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Signatures of nematic nodal superconductivity have been experimentally observed in magic angle twisted
bilayer graphene (MATBG). Here, we propose a general topological mechanism explaining how a nematic
pairing leads to nodal superconductivity in MATBG. By focusing on the intervalley C2zT -invariant Cooper
pairing order parameter, we show that the pairing order parameter can always be split into a trivial channel and an
Euler obstructed channel, owing to the nontrivial normal-state band topology. When the pairing is spontaneously
nematic, we find that a sufficiently-dominant Euler obstructed channel with two zeros typically leads to nodal
superconductivity. The mechanism is general since it is independent of the specific interaction that accounts
for the required pairing. Under the approximation of exactly-flat bands, we analytically find that the mean-field
zero-temperature superfluid weight is bounded from below, and thus the Berezinksii-Kosterlitz-Thouless (BKT)
critical temperature can be nonzero, even if the Euler obstructed pairing is dominant. We also numerically find
that a spontaneously-nematic dominant Euler obstructed pairing can arise from a local attractive interaction.
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Introduction. The normal state of MATBG, (i.e., twisted
bilayer graphene with twist angle near 1.1◦ [1–3]) was the-
oretically shown to host topologically nontrivial nearly-flat
bands near the charge neutrality, based on the Bistritzer-
MacDonald (BM) model [3–7]. The nontrivial band topology
is characterized by the C2zT -protected nonzero Euler num-
bers [7] (or equivalently Wilson loop winding numbers [5]),
where Cn j is the spinless part of the n-fold rotation about
the j axis (with j = z out of plane) and T is the spinful
time-reversal symmetry. (Here the spinful T is effectively
the same as the spinless time-reversal symmetry for the band
topology, owing to the absence of spin-orbit coupling.) When
the nearly-flat bands are partially filled, superconductivity
was observed in MATBG [2,8–16], attracting huge theoret-
ical interests [17–39]. In particular, experimental signatures
of nematic nodal superconductivity were recently reported
[12,14,15], when there are 2 ∼ 3 holes per moiré unit cell.
Here, being nematic means breaking C3z.

In this letter, we propose a general mechanism explain-
ing how a nematic pairing leads to nodal superconductivity
in MATBG, based on the normal-state Euler numbers. Our
mechanism clarifies the role of normal-state Euler numbers in
the nematic nodal superconductivity of MATBG, which was
missed by all previous works.

To be more specific, we consider the intervalley C2zT -
invariant mean-field pairing order parameter that is either
spin-singlet or spin-triplet with a momentum-independent
spin direction, since the existing experiments suggest that
C2zT is crucial for the superconductivity in MATBG [14].
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We find that the pairing order parameter can always be split
into a trivial channel and a nontrivial channel. The nonzero
normal-state Euler numbers require the pairing gap function
of nontrivial channel to have zeros, and determine the total
winding number of the zeros, whereas the trivial channel is
allowed to have a nonvanishing pairing gap function. Thus,
the nontrivial channel is called Euler obstructed. When the
considered C2zT -invariant pairing is spontaneously nematic,
we find that a sufficiently-dominant Euler obstructed channel
with two zeros typically leads to nodal superconductivity,
serving as a mechanism that connects the nematic pairing to
nodal superconductivity. Our mechanism is general since it is
independent of the specific interaction that accounts for the
required pairing form.

We further analytically obtain a lower bound of the
zero-temperature superfluid weight for the considered C2zT -
invariant pairing under the exact-flat-band approximation,
without assuming any specific interaction that accounts for the
pairing. In particular, the lower bound of the superfluid weight
holds even for pairings with a dominant Euler obstructed
channel, meaning that their Berezinksii-Kosterlitz-Thouless
(BKT) critical temperatures can be nonzero. Our result is
beyond the previous-derived bound for the uniform s-wave
pairing [40–44], since the uniform s-wave pairing does not
contain the Euler obstructed channel. Numerically, we verify
the above statements for the pairings given by a local attractive
interaction; the interaction has a similar form as that mediated
by acoustic phonons [23,25,26]. In particular, we find that
a spontaneously-nematic pairing with a dominant Euler ob-
structed channel (that has two zeros) can arise from the local
interaction. Therefore, our work suggests that nodal nature
of the superconducting MATBG may arise from a dominant
Euler obstructed pairing.
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Euler obstructed Cooper pairing in MATBG. We start by
introducing the Euler obstructed Cooper pairing in MATBG.
The BM model contains two decoupled valley ± related by
the C2z or T symmetries, and within each valley, the model
has C2zT , C3z, and spin-charge U(2) symmetries. Because of
the normal-state global spin SU(2) symmetry, we only need to
consider the spinless parts for Cnz, as mentioned above. The
model has other exact and approximate symmetries [5,45],
but they are not required for the discussion below. With the
twist angle θ near 1.1◦, BM model captures the normal state
of MATBG (that is not aligned with the hBN substrate [46]),
and has two nearly-flat bands with additional spin degeneracy
near the charge neutrality in each valley. We use |u±,k,a〉 ⊗ |s〉
to label the periodic parts of the Bloch basis for the nearly-flat
bands, where a = 1, 2 labels the spinless basis of the two
nearly-flat bands in one valley, and s =↑,↓ is the spin index.
Defining |u±,k〉 = (|u±,k,1〉, |u±,k,2〉), the nontrivial topology
of |u±,k〉 is manifested by the nonzero Euler number or Wilson
loop winding number N± = 1 [5,7,47].

For the superconductivity in MATBG, we only consider
the pairing between the nearly-flat bands, owing to the
large normal-state band gaps (∼20meV) above and below
the nearly-flat bands. We consider the following mean-field
Cooper pairing operator

Hpairing =
∑

k∈MBZ

c†
+,k�(k) ⊗ �(c†

−,−k )T + H.c., (1)

where c†
±,k = (..., c†

±,k,a,s, ...) and c†
±,k,a,s is the creation oper-

ator for the Bloch state of |u±,k,a〉 ⊗ |s〉, and MBZ is short
for moiré Brillouin zone. We have chosen and will always
choose the pairing to be intervalley, since only the intervalley
pairing can couple electrons with exactly the same energy
and opposite momenta. Throughout the work, we also choose
the pairing to be C2zT invariant and to have a momentum-
independent spin part �. In particular, we consider two cases
for �, (i) spin-singlet � = isy and (ii) spin-triplet � = i(n̂ ·
s)isy with n̂ being any real momentum-independent unit vec-
tor, where sx,y,z are Pauli matrices for the spin index. For
spin-triplet, we can always choose the spin index of the basis
to keep n̂ = (0,−1, 0), i.e., � = s0. The chosen pairing form
is satisfied by certain solutions of the mean-field linearized
gap equation owing to the C2zT and spin SU(2) symmetries
in the normal state [23,25,26], but remains an assumption at
zero temperature. �(k) in Eq. (1) is the spinless part of the
pairing gap function, which is the focus of our work.

Before our work, there were related discussions [28,46,48–
52] on how the normal-state band topology affects �(k) in the
Chern gauge [42,53–55] for |u±,k〉, which we specify below
for our chosen pairing form. In the Chern gauge, |u±,k,a〉
has well-defined Chern number C±,a; we henceforth choose
C±,1 = −C±,2 = N± = 1 and choose the following symmetry
representations for the Chern gauge:

(C2zT )c†
±,k(C2zT )−1 = c†

±,kτx ⊗ isy

C2zc
†
+,kC−1

2z = c†
−,−k,

(2)

where τ ’s are the Pauli matrices for the spinless basis. Based
on the Chern numbers of the paired Chern states [52], we can

