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The topological singularity of the Bloch states close to the Fermi level significantly enhances nonlinear electric
responses in topological semimetals. Here, we systematically characterize this enhancement for a large class of
topological nodal-point fermions, including those with linear, linear-quadratic, and quadratic dispersions. Specif-
ically, we determine the leading power-law dependence of the nonlinear response functions on the chemical
potential μ defined relative to the nodal point. We identify two characteristics that qualitatively improve nonlinear
transports compared to those of conventional Dirac and Weyl fermions. First, the type-II (overtilted) spectrum
leads to the log μ enhancement of nonlinear response functions having zero scaling dimension with respect to
μ, which is not seen in a type-I (moderately or not tilted) spectrum. Second, the anisotropic linear-quadratic
dispersion increases the power of small-μ divergence for the nonlinear response tensors along the linearly
dispersing direction. Our work reveals new experimental signatures of unconventional nodal points in topological
semimetals as well as provides a guiding principle for giant nonlinear electric responses.
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Introduction. Nonlinear electromagnetic responses of
quantum materials are recently getting attention for both sci-
entific and technological applications [1–6]. They probe the
symmetry of materials that are not easily seen through linear
responses [5–8] and lead to various functional properties that
may be used in future technologies, such as energy harvesting,
wireless communications, and ultrafast information process-
ing [1–3,9–12].

Topological singularities formed by band crossing in topo-
logical semimetals are potential sources of large nonlinear
responses because of the intimate relation between elec-
tromagnetic responses and quantum geometry and topology
[12–22]. Recently, topological semimetals have been general-
ized beyond conventional Weyl and Dirac semimetals [23–29]
in various directions to include the overtilted so-called type-
II spectrum [30,31], quadratic or higher-order dispersions
[32–34], crossing of more than two bands [35–37], and line
and surface nodes [38–40]. These new types of topological
singularities are promising platforms that may have unique
nonlinear response properties [12,41].

In this paper, we investigate topological enhancements
of nonlinear electric response by unconventional topological
point nodes. We focus on the responses from Fermi surfaces
and study how they vary as the chemical potential μ ap-
proaches a point node. In contrast to nodal lines or surfaces,
which are extended over a finite energy window in general
[42], a nodal point resides at a single energy level. There-
fore, the full topological singularity of a node is probed as
μ is tuned close to its energy level. We consider low-energy
models of single nodal points whose relative momentum
coordinates have fixed scaling dimensions with respect to
the energy. These include linearly dispersing nodal-point
fermions, double Weyl and Dirac fermions having anisotropic
linear-quadratic dispersions, and isotropic quadratic band
crossing. We find qualitatively different behaviors in normal
(type I) and overtilted (type II) cases when the scaling di-

mension of a response function is zero. The type-II spectrum
shows logarithmically enhanced responses at small μ. More-
over, we show that an anisotropic scaling in a double Weyl
or Dirac fermion leads to significantly increased nonlinear re-
sponses along the linearly dispersing direction for both types
I and II. Our work shows that unconventional nodal fermions
are sources of giant nonlinear electric responses. Furthermore,
our results provide new experimental signatures of unconven-
tional nodal fermions in nonlinear responses.

Symmetries of nonlinear electric responses. In our study,
we work in the perturbative response regime where the
applied electric field is not extremely strong, and we do
not include interaction and disorder effects. The N th-order
nonlinear responses to electric fields E(ωi) oscillating
with angular frequencies ωi are described by ja

(N )(ω) =∑
ai,ωi

σ̃a;a1...aN (ω; ω1, . . . , ωN )Ea1 (ω1) . . . EaN (ωN ), where

ω = ∑N
i=1 ωi. The nonlinear electric conductivity tensor has

two intrinsic Fermi surface contributions in the leading order
of ω−1 [17,43]: σ̃a;a1...aN ∝ ω−1Da;a1...aN + Ba;a1...aN , where

