row indices of a density matrix. We
construct the denoiser from the noisy channels G̃i = NGi.
With this parametrization one denoiser channel has 17 inde-
pendent real parameters, such that a denoiser of depth M, i.e.,
consisting of M brickwall layers, has 34M real parameters
(we use one unique channel per half brickwall layer). For
reference, a general channel has 544M parameters.

To determine the mitigated expectation values we use the
full expression

〈Ô〉p=0 = 〈〈1|(Ô ⊗ 1)C|ρ0〉〉 ≈ 〈〈1|(Ô ⊗ 1)D̃C̃|ρ0〉〉, (2)

where |ρ0〉〉 is the initial state and |1〉〉 is the vectorized
identity operator on the full Hilbert space. To evaluate this
on a quantum processor, we use the stochastic interpretation
of (1) to resample (2). In particular, from each channel (1)
we get a unitary with probability p0 = |η0|/γ and a mea-
surement followed by conditional preparation with probability
p1 = |η1|/γ . Here γ = |η0| + |η1| is the sampling overhead,
which characterizes the magnitude of the sign problem from
negative ηi [13,14,18,20,44,45]. For quasiprobability distri-
butions, i.e., with γ > 1, every denoiser sample has an extra
sign sgn(η) = ∏NG

g=1 sgn(ηg), where sgn(ηg) is the sign of the
sampled coefficient of the gth channel. γ = 1 means that all
signs are positive. Observables 〈Ô〉p=0 for the noiseless circuit
are then approximated by resampling the observables from the
denoiser ensemble [13]

〈Ô〉p=0 ≈ γ 〈sgn(η)Ô〉p, (3)

where γ = ∏NG
g=1 γg is the overall sampling overhead, with

γg the overhead of the gth gate. Clearly, a large γ implies a
large variance of 〈Ô〉p=0 for a given number of samples, with
accurate estimation requiring the cancellation of large signed
terms.
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The number of samples required to resolve this can-
cellation of signs is bounded by Hoeffding’s inequality,
which states that a sufficient number of samples to esti-
mate 〈Ô〉p=0 with error δ at probability 1 − ω is bounded by
(2γ 2/δ2) ln(2/ω) [44]. Since γ scales exponentially in γg, it
is clear that a denoiser with large M and γ 	 1 will require
many samples.

We observed that decompositions with γ > 1 are crucial
for an accurate denoiser. Restricting to γ = 1 leads to large
infidelity and no improvement upon increasing the number
of terms in (1) or the depth M of the denoiser. Simply put,
probabilistic error cancellation of gate noise introduces a sign
problem and it is crucial to find optimal parametrizations
(1) which minimize γ to make the approach scalable. This
issue arises in all high performance error mitigation schemes
[13,20,24,44], because the inverse of a physical noise channel
is unphysical and cannot be represented as a positive sum
over CPTP maps. This is clearly visible in the spectra of the
denoiser, which lies outside the unit circle (cf. Fig. 4). This
makes the tunability of the number of gates in each denoiser
sample a crucial ingredient, which allows control over the sign
problem, because we can freely choose the ηi in (1).

For the parametrization (1) of denoiser channels, we try to
find a set of parameters for error mitigation by minimizing
the normalized Frobenius distance between the noiseless and
denoised supercircuits [29]

ε = ||C − D̃C̃||2F /4L, (4)

which bounds the distance of output density matrices and
becomes zero for perfect denoising.

We carry out the minimization of ε on a classical proces-
sor, using gradient descent with the differential programming
algorithm from [29]. Instead of explicitly calculating the ac-
cumulated global noise channel and subsequently inverting it,
we approximate the noiseless supercircuit C with the denoised
supercircuit D̃C̃, effectively yielding a circuit representation
D of the inverse noise channel.