FIG. 1. (a) Schematic illustration of the two channels �‖ and �⊥
[Eq. (4)] in the Chern gauge. The blocks stand for the spinless basis
for the nearly-flat bands in the Chern gauge, where ± stand for the
valleys. The orange and purple blocks stand for the normal states that
are polarized to the sublattice A and B [61], respectively, though the
polarization may not be complete [49]. (b) Plot of the probability
of |u+,1(k)〉 in the Chern gauge at sublattice A averaged over the
MBZ, showing the sublattice polarization discussed in Ref. [49,61].
w0 and w1 are the interlayer AB and AA tunneling strengths in the
BM model, respectively.

split �(k) into two channels as

�(k) = �‖(k) + �⊥(k), (3)

where �‖ (�⊥) contains the pairings between Chern states
with the same (opposite) Chern numbers [Fig. 1(a)] [56].
Owing to C2T symmetry, we have

�‖(k) =
(

d∗
‖ (k)

d‖(k)

)
, �⊥(k) =

(
d⊥(k)

d∗
⊥(k)

)
,

(4)

where db(k) = |�b(k)|eiθb(k) with b =⊥, ‖, and |�b(k)| =√
Tr[�b(k)�†

b(k)]/2. If �b has zeros (i.e., |�b| has zeros) but
is not everywhere-vanishing, an integer winding number can
naturally be defined for each isolated zero i of �b as

Wb,i = − (−1)b

2π

∫
γb,i

dk · ∇kθb(k), (5)

where (−1)⊥ = 1, (−1)‖ = −1, and γb,i is a circle around the
zero i of �b. Then, Refs. [57,58] (which studied the pairing
between Chern states) suggests that∑

i

W⊥,i = C+,1 + C−,2 = 0,

∑
i

W‖,i = −C+,2 − C−,2 = 2.
(6)

(See Supplemental Materials [59] for details.) As the total
winding number

∑
i Wb,i is by definition zero if �b has no

zeros, Eq. (6) suggests that �‖ must have zeros, while �⊥
can be nonvanishing [52,57,58]. According to the terminology
defined in Ref. [57], Eq. (4) and Eq. (6) suggest that each
element of �‖ in the Chern gauge is a monopole Cooper pair-
ing, since the nonzero total winding number indicates that the
monopole harmonics [60] are required for the full description
of �‖ in the Chern gauge. Thus, �‖ in the Chern gauge can
be viewed as a C2zT -protected double version of monopole
Cooper pairing.
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The relation between �‖ and the monopole Cooper pairing
relies on the Chern gauge, because the monopole Cooper
pairing is only defined between Chern states. Nevertheless, as
a generalization of the theory for 3D semimetals in Ref. [47],
we find that the channel splitting into trivial �⊥ and nontrivial
�‖ can be done for all gauges (even beyond the Chern gauge)
by using the Wilson line and the gauge-invariant operator
P�(k) = |u+,k〉�(k)〈uC2zT

−,−k|, where |uC2zT
±,k 〉 = C2zT |u±,k〉. The

gauge transformations of the generally defined �‖ and �⊥
are the same as the guage transformation of �, meaning that
|�b(k)| and the zeros of �b(k) are gauge invariant. Then, we
can define the gauge-invariant winding number Wb,i for the ith
zero of �b(k), and have∑

i

Wb,i = N+ − (−1)bN− = 1 − (−1)b. (7)

(See Supplemental Materials [59] for details.) It means that
the zeros of �‖ are generally enforced by the Euler numbers
N± for any gauges of the normal-state basis, even when the
normal-state gauges do not have well-defined Chern numbers.
In other words, Eq. (6) in Chern gauge is just a special case
of the gauge-independent Eq. (7). Therefore, �‖ is called
the Euler obstructed pairing channel. Our gauge-independent
formalism is convenient for numerical calculations as it saves
us from explicit gauge fixing.

Typically, the parity-even intersublattice pairing tends to
have a dominant �‖, where the parity is equal (opposite) to
the C2z eigenvalue for the spin-singlet (spin-triplet) pairings.
To show this, we can use the Chern gauge since |�b| is gauge
invariant. Based on Eq. (2) and Eq. (4), we find that |�‖| = 0
for parity-odd pairing, and thus only the parity-even pairing
can have a dominant �‖. Then, since the states in the Chern
gauge are polarized to the sublattice A or B of the BM model
[49,61] [see also Fig. 1(b)], the parity-even �‖ (�⊥) mainly
corresponds to intersublattice (intrasublattice) pairing.