Da;a1...aN =
∑

n

∫
dd k

(2π )d
fn∂a1 . . . ∂aN ∂aεn (1)

is the generalized Drude weight, and

Ba;a1...aN =
∑

n

∫
dd k

(2π )d
fn∂a2 . . . ∂aN F aa1

n (2)

is the Berry curvature multipole (N-pole), which satisfies
Ba;a1...aN = −Ba1;a...aN under the exchange of the first two
indices. Here, εn is the energy of band n, fn is the cor-
responding Fermi-Dirac distribution ∂a = ∂/∂ka, and F ab

n =
∂a 〈un|∂b|un〉 − ∂b 〈un|∂a|un〉 is the Berry curvature. The DC
limit can be taken after replacing ωi with ωi + iτ−1 with a
phenomenological relaxation time τ [44].
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TABLE I. Properties of nonlinear electric responses near a nodal
point. The third-to-fifth rows show whether the nonlinear Drude
weight or the Berry curvature multipole changes sign under the
action of charge conjugation C, spatial inversion P, time reversal T ,
or their combination. In the last row, �D is the scaling dimension
of the N th-order Drude weight Da;a1 ...aN with respect to the chemical
potential μ away from the nodal point. For linear dispersion along all
directions, �D = d − N , where d is the spatial dimension, does not
depend on the direction of the tensor components. In general, though,
the scaling dimension �Da;a1 ...aN

depends on the direction of each
tensor component (see, e.g., Table III). When the scaling dimension
is zero, the logarithm may appear as the leading term. s = 0 and 1
represent type I and type II nodal points, respectively.

Response type Nonlinear Drude weight Berry curvature multipole

Expression Eq. (1) Eq. (2)
T or CPT (−1)N+1 (−1)N

PT +1 −1
P or C (−1)N+1 (−1)N+1

μ dependence O(μ�D ) or O(logs μ) O(μ�D−1) or O(logs μ)

Let us investigate some important symmetry proper-
ties of D and B. They both transform as Da;a1...aN →
(−1)N+1Da;a1...aN and Ba;a1...aN → (−1)N+1Ba;a1...aN under
spatial inversion P : r → −r. One way to see this is to note
that the current and electric fields all flip the direction un-
der inversion. On the other hand, they transform oppositely
under time reversal T : t → −t because the Berry curvature
is odd under time reversal. Under space-time inversion PT :
(t, r) → (−t,−r), PT : Da;a1...aN → Da;a1...aN , Ba;a1...aN →
−Ba;a1...aN . We thus see that Ba;a1...aN = 0 in Dirac or nodal
line semimetals protected by PT symmetry. Since D and B
transform in the same way under P and oppositely under PT ,
they transform oppositely under T .

In our analysis of the low-energy response properties near
a nodal point, CPT symmetry also plays an important role,
where C is the charge conjugation operator. The CPT theorem
in higher-energy physics implies that an electronic system also
has a CPT symmetry when the system has linear dispersion
at the chemical potential. In fact, CPT symmetry always
exists for a k-linear Hamiltonian, because the symmetry con-
dition (CPT )H (k)(CPT )−1 = −H (−k) follows if we take
CPT = 1 and use H (k) = −H (−k). Therefore, the behav-
ior of the nonlinear response when the chemical potential
approaches a linearly dispersing nodal point is constrained
by the emergent CPT symmetry [12]. The action of the
charge conjugation on D and B give the factor (−1)N+1.
This can be understood from the transformation properties of
the current density and electric field, both of which changes
sign under charge conjugation, and the definition of the
nonlinear electric conductivity. Combining the action of C
and PT , we have CPT : Da;a1...aN → (−1)N+1Da;a1...aN and
Ba;a1...aN → (−1)NBa;a1...aN . These symmetry constraints show
that the nonlinear Drude (Berry curvature) response of a lin-
early dispersing system vanishes at the even (odd) order when
the chemical potential is exactly at the nodal point. The C, P,
and T symmetry transformation properties are summarized in
Table I.