Results. To benchmark the denoiser we apply it to the
second-order Trotter circuits of the spin-1/2 Heisenberg chain
with periodic boundary conditions (PBC)

H =
L∑

i=1

(
σ i

1σ
i+1
1 + σ i

2σ
i+1
2 + σ i

3σ
i+1
3

)
, (5)

where σ i
α = (1i, σ i

x, σ
i
y, σ

i
z ) is the Pauli algebra acting on the

local Hilbert space of site i. A second-order Trotter circuit
for evolution time t with depth Mtrot consists of Mtrot − 1 half
brickwall layers with time step t/Mtrot and two layers with half
time step [29,34]. We consider circuits that are affected by
uniform depolarizing noise with probability p for simplicity,
but our approach can be used for any non-Clifford noise. The
two-qubit noise channel is

N =
(

1 − 16p

15

)
1 + p

15

i+1⊗
j=i

(
3∑

α=0

σ j
α ⊗ σ j∗

α

)
, (6)

which acts on neighboring qubits i and i + 1 and is applied
to each Trotter and denoiser gate and p = 0.01 unless stated
otherwise. We study circuits with depths Mtrot = 16, 32, 64

FIG. 2. Normalized distance ε between the denoised Trotter su-
percircuit D̃C̃ and the noiseless Trotter supercircuit C (top panels), at
evolution times t = 0.5, 1, . . . , 5, and the two-point z-spin correlator
Czz

i=L/2, j=L/2(t ) of a spin on the middle site at times 0 and t (bottom
panels), for the infinite temperature initial state. We consider denois-
ers with depths M = 1, 2, 4, 6, 8 and second-order Trotter circuits
with depths Mtrot = 16, 32, 64. In the top panels we use a Heisenberg
chain with L = 8 and in the bottom panels with L = 14, both with
periodic boundary conditions. All gates are affected by two-qubit de-
polarizing noise with p = 0.01. The nondenoised results are labeled
with M = 0 and the noiseless values with p = 0.

for evolution times t = 0.5, 1, . . . , 5 and denoisers D̃ with
depths M = 1, 2, 4, 6, 8.

In the top panels of Fig. 2 we show ε (4) for a chain of size
L = 8 as a function of time t . Here it can be seen that even
for Mtrot = 32 a denoiser with M = 1 already improves ε by
roughly an order of magnitude at all considered t . Depending
on Mtrot and t , further increasing M lowers ε, with the biggest
improvements occurring for high precision Trotter circuits
with large depth Mtrot = 64 and short time t = 0.5, where
the Trotter gates are closer to the identity than in the other
cases. At the other extreme, for Mtrot = 16 the improvements
are relatively small upon increasing M > 2. In all cases the
denoiser works better at early times than at late times, again
indicating that it is easier to denoise Trotter gates that are
relatively close to the identity.

To probe the accuracy of the denoiser on quantities
that do not enter the optimization, as a first test we con-
sider the two-point correlator between spins at different
times [46]

Czz
i j (t ) = 〈〈

1
∣∣(σ z

i ⊗ 1
)
D̃C̃(t )

(
σ z

j ⊗ 1
)∣∣1〉〉

/2L, (7)

where we have chosen the infinite temperature initial state and
C̃(t ) is the Trotter supercircuit for time t . In the bottom panels
of Fig. 2 we show Czz

i=L/2, j=L/2(t ) for the supercircuits from
the upper panels, now for a L = 14 chain. Here we see that at
Mtrot = 16 we can retrieve the noiseless values already with
M = 1, but that increasing Mtrot makes this more difficult. At
Mtrot = 64 we see larger deviations and improvement upon
increasing M is less stable, but nonetheless we are able to
mitigate errors to a large extent.
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FIG. 3. Out-of-time-ordered correlator Cotoc
i=L/2, j (t ) as a function

of the operator position j and time t , for the infinite temperature
initial state, for a denoised second-order Trotter supercircuit with
Trotter depth Mtrot = 32 and denoiser depth M = 2. We consider evo-
lution times t = 0.5, 1, . . . , 5, for the periodic L = 14 Heisenberg
chain that is affected by two-qubit depolarizing noise with p = 0.01.