Nematic nodal superconductivity in MATBG. Next we con-
sider the case where the Euler obstructed pairing channel
is sufficiently dominant, implying that |�⊥| is perturba-
tively small compared to |�‖| and the pairing is parity-even,
and discuss the resultant nodal superconductivity. We only
need to study the gapless nodes of the spin-up block of
the Bogoliubov-de Gennes (BdG) Hamiltonian in + valley,
whose matrix representation is labeled as H(k) for basis
(c†

+,k,↑, cT
−,−k,↓) with c†

±,k,s = (c†
±,k,1,s, c†

±,k,2,s); it is because
the BdG gapless nodes are the same for the spin-down block
owing to the normal-state spin SU(2) symmetry and the pair-
ing form Eq. (1), and the BdG gapless nodes for the − valley
can be obtained from the particle-hole symmetry. As the pres-
ence or absence of BdG nodes is gauge-independent, we use
the Chern gauge for convenience, resulting in

H(k) =
(

h+(k) − μ �⊥(k) + �‖(k)

[�⊥(k) + �‖(k)]† −hT
+(k) + μ

)
, (8)

where μ is the chemical potential, h+(k) = ε(k) +
Re[ f (k)]τx + Im[ f (k)]τy describes the normal-state
nearly-flat bands in valley +, the form of �b(k) is in Eq. (4),
and we choose the zero-point energy such that ε(KM ) = 0.

Owing to the parity-even nature of the pairing, H has
an effective spinless C2zT symmetry as ρ0τxK and a chiral

symmetry iρyτx, belonging to the nodal class CI which can
support stable zero-energy BdG gapless points protected by
nonzero chiralities [62]. Here, K is the complex conjugate,
and ρ’s are the Pauli matrices for the particle-hole index. (See
Supplemental Materials [59] for details.) In the following, we
will discuss the �‖-guaranteed nodal superconductivity based
on H for both C3z-invariant and spontaneously nematic pair-
ings. We choose μ ∈ [ε(
M ) − | f (
M )|, ε(
M ) + | f (
M )|],
which is typically true for 2 ∼ 3 holes per moiré unit cell since
the bottom and top of the set of nearly-flat bands are typically
at 
M for realistic parameter values. (See Supplemental Mate-
rials [59] for details.) We also choose the Euler obstructed �‖
[or equivalently d‖(k)] to only have two zeros with winding
1, since more zeros typically require more complex pairing
structure which tends to be physically unfavored.

A sufficiently dominant �‖ guarantees H to be gapless
only if H(0) (which is H with |�⊥| = 0) is gapless. By di-
agonalizing H(0), we find that H(0) is gapless if and only if
μ ∈ E (�), where � and E (�) are defined in the following.
Let us consider the deformation

d‖(k) ± λi f (k), (9)

where λ is gradually increased from 0 to 1. Owing to the
normal-state Euler numbers, Eq. (9) must have zeros for all
λ ∈ [0, 1], since the deformation cannot merge the initial two
zeros of d‖(k) that have the same winding. Then, the zeros of
Eq. (9) for all λ ∈ [0, 1] constitute �, and E (�) consists of
the values of ε(k) ± √| f (k)|2 − |d‖(k)|2 for all k in �. (See
Supplemental Materials [59] for details.)