Scaling relations. We are interested in the case where
symmetries allow a nonzero response when the chemi-
cal potential is at a nodal point. Let us first estimate
the size of the response with dimensional analysis. The
generalized Drude weight has the dimension of [D] =
[k1] · · · [kd ][ka1 ]−1 · · · [kaN ]−1[ka]−1[E ], and [B] = [D][E ]−1.
We suppose that the low-energy degrees of freedom near
the nodal point follow scaling relation betweens the Fermi
momentum and chemical potential

ka ∝ μ�ka , (3)

where the scaling exponent, in general, depends on the
momentum component. This scaling relation holds for the
Hamiltonians in Eqs. (6) and (7) below.

Then, we naturally expect Da;a1...aN ∝ μ�Da;a1 ...aN and
Ba;a1...aN ∝ μ�Ba;a1 ...aN when they do not vanish by symmetry
as μ → 0, with the scaling exponent determined by their
dimensions

�Da;a1 ...aN
=

d∑
i=1

�ki −
N∑

j=0

�ka j
+ 1,

�Ba;a1 ...aN
= �Da;a1 ...aN

− 1, (4)

where a0 = a. When the scaling dimension of D (B) is zero,
one expects that D (B) approaches a constant as μ → 0. This
is the case for a type-I nodal point, where the density of states
vanishes at μ = 0. On the other hand, however, logarithmic
dependence may appear for a type-II nodal point, which has
a finite density of states at μ = 0. Therefore, we have the
following divergent behavior at small μ:

Oa;a1...aN =
{

O(μ�Oa;a1 ...aN ) when �Oa;a1 ...aN
< 0,

O(logs μ) when �Oa;a1 ...aN
= 0,

(5)

where O = D or B, and s = 0 for type I and s = 1 for
type II. When the scaling dimension is isotropic, i.e., �ka =
�kai

= �k for all i = 1, . . . , d , �B = (d − N − 1)�k and
�D = �B + 1 is minimized when �k is the largest and d is
the smallest for d − N − 1 < 0. Therefore, linear dispersion
and low dimensions are the requirements for strong nonlinear
responses at small μ for isotropic scaling dimensions (see
Ref. [12] for a related discussion for nonlinear optical re-
sponses at small frequencies).

The appearance of the logarithm for type II manifests that
the Fermi surface is extended over a large range of momentum
scales, from small to large. The response function is given by
integration over the momentum scales, such that it contains∫ k	

kμ
dk/k = log(k	/kμ), where kμ and k	 are lower and upper

cutoffs, respectively, for a momentum. This is in contrast to
type I, where there exists a momentum scale that determines
the size of the Fermi surface, and no logarithmic dependence
appears.

We demonstrate the result of our scaling analysis with two
models in three dimensions: a Weyl fermion model and a
double Weyl fermion model. Since a (double) Dirac fermion
is two copies of (double) Weyl fermion on top of each other
with compensating Berry curvature, their scaling relation is
the same for the nonlinear Drude response.
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FIG. 1. Berry curvature dipole Babc and third-order Drude weight
Dabcd of a linearly dispersing Weyl fermion. (a)–(c) Type I Weyl
fermion. (a) A typical type-I energy spectrum. The green sheet
represents the Fermi level. (b),(c) Babc and Dabcd as a function of
ṽ = v/u > 1, which is inversely proportional to the tilting of the
Weyl cone. (d)–(f) Type II Weyl fermion. (d) A typical type-II energy
spectrum. (e),(f) Babc and Dabcd as a function of 0 < ṽ < 1. kμ and
k	 are respectively lower and upper cutoffs for the momentum, where
kμ ∝ μ.

Weyl fermion in three dimensions. We first consider a three-
dimensional Weyl fermion tilted along the z direction.

HW = −μ + ukz + v(kxσx + kyσy + kzσz ), (6)

where σx,y,z are Pauli matrices. It is type I when |v/u| > 1 and
type II when |v/u| < 1. For type I (type II), the density of
states vanishes (remains finite) when the chemical potential is
at the nodal point, i.e., μ = 0. When μ = 0, the Hamiltonian
is linear in k, and it thus has CPT symmetry under CPT = 1.

Let us consider the behavior of second- and third-order
responses as μ → 0. Since CPT symmetry imposes Dabc =
Babcd = 0 at μ = 0, the second-order response at μ = 0 is
due to Babc while the third-order response is due to Dabcd .
The scaling dimensions of Babc and Dabcd are both zero be-
cause �kx = �ky = �kz = 1 by the linear dispersion along all
directions.

Babc has two independent nonvanishing components:
Bxyz and Byzx. For type I, they are finite as μ → 0,
and their expressions were derived in Ref. [45]:
Bxyz = −(2π )−2sv (ṽ2 − 1)(1 − ṽ coth−1 ṽ), and Byzx =
2−1(2π )−2sv (ṽ2 − ṽ(ṽ2 − 1) coth−1 ṽ) for |ṽ| > 1, where
sv = v/|v| and ṽ = v/u. Both components saturate to 1/3
times 1/(2π )2sv in the limit of zero tilting |ṽ| → ∞, as
shown in Fig. 1(a). A nonzero tilting leads to an anisotropy
of the Berry curvature at the Fermi surface such that
Bxyz �= Byzx. Since the sum Bxyz + Byzx + Bzxy = Bxyz + 2Byzx

measures the Berry flux across the Fermi surface, it has a
nonzero quantized value independent of ṽ, as long as
|ṽ| > 1. For type II, Bxyz = (2π )−2sv|ṽ|(1 − ṽ2) log(k	/kμ)
and Byzx = −2−1(2π )−2svṽ|(1 − ṽ2) log(k	/kμ), diverge
logarithmically as the small-momentum cutoff kμ approaches
zero. In contrast to the case of type I, Bxyz + 2Byzx = 0 at
μ = 0 for type II because the Berry flux across the Fermi
surface is zero.

The third-order Drude function has three independent
nonvanishing components: Dzzzz, Dzzxx, Dxxxx. As they
have scaling dimension zero, they are finite as μ → 0
for type I [Fig. 1(c)]. Dzzzz = −2(2π )−2|v|(ṽ2 − 1)(3ṽ2 −

TABLE II. The leading small-μ divergence of the second- and
third-order electric responses of linear Weyl and Dirac fermions in
two and three dimensions. “0” indicates the absence of divergence,
converging to a finite value or zero. Dabc = Babcd → 0 as μ → 0
by emergent CPT symmetry, and B = 0 for Dirac points by PT
symmetry. s = 0 and 1 correspond to type-I and type-II dispersions,
respectively.

Response functions Dabc Babc Dabcd Babcd

2D Dirac 0 0 O(μ−1) 0
3D Weyl 0 O(logs μ) O(logs μ) 0
3D Dirac 0 0 O(logs μ) 0

2 − 3ṽ(ṽ2 − 1) coth−1 ṽ), Dzzxx = 2(2π )−2|v|(ṽ2 − 1)(3ṽ2 −
(3ṽ2 − 1)ṽ coth−1 ṽ), and Dxxxx = −(3/4)(2π )−2|v|(3ṽ4 −
ṽ2 − (3ṽ4 − 2ṽ2 − 1)ṽ coth−1 ṽ) for |ṽ| > 1. They
converge to −4/5, −8/15, and −4/5, respectively,
in units of (2π )−2|v| as |ṽ| → ∞ and vanish as
|ṽ| → 1. For type II, logarithmic divergence appears as
μ → 0. Dzzzz = 6(2π )−2|vṽ|(1 − ṽ2)2 log(k	/kμ), Dzzxx =
(2π )−2|vṽ|(1 − ṽ2)(3ṽ2 − 1) log(k	/kμ), and Dxxxx =
−(3/4)(2π )−2|vṽ|(1 − ṽ2)(3ṽ2 + 1) log(k	/kμ). These all
vanish at ṽ = 0 and ṽ = 1 and reach the maximum in between
[Fig. 1(d)]. While the third-order Drude weights are negative
for type I, they may have positive values for type II.

Table II summarizes the leading small-μ divergence of
nonlinear response functions for a Weyl fermion. The case of
two- and three-dimensional Dirac fermions is also shown for
comparison.

Double Weyl fermion in three dimensions. When there
is a Cn=3,4,6 symmetry, double Weyl fermions can be stabi-
lized along the rotation-invariant axis in the three-dimensional
Brillouin zone. We take ẑ as the rotation axis and assume
symmetry under Cnz = exp(−iπnσz ) with n = 3, 4, or 6. The
low-energy effective Hamiltonian of a double Weyl point in
the lowest order in relative momentum takes the form

HDW = − μ + ukz + A
(
k2

x + k2
y

)
+ B

[(
k2

x − k2
y

)
σx + 2kxkyσy

] + vkzσz. (7)

As in the case of a linearly dispersing Weyl fermion, we
distinguish two types of dispersion depending on whether the
density of states is zero or finite at μ = 0. A double Weyl
fermion is type I when A2 < (1 − u2/v2)B2 and type II when
A2 > (1 − u2/v2)B2. The type-II dispersion can appear be-
cause of two different origins: overtilting along the z direction
|u| > |v| and large in-plane curvature A2 > (1 − u2/v2)B2

independent of tilting along z. While the latter case was
originally termed type III [31], we prefer to call it also type
II because it shows no qualitative difference in the small-μ
behavior. We define type IIa, IIb, and IIc as the cases with
|u| > |v| and A2 < (1 − u2/v2)B2, |u| > |v| and A2 > (1 −
u2/v2)B2, and |u| < |v| and A2 > (1 − u2/v2)B2, respectively
(Fig. 2). In contrast to the case of a linear Weyl fermion, a
double Weyl fermion does not have CPT symmetry at μ = 0,
as long as A �= 0.

We consider second- and third-order responses for μ → 0.
As there is no CPT symmetry for a double Weyl fermion,
Dabc and Babcd as well as Dabcd and Babc can remain nonzero
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FIG. 2. Spectral properties of a double Weyl fermion. (a)–
(d) Four types of energy spectra. The green sheet represents the
Fermi level. (e)–(h) Dispersion relation along lines crossing k =
(0, 0, 0). The red and blue curves are the energy spectra along kx

and k‖ directions, respectively, where k‖ is in the kx-ky plane. (i)–(l)
Electron occupancy and the Fermi surface. The numbers 0, 1, and 2
show the occupancy of the region. The blue and gold lines represent
the Fermi surfaces by the upper (blue) and lower (gold) part of
the Dirac cone in (a)–(d). All figures are plotted with the model in
Eq. (7), where v = 1, B = 1, and μ = −0.2. (a),(e),(i) u = 0.5 and
A = 0.5. (b),(f),(j) u = 2 and A = 0.5. (c),(g),(k) u = 2 and A = 2.
(d),(h),(l) u = 2 and A = 0.5.

at μ = 0. We see above that the analytic expressions are al-
ready complicated for a single Weyl fermion. Here, instead of
presenting the full analytic expressions, we show the scaling
relations numerically.

Figures 3(a)–3(c) show the scaling of selected nonvanish-
ing nonlinear response functions. Bxyz and Dzzz are almost
constant in μ for type I and have the log μ dependencies for
type II, as expected from the scaling analysis Eq. (5). The
magnitude of Dzzzz follows the μ−1 scaling for both type I
and II. The relative enhancement of Dzzzz compared to the
case of a linear Weyl fermion at small μ is attributed to the
increased density of states. In the case of Bxyz, the effect of the
increased density of states is compensated by the weaker ge-
ometric singularity of quantum states along kx,y. The u and A
dependence of the response functions are shown in Figs. 3(d)–
3(f) with v = B = 1 and μ = −0.01. We show the numerical
data for other components in Supplemental Materials [46] and
summarize the full small-μ divergence in Table III.

Discussion. While we focus on Weyl fermions with
linear or quadratic dispersions above, a three-dimensional

FIG. 3. Berry curvature dipole and nonlinear Drude weights of
a double Weyl fermion. v = B = 1 are fixed for all plots, and
μ < 0. Only components (a),(d) (2π )2Bxyz, (b),(e) (2π )2Dzzz, (c),(f)
(2π )2Dzzzz are shown, but other nonvanishing components also exist
(see Table III and Supplemental Material [46]). (a)–(c) Chemical po-
tential dependence. The horizontal axes are shown in the logarithmic
scale. Response functions are calculated at (u, A) = (0, 0), (2,0.5),
(2,2), (0.5,2), which are type I, IIa, IIb, and IIc, respectively. We
take the absolute value |Dzzzz| for log-log plots in (c). Dzzzz > 0 for
type IIb except at μ = −0.06, where Dzzzz < 0, and Dzzzz < 0 for
type I, IIa, and IIc. (d)–(f) u and A dependence at a fixed chemical
potential μ = −0.01. For all calculations, the momentum is cut off

by |kz|,
√

k2
x + k2

y � 1.

triple Weyl fermion, having a linear-cubic-cubic dispersion,
can also be stabilized by rotational symmetries. When ap-
plying our analysis to such a triple Weyl fermion, one
might naively expect even more enhanced responses such
as Dzzz = O(μ−1/3) and Dzzzz = O(μ−4/3) by assuming the
cubic scaling relation along kx and ky: �kx,y = 1/3. However,
this scaling relation does not hold in general because the
Hamiltonian has a quadratic term ∝ (k2

x + k2
y ) as an over-

all energy shift, which dominates the dispersion at small
k. The same argument applies to a quartic Weyl fermion
[34], which appears only in systems with negligible spin-orbit
coupling.

There exist many potential material platforms [47] for gi-
ant nonlinear transports, including type-II Weyl semimetals
Mo1−xWxTe2 [48], LaAlGe [49], TaIrTe4 [50,51], and dou-
ble Weyl semimetals SrSi2 [52] and (TaSe4) 2I [31]. One
way to see the manifestation of the divergently enhanced
nonlinear conductivity is to vary the temperature T . Most
nodal-point semimetals, with the exception of graphene, have
nodal points away from the Fermi level. Since the chemical
potential depends on the temperature, it may be put at the
energy level of nodal points, leading to greatly enhanced
nonlinear responses. This may serve as a signature of nodal

TABLE III. The leading small-μ divergence of the second- and third-order electric responses of double Weyl and Dirac fermions in three
dimensions. The double Weyl fermion is described by the low-energy effective Hamiltonian HDW in Eq. (7), and the double Dirac fermion is
described by τz ⊗ HDW, where τz is a Pauli matrix. “0” indicates the absence of divergence, converging to a finite value or zero. B = 0 for
Dirac points by PT symmetry. s = 0 and 1 correspond to type-I and type-II dispersions, respectively.

Response functions Dzzz Dzxx Bxyz,Byzx Dzzzz Dzzxx Dxxxx,Dxxyy Bzxyz,Bxyzz

3D double Weyl O(logs μ) 0 O(logs μ) O(μ−1) O(logs μ) 0 O(μ−1)
3D double Dirac O(logs μ) 0 0 O(μ−1) O(logs μ) 0 0
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points in the band structure. A complication may arise because
the nonlinear conductivity depends on transport lifetime τ ,
which depends on the chemical potential and temperature.
Nevertheless, we expect that it does not lead to a qualitative
difference. τ (T ) is expected to continuously vary with T when
the chemical potential μ(T ) crosses a nodal point because
the nodal point has a vanishing density of states. Another
source of complication is coming from interaction effects
that modify the scaling dimension [53–55]. We leave the
analysis of the interaction-induced renormalization for future
study.

Lastly, we note that divergent behavior stops at low-energy
cutoff provided by the breakdown of perturbative theory or
thermal excitations [46], or by interaction and disorder effects
[18,56], such that no physical divergence occurs at μ = 0.
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