As a further test, we compute the out-of-time-ordered cor-
relator (OTOC) [29,39,47–50]

Cotoc
i j (t ) = Re

〈〈
1
∣∣(σ z†

j ⊗ 1
)
D̃C̃(−t )

× (
σ z

i ⊗ σ z∗
i

)
D̃C̃(t )

(
σ z

j ⊗ 1
)∣∣1〉〉/

2L. (8)

In Fig. 3 we show the results for i = L/2, for a Trotter circuit
with depth Mtrot = 32 and a denoiser with depth M = 2. Here
we see that a denoiser with M 
 Mtrot is able to recover
the light cone of correlations, which are otherwise buried
by the noise. In the Supplemental Material [51] we consider
how the denoiser performs at different noise levels p and how
the denoised supercircuits perform under stacking. There we
also calculate domain wall magnetization dynamics and show
the distribution of the optimized denoiser parameters and the
sampling overhead associated to the denoiser as a whole.

In Fig. 4 we show the eigenvalues of the noisy supercircuits
for a noisy second-order Trotter supercircuit with Mtrot = 16
at t = 1 (left), the corresponding optimized denoiser with
M = 4 (center), and the denoised supercircuit (right). The
eigenvalues λ of a unitary supercircuit lie on the unit cir-
cle and in the presence of dissipation they are pushed to
the center. We see that the spectrum of the denoiser lies
outside the unit circle, making it an unphysical channel which

FIG. 4. Complex eigenvalues λ of the noisy second-order Trotter
supercircuit with Mtrot = 16 at time t = 1 (left), the corresponding
optimized denoiser with M = 4 (center), and the denoised Trotter su-
percircuit (right). The Trotter circuit is for a L = 6 Heisenberg model
with PBC and all two-qubit channels are affected by depolarizing
noise with p = 0.0046. The unit circle, on which unitary eigenvalues
must lie, is shown in black and the noiseless eigenvalues are shown
as blue bars. It is evident that the denoiser recovers all the noiseless
eigenvalues from the noisy circuit.

cures the effect of the noise on the circuit, such that the
spectrum of the denoised circuit is pushed back to the unit
circle. The noiseless eigenvalues are shown as blue bars,
making it clear that the denoiser is able to recover the noise-
less eigenvalues from the noisy circuit. In the Supplemental
Material [51] we show the spectra for a p = 0.036 denoiser,
where we observe a clustering of eigenvalues reminiscent of
Refs. [52–54]. There we also investigate the channel entropy
of the various supercircuits [55,56].

Conclusion. We have introduced a probabilistic error can-
cellation scheme, where a classically determined denoiser
mitigates the accumulated noise of a (generally non-Clifford)
local noise channel. The required number of mitigation gates,
i.e., the dimensionality of the corresponding quasiprobability
distribution, is tunable and the parametrization of the cor-
responding channels provides control over the sign problem
that is inherent to probabilistic error cancellation. We have
shown that a denoiser with one layer can already significantly
mitigate errors for second-order Trotter circuits with up to
64 layers.

This effectiveness of low-depth compressed circuits for de-
noising, in contrast with the noiseless time evolution operator
compression from [29], can be understood from the nonunitar-
ity of the denoiser channels. In particular, measurements can
have nonlocal effects, since the measurement of a single qubit
can reduce some highly entangled state (e.g., a GHZ state) to
a product state, whereas in unitary circuits the spreading of
correlations forms a light cone.

To optimize a denoiser with convenience at L > 8, the
optimization can be formulated in terms of matrix product op-
erators [26,29] or channels [16], which is convenient because
the circuit calculations leading to the normalized distance
ε and its gradient are easily formulated in terms of tensor
contractions and singular value decompositions [29,57]. This
provides one route to a practical denoiser, which is relevant
because the targeted noiseless circuit and the accompanying
noisy variant in (4) need to be simulated classically, confining
the optimization procedure to limited system sizes with an
exact treatment or limited entanglement with tensor networks.
Nonetheless, we can use, e.g., matrix product operators to
calculate (4) for some relatively small t , such that the noiseless
and denoised supercircuits in (4) have relatively small entan-
glement, and then stack the final denoised supercircuit on a
quantum processor to generate classically intractable states.
Analogously, we can optimize the channels exactly at some
classically tractable size and then execute them on a quantum
processor with larger size. Both approaches are limited by the
light cone of many-body correlations, as visualized in Fig. 3,
because finite-size effects appear when the light-cone width
becomes comparable with system size.
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