The difference between C3z-invariant and spontaneously
nematic pairings lies in the different shapes of �. f (k) typi-
cally has two zeros at KM and K ′

M [Fig. 2(a)]. For C3z-invariant
pairing, the two zeros of d‖(k) are also pinned at KM and K ′

M
by the C3z symmetry. Then, Eq. (9) is typically zero at KM

and K ′
M , meaning that the initial two zeros of d‖(k) typically

does not move during the deformation. As a result, � is
typically localized in the neighborhood of KM and K ′

M [the
simplest case shown in Fig. 2(b)], and E (�) only contains
energies close to zero, leading to gapped H(0) for considerably
large μ. Therefore, a sufficiently-dominant �‖ cannot always
guarantee nodal superconductivity when the pairing is C3z

invariant, even if fine-tuning cases are ruled out. We note that
the specific value of μ needed for a gapped H(0) varies with
the form of d‖(k). For example, if d‖(k) has the same form as
f (k) and f (k) takes the realistic form with only two zeros at
KM and K ′

M , the nodal superconductivity can be gapped once
μ is nonzero. (See Supplemental Materials [59] for details.)

On the other hand, for spontaneously nematic pairing,
only one of the two zeros of d‖(k) is constrained by the
C3z eigenvalues, and is pinned at 
M . Then, without invok-
ing fine tuning, there must be continuous paths connecting

M to zeros of d‖(k) ± i f (k) [Fig. 2(c)], resulting that μ ∈
[ε(
M ) − | f (
M )|, ε(
M ) + | f (
M )|] ⊂ E (�) and then H(0)

has gapless nodes with nonzero chiralities. Therefore, when
the pairing is spontaneously nematic, a sufficiently-dominant
�‖ can always guarantee nodal superconductivity unless in-
voking fine tuning. (See Supplemental Materials [59] for
details.)

The above mechanism for nematic nodal superconductiv-
ity is different from that discussed in Ref. [26] since the

L201106-3



YU, XIE, WU, AND DAS SARMA PHYSICAL REVIEW B 107, L201106 (2023)

FIG. 2. (a) The normal-state Dirac cones [red dots, zeros of f (k)
in Eq. (8)] are typically located at KM and K ′

M in the MBZ (light
blue). (b) Smallest � [defined below Eq. (9), purple] for C3z-invariant
pairing. (c) Illustrative � (purple) for spontaneously nematic pairing,
when pinning both zeros of �‖(k) at 
M . (d) Plots of the ratio
r‖⊥ = 〈|�‖|〉/ max(|�⊥|) and the BdG gap for the intrasublattice and
intersublattice pairings induced by the local attractive interaction at
zero temperature. θ is the twist angle, and 〈|�b|〉 and max(|�b|) are
the averaged and maximum values of |�b(k)| in the MBZ, respec-
tively. (e) Plot of |�‖| of the intersublattice pairing in the MBZ for
θ = 1.1◦ at zero temperature. �‖(k) has two winding-1 zeros (or
equivalently a winding-2 zero) at 
M , agreeing with the analogous
discussion on the inter-Chern modes in Ref. [52].

latter does not involve any normal-state band topology. More
importantly, the mechanism in Ref. [26] relies on a scalar
pairing, which is not required in our work. (See Supplemental
Materials [59] for details.)

The statements in the above discussion are independent
of the specific form of the interaction that accounts for the
pairing form Eq. (1). Nevertheless, we use a local attrac-
tive interaction, which has a similar form as that mediated
by the acoustic phonons [23,25,26], to verify these general
statements. According to Ref. [25], by tuning the interaction
strength, we can get two types of C2zT -invariant interval-
ley parity-even pairings: C3z-invariant intra-sublattice pairings
and spontaneously-nematic inter-sublattice pairings. We ob-
tain spin-triplet pairings of both types for 2.5 holes per moiré
unit cell and w0/w1 = 0.8 by numerically solving the self-
consistent equation, and find both the resultant intrasublattice
and intersublattice pairings have the form in Eq. (1). By using
the gauge-invariant formalism, we find that the intrasublat-
tice and intersublattice pairings have dominant �⊥ and �‖
channels [Fig. 2(d)], respectively, agreeing with the above
argument. Moreover, since the intersublattice pairing has two
winding-1 zeros for �‖ [as exemplified in Fig. 2(e)], the
corresponding BdG Hamiltonian must be nodal, which is also
verified in Fig. 2(d). (See details in Supplemental Materials
[59].) On the other hand, the C3z-invariant intrasublattice pair-
ing given by the local interaction has a dominant trivial pairing

channel, which allows nodeless superconductivity [also con-
sistent with Fig. 2(d)]. In short, the intersublattice pairing that
we get from the local interaction is a spontaneously-nematic
pairing that has an Euler obstructed channel dominant enough
to guarantee nodal superconductivity.

