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Twisting the Dirac cones of the SU(4) spin-orbital liquid on the honeycomb lattice
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By combining the density matrix renormalization group (DMRG) method with Gutzwiller projected wave
functions, we study the SU(4) symmetric spin-orbital model on the honeycomb lattice. We find that the ground
states can be well described by a Gutzwiller projected π -flux state with Dirac-type gapless excitations at one
quarter filling. Although these Dirac points are gapped by emergent gauge fluxes on finite cylinders, they govern
the critical behavior in the thermodynamic limit. By inserting a θ = π spin flux to twist the boundary condition,
we can shift the gapless sector to the ground state, which provides compelling evidence for the presence of a
gapless Dirac spin-orbital liquid.
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Introduction. The search for quantum spin liquids (QSL)
is a central problem in condensed matter physics [1–4]. QSLs
were originally conceived as phases of the SU(2) Heisenberg
model characterized by long-range entanglement instead of
local order parameters [5]. However, the ground state of this
model often displays long-range order even on geometrically
frustrated lattices (e.g., triangular) [6], which naturally leads
to the question of how to induce a quantum disordered liquid
phase? One possible theoretical solution is to enhance the
symmetry from SU(2) to SU(N � 3) since the SU(N ) antifer-
romagnetic Heisenberg model in the large-N limit is known
to display a QSL ground state [7,8]. From this exact result
follows the principle that quantum fluctuations are amplified
by larger symmetries, thus paving a path toward a QSL phase.
Besides the theoretical interest, SