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Measurement-induced phase transitions (MIPTs) have attracted increasing attention due to the rich phe-
nomenology of entanglement structures and their relation with quantum information processing. Since physical
systems are unavoidably coupled to environment, quantum noise, which can qualitatively modify or even
destroy certain entanglement structure, needs to be considered in analyzing a system with MIPT. In this Letter,
we investigate the effect of quantum noise modeled by a reset quantum channel acting on each site with a
probability q on MIPT. Based on the numerical results from Clifford circuits, we show that the quantum noise
can qualitatively change the entanglement properties—the entanglement obeys “area law” instead of “volume
law” with a measurement rate p < pc. In the noise-induced area law phase, the entanglement exhibits a novel
q−1/3 power-law scaling. Using an analytic mapping from the quantum model to a classical statistical model, we
further show that the area law entanglement is the consequence of noise-driven symmetry-breaking field, and
the q−1/3 scaling can be understood as the result of Kardar-Parisi-Zhang fluctuations of directed polymer with an
effective length scale Leff ∼ q−1 in a random environment.

DOI: 10.1103/PhysRevB.107.L201113

Introduction. The monitored quantum systems undergoing
random unitary evolution interspersed by local measure-
ments can present rich entanglement structures. The random
unitary evolution generates entanglement within the sys-
tem whereas the monitored measurement tends to render
the system short-range entangled. The competition between
unitary evolution and monitored measurement leads to the
measurement-induced phase transitions [1–14]. Below a crit-
ical measurement rate pc, the system exhibits large-scale
quantum entanglement as the “volume law” entanglement
phase. Increasing the measurement rate p above the crit-
ical rate, the effect of measurements dominates, and the
entanglement obeys “area law.” The measurement-induced
phase transition has also been investigated in the monitored
Sachdev—Ye—Kitaev models [15–17], the classical single
random walker [18], and the monitored systems with long-
range interactions [8,15,19–28].

Real physical systems are unavoidably coupled to an en-
vironment and, thus, evolve into mixed states in which von
Neumann entropy fails to quantify the quantum entanglement
[29,30] whereas the logarithmic entanglement negativity is
still a good measure for the mixed-state bipartite entanglement
[31–41]. The quantum noise and decoherence, induced by the
environment can suppress entanglement within the systems
and are the major obstacles in quantum information process-
ing [1,3,42–48]. As known before [49–51], the bulk quantum
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noises drive the systems to enter the area law entanglement
phase instead of the volume law phase below the MIPT, which
can be understood as a consequence of the symmetry-breaking
field in an effective statistical model. Nevertheless, there is a
power-law scaling in terms of the system size for the entan-
glement in the presence of fixed dephasing quantum noise at
the spatial boundary [52]. A straightforward and vital question
is whether there is a unified analytic model to understand the
effect of quantum noises of different types and with different
space-time distributions in hybrid circuits.

Despite the similarity of different quantum channels in the
large-d limit of the classical statistical model, their effects
remain to be investigated in the quantum system with qubits
(with local Hilbert space dimension d = 2), which are more
relevant for experimental implementation of MIPT [53]. Be-
sides the dephasing channel, reset operation can also model
the uncontrolled quantum noise in which the lth qubit is reset
to the |0〉 state by the reset quantum channel Rl . In addition,
the reset channel is easy to implement in the current gener-
ation of quantum hardware, which is of great experimental
relevance as a controllable noise source [54,55].

In this Letter, we investigate the entanglement behaviors of
a monitored system in the presence of quantum noise modeled
by reset quantum channels. We focus on the case when the
probability of measurement p is nonzero and below the critical
probability pc where the system sustains large-scale entangle-
ment in the absence of quantum noise. See the Supplemental
Material (SM) [56] (see also Refs. [57–66] therein) for discus-
sions with p > pc and p = 0. To quantify the entanglement of
the mixed state, we investigate the logarithmic entanglement
negativity EN as well as the mutual information IA:B which has
similar qualitative properties as the logarithmic entanglement
negativity.
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FIG. 1. (a) Circuit diagram in the presence of random bulk resets
with L = 8 qudits and periodic boundary conditions (PBCs). Qudits
are initialized to the product state |0〉L and evolved by applying ran-
dom two-qudit Clifford gates (blue blocks). Projective measurements
(red dots) and reset quantum channels (green dots) occur randomly
at rates p and q, respectively. (b) Circuit diagram in the presence of
fixed resets at the spatial boundary (green blocks) with L = 8 qudits.
On the last tnoise time steps, the reset quantum channels (green dots)
occur randomly at a rate q in the bulk. We set t = 8L throughout the
Letter to observe the late-time properties.

In the presence of random bulk resets with an occurring
probability q [see Fig. 1(a)], the entanglement obeys area law
as predicted by the previous studies [50]. Besides, we report a
novel power-law scaling for entanglement in terms of the reset
probability q, IA:B(q) ∼ q−1/3 and EN (q) ∼ q−1/3. To deepen
our understanding, we map the random quantum circuit to
an effective statistical model [52]. Intuitively, the mutual in-
formation and logarithmic entanglement negativity can be
interpreted as the free-energy difference of the statistical mod-
els with different boundary conditions and is proportional to
the length of the domain wall, which can be mapped to a
directed polymer in a random potential induced by the ran-
domness of measurement locations. The bulk resets act as a
symmetry-breaking field that suppresses the vertical fluctua-
tions of the directed polymer and drives the system into an
area law entanglement phase. The resets near the top temporal
boundary induce an effective length scale Leff ∼ q−1, and the
novel q−1/3 scaling for entanglement can be understood as the
result of Kardar-Paris-Zhang (KPZ) fluctuations of domain
walls [67–69] with the effective length scale Leff instead of
the original length scale L [56]. It is worth noting that the
existence of measurement, which acts as random potential in
the statistical model is necessary for the application of KPZ
field theory. Therefore, q−1/3 scaling disappears for the zero
measurement case [56].

Furthermore, such an analytic model can unify the mod-
els with quantum noise at the spatial boundary and in the
bulk. To verify this analytic model, we also investigate
the entanglement behaviors for the system with fixed resets at
the spatial boundary and random bulk resets on the last tnoise

layers with rate q, see Fig. 1(b). When tnoise = 0, it exhibits
L1/3 power-law entanglement [52] induced by KPZ fluctua-
tions of the original length scale L as shown in the lower panel

of Fig. 3. Via increasing tnoise, i.e., the strength of quantum
noise, the entanglement is suppressed, and the system enters
the area law phase. In this noise-driven area law phase, the
q−1/3 scaling emerges with an effective length scale Leff as
shown in the upper panel of Fig. 3. In the tnoise → ∞ limit,
the model is equivalent to the one in Fig. 1(a) and the q−1/3

scaling remains. Based on the analytical understanding, the
entanglement behaviors can be unified as L1/3

eff , where different
space-time distributions of quantum noise set different Leff ’s.

Model and observables. As indicated in Fig. 1(a), we inves-
tigate a one-dimensional system with L d-qudits with initial
input state |0〉L. The evolution of the system is determined by a
brick-wall random unitary circuit with PBCs where each gate
is independently drawn from the Haar ensemble (or from the
random two-qubit Clifford ensemble in Clifford simulation).
Each single discrete time step consists of four layers. The
first two layers are the Haar random unitary two-qudit gates,
followed by one layer of reset quantum channels occurring at a
rate q on each site l and one layer of projective measurements
occurring at a rate p on each site l ′. The reset quantum channel
Rl on the lth qudit takes the density matrix ρ to the mixed
state,

ρ ′ = Rl [ρ] =
d−1∑
a=0

Ea
l ρEa†

l , (1)

where the Kraus operator Ea†
l = |a〉l〈0|. The projective mea-

surement on the l ′th qubit take the density-matrix ρ to
Pa

l ′ ρPa†
l ′ /‖Pa

l ′ ρPa†
l ′ ‖ with probability pa = ||Pa

l ′ ρPa†
l ′ || for a =

0, 1, . . . , d − 1, where Pa†
l ′ = Pa

l ′ = |a〉l ′ 〈a|.
The quantum entanglement at late times (t = 8L) is quan-

tified by the logarithmic entanglement negativity,

EN = log‖ρTB‖1, (2)

where ρTB is the partial transpose of ρ in subsystem B and
‖ · ‖1 is the trace norm. EN is a measure of mixed-state bipar-
tite entanglement [31–40] where entanglement entropy fails
[29,30]. The mutual information obeys qualitatively similar
scaling to EN and is more intuitive as shown below. The
mutual information between subsystems A and B is given by

IA:B = SA + SB − SAB, (3)

where Sα is the von Neumann entropy (α = A, B, AB). We
set subsystem A = [0, L/2] and B = [L/2, L] throughout the
work.

Numerical results with bulk resets. To avoid the severe
finite-size effects, we employ random Clifford unitary gates
acting on d = 2 qubits which can be simulated efficiently
based on the stabilizer formalism. The Clifford gates form
a unitary three-designs [70,71] and, thus, are expected to
give the same qualitative entanglement behaviors as the Haar
random circuit. And the entanglement in the thermodynamic
limit L → ∞ can be extrapolated by assuming S(L, q) =
c(q)L−1 + S(∞, q) (S is IA:B or EN ) [20,72].

For the monitored systems shown in Fig. 1(a) without re-
sets, i.e., q = 0, the critical measurement rate is 0.30 < pc <

0.31 [50]. Below the critical measurement rate pc, the entan-
glement within the system obeys volume law, i.e., IA:B(L) ∼
L and EN (L) ∼ L as shown in the insets of Fig. 2. With
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FIG. 2. (a) IA:B(q) and (b) EN (q) with PBC. The measurement rate is p = 0.1 < pc. There is a novel q−1/3 scaling for the entanglement
within the system. The inset is the relationship between IA:B or EN and the system size L with different reset rates. In the absence of resets,
the entanglement obeys the volume law; in the presence of resets, the entanglement obeys the area law. As q is close to 1, the entanglement
deviates from the predicted value from q−1/3 scaling, which can be explained as the breakdown of KPZ field theory due to the small effective
length scale.

increasing the measurement rate p above pc, the system en-
ters the area law entanglement phase, i.e., IA:B(L) ∼ L0 and
EN (L) ∼ L0. When the quantum noises modeled by reset
channels are added into the circuit with probability q, we
focus on the case with 0 < p < pc and set p = 0.1, which
is deep in the original volume law phase (see Ref. [56] for

more details). There is a novel power-law scaling in terms of
q: IA:B(q) ∼ q−1/3 and EN (q) ∼ q−1/3, besides the expected
area law entanglement phase in terms of the system size as
indicated in Fig. 2. The emergent q−1/3 scaling can be un-
derstood as the consequence of the KPZ fluctuations with an
effective length scale Leff ∼ q−1 as discussed below [56].

FIG. 3. Two possible scenarios for domain configuration in the presence of resets. x axis and y axis correspond to space and time dimensions
in the original quantum circuit. The three subfigures in a row represent the most probable configuration for SA, SB, and SAB, respectively. The
resets near the top boundary are represented by green dots and the resets in the bulk are not shown. The domain configurations with effective
length scale q−1 as shown in (a)–(c) minimize the free energy as much fewer bulk reset channels are contained in the region between the upper
boundary and domain wall (indicated by yellow color). This is in contrast with the domain configurations where the KPZ length scale is L,
as shown in (d)–(f). Namely, the first row corresponds to the realistic scenario based on the free-energy minimization principle. Due to the
ferromagnetic spin-spin interaction and symmetry-breaking fields induced by resets, the domain below the domain wall (indicated by the blue
color) always favors identity permutation.
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When q = 1, the steady state is exactly the product state
|0〉L and IA:B = EN = 0 as shown in Fig. 2. As q is close to
1 and, thus, the effective length scale is of the same order
as the discrete lattice constant, the KPZ field theory descrip-
tion breaks down and the entanglement deviates from the
predicted value based on the q−1/3 scaling. The choice of
boundary condition does not change the entanglement be-
haviors qualitatively (see the numerical results with open bo
undary condition (OBC) in Ref. [56]). The entanglement with
PBC is about twice as large as that with OBC in the noise-
driven area law phase.

Effective statistical model. The numerical results in this
Letter can be well explained by a mapping to an effective
statistical model. We build upon the previous works [52] for a
unified analytical picture to understand the noise effects in the
monitored random circuit.

To compute the entanglement from the effective statistical
model, we consider the nth Rényi entropy S(n)

α first. For fixed
sets of measurement locations X and reset locations Y in the
circuit, averaged over Haar unitary U = {Ui j,t } and measure-
ment results m, S(n)

α is

S(n)
α (X,Y ) = EU

∑
m

pm,X,Y
1

1 − n
log

{
tr
(
ρn

α,m,X,Y

)
(trρm,X,Y )n

}
, (4)

where α denotes the subsystem (α = A, B, AB), ρm,X,Y is the
un-normalized density matrix given the measurement trajec-
tory m, with probability pm,X,Y = trρm,X,Y .

The average of the logarithmic function can be evaluated
via the replica trick [73,74]. To this end, we first perform
the average over unitary realizations inside the logarithmic
function,

S(n,k)
α = 1

k(1 − n)
log

{
Z (n,k)

Sα

Z (n,k)

}
,

= 1

k(n − 1)

(
F (n,k)

Sα
− F (n,k)

)
. (5)

We map the 1 + 1 dimensional hybrid circuit with replica trick
to a two-dimensional effective statistical model with classical
spin freedom that is valued over permutation group Snk+1

with the ferromagnetic spin-spin interaction [56]. Z’s are the
partition functions of the statistical models with different top
boundary conditions: Z (n,k) contains identity permutations I
along the entire top boundary whereas Z (n,k)

Sα
contains cyclic

permutation C at the top region α and identity permutation
I at the top complementary region (see Fig. 3). The mutual
information is the difference of free energies F of statistical
models with specific boundary conditions,

IA:B = lim
n→1
k→0

(
S(n,k)

A + S(n,k)
B − S(n,k)

AB

)
,

= lim
n→1
k→0

1

k(n − 1)

(
F (n,k)

SA
+ F (n,k)

SB
− F (n,k)

SAB

)
. (6)

The logarithmic entanglement negativity can also be obtained
from the replica negativity similarly, which we defer the
derivation in Ref. [56].

In the large d → ∞ limit, the free energy of the effective
statistical model is determined by the most probable classical

spin configuration and proportional to the domain-wall length
due to the ferromagnetic spin-spin interaction. In the absence
of measurements and resets, the domain wall is unique for
the statistical model with specific boundary conditions due to
the unitary constraint, and the length is proportional to L. The
measurements act as the pointwise attractive potential, and
the randomness of measurement locations can be regarded
as the quenched disorders. In the coarse-grained picture, the
effective statistical model is equivalent to the model of di-
rected polymers in a random Gaussian potential described by
the KPZ field theory [52,67–69]. Thus, the directed polymer,
i.e., the domain wall, in the randomly monitored measure-
ment background, fluctuates slightly away from the unique
trajectory. The length and length scale of the vertical fluctu-
ations of the domain wall are, thus, s0L + s1L1/3 and O(L2/3),
respectively.

The reset quantum channels in the bulk act as a symmetry-
breaking field after mapping to the statistical model, and the
free energy is minimized when the classical spin permutation
freedom is pinned to identity I. Due to the nonidentity spin
permutation freedom induced by the top boundary α, the
free-energy cost is proportional to the number of the resets
contained between the domain wall and the top boundary α.
To avoid this cost, the length scale of vertical fluctuations
of the domain wall can be suppressed to exclude more re-
sets. Equivalently, the resets in the bulk can be interpreted
as attractive potential from the top boundary and can induce
the pinning phase transition where the O(L2/3) KPZ vertical
fluctuations with length scale L vanishes, and the system
enters the pinned phases, i.e., area law entanglement phase
[75,76]. Besides, the resets near the top boundary can further
induce an effective length scale Leff ∼ q−1 (on average, the
distance between two adjoint reset channels in the same layer
is q−1) and open a possible way for the directed polymer to
fluctuate vertically with the emergent and smaller length scale
Leff as indicated in Fig. 3. And the domain-wall length is now
s0Leff + s1L1/3

eff due to the KPZ fluctuation [52,67–69].
The two possible scenarios discussed above are summa-

rized in Fig. 3 where we assume OBC for simplicity. For
Z (n,k)

SAB
, if the two end points of the directed polymer are in the

same region (A or B), the free-energy contribution is canceled
by the directed polymer in Z (n,k)

SA
or Z (n,k)

SB
, and the contribution

to the mutual information is zero; if the two end points are
in the regions A and B, respectively, as the middle directed
polymer shown in Fig. 3(c), the contribution to the mutual
information is proportional to L1/3

eff ∼ q−1/3 [52,56]. There-
fore, the novel power-law scaling in terms of reset probability
q shown in Fig. 2 can be understood as the consequence of
the KPZ fluctuation with an emergent effective length scale
Leff ∼ q−1. And it is straightforward that the entanglement
with PBC is twice as the OBC case because the directed poly-
mer can cross the side boundary as well as the middle point,
which has a nonzero contribution to the mutual information.
In the absence of monitored measurements, i.e., the random
attractive potential, the q−1/3 scaling disappears [56].

To further verify the statistic model mapping and the an-
alytic picture, we consider another model in which there are
resets on the spatial boundary of the hybrid circuit and random
bulk resets only on the last tnoise layers as shown in Fig. 1(b).
This model is the same as Ref. [52] with the q = 0 limit or
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FIG. 4. (a) IA:B and (c) EN with fixed q = 1/32 and different tnoise’s. When tnoise is small, the quantum noise is not enough to suppress the
L1/3 entanglement by inducing the pinning phase transition, and the L1/3 scaling still exists; when tnoise is large, the system enters the area law
entanglement phase. (b) IA:B and (d) EN with fixed system size L = 256 and different tnoise’s. When tnoise is large, the volume law entanglement
vanishes and the q−1/3 scaling appears.

the tnoise = 0 limit (with dephasing channel replaced by the
reset channel). In the tnoise → ∞ limit, this model is the same
as that shown in Fig. 1(a) with rescaled p and q. Based on
the analytic picture discussed above, the resets occurring at a
small rate q are not enough to suppress the O(L2/3) vertical
fluctuations, and the systems exhibit the power-law scaling
(L1/3) entanglement when tnoise is small. With increasing the
tnoise, the O(L2/3) vertical fluctuation vanishes, and the system
enters the area law entanglement phase with a novel power-
law scaling q−1/3 as indicated in Fig. 4. Interpolated by this
model, the boundary quantum noise and the bulk quantum
noise are unified. In terms of the statistical model, they both
play a role in fixing the end points of the directed polymer
and, thus, induce length scales O(L) and O(q−1), respectively.

Another strategy to detect this entanglement phase transi-
tion and verify the analytic picture is by increasing q with
fixed tnoise, similar to the pinned phase-transition setup inves-
tigated in Ref. [76]. This approach has also been studied and
can be found in Ref. [56].

Conclusions and discussions. To conclude, we show that
the reset quantum channel in the bulk can drive the systems
to enter the area law entanglement phase as a consequence of
the symmetry breaking in the effective statistical model. More
importantly, we identify a novel power-law scaling (q−1/3)

in the quantum noise-driven area law phase as the result of
KPZ fluctuations with an effective length scale Leff ∼ q−1.
This new analytic picture, supported by convincing numerical
results from models with different space-time distributions of
quantum noises, unifies the understanding of boundary and
bulk quantum noise in which the difference is the effective
length scale induced by the distribution of quantum noise. Our
results and understanding are also crucial for any experimental
implementation of the MIPT system in the noisy intermediate-
scale quantum devices.

Since all decoherence quantum channels break the per-
mutation symmetry in the effective statistical model, the
novel power-law scaling (q−1/3) remains in the presence of
other quantum noises as a universal behavior in noisy hy-
brid circuits. Moreover, as indicated by the q−1/3 scaling, an
interesting future direction is to investigate whether we can
identify nontrivial entanglement structure using local probes
even in the noise-driven area law phase.
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