Nodal superconductivity for the intervalley intersublattice
pairing was also shown in Ref. [63]. The 2D nodal super-
conductivity in Ref. [63] is enforced by the normal-state
chiral-symmetry-protected winding numbers, but the normal-
state chiral symmetry is not exact in the BM model with
realistic parameter values. In contrast, our mechanism relies
on the normal-state C2zT -protected Euler numbers, which are
exactly well-defined in the BM model with realistic parameter
values.

Bounded superfluid weight. We now discuss lower bound
of superfluid weight within the mean-field approximation. We
adopt the exact-flat-band approximation [40–44], where we
choose the normal-state flat bands to be exactly flat. By using
the formalism of Euler obstructed Cooper pairing, we obtain
a lower bound for the trace of the zero-temperature superfluid
weight for the C2zT -invariant pairing in Eq. (1), which reads

Tr[DSF ] �
〈

[|�⊥(k)| − |�‖(k)|]2√
[|�⊥(k)| − |�‖(k)|]2 + μ2

〉
g

4e2

π
N+, (10)

where we have chosen the unit system in which h̄ = c = 1, e
is the elementary charge,

〈x(k)〉g =
∫

MBZ d2k x(k) Tr[g(k)]∫
MBZ d2k Tr[g(k)]

, (11)

and gi j (k) = 1
2 Tr[∂ki P+(k)∂k j P+(k)] is the Fubini-Study met-

ric for P+(k) = |u+,k〉〈u+,k|. If we choose the time-reversal-
invariant uniform s-wave pairing used in Ref. [42], Eq. (10)
reproduces the lower bound presented in Ref. [42]; however
our Eq. (10) holds for any pairing of the form Eq. (1), even
if the pairing is not uniform s-wave (like the intersublattice
pairing in Fig. 2). For MATBG with θ very close to 1.1◦
and with pairings derived from the local attractive interaction
mentioned above, the superfluid weight calculated from the
exact-flat-band approximation is close to that directly cal-
culated from the BM model with realistic band structure,
meaning that the flat-band approximation is good for the study
of the superfluid weight in this case. In this case, Tr[DSF ]
estimated from the bound in Eq. (10) is roughly 108 H−1

for both intrasublattice and intersublattice pairings, similar to
the values theoretically estimated in Ref. [42] and reported in
Ref. [16], meaning that Eq. (10) is reasonably tight as a lower
bound. (See details in Supplemental Materials [59].)

Discussion. In summary, we showed that a dominant Euler
obstructed pairing channel serves as a general mechanism that
connects a spontaneously-nematic pairing to nodal supercon-
ductivity in MATBG. The potential existence of a dominant
Euler obstructed pairing in superconducting MATBG is
supported by the bounded superfluid weight and the self-
consistent numerical results.

Although topologically-obstructed order parameters
have been studied in various works [46–48,57,58,64–69],
those works are mainly focused on 3D systems, based on
the topology of the bands on the Fermi surface (not the
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topology of the shape of the Fermi surface). Before our work,
no 2D candidate superconductors were proposed for any
topologically-obstructed Cooper pairing. Our work shows
that MATBG is the first 2D realistic superconductor that
potentially hosts a dominant topologically-obstructed Cooper
pairing.

In this work, we allow several symmetries (like C2x) of the
BM model to be broken either spontaneously or externally
in the normal state. An interesting direction is to study the
interplay between these symmetries and the Euler obstructed
Cooper pairing. Further systematic study of the underlying

superconductivity may provide a reliable prediction on
whether the Euler-obstructed Cooper pairing dominates in
MATBG. As a speculation, the Euler-obstructed Cooper pair-
ing might come from the competition between Coulomb
and electron-phonon interaction that gives special interaction
channels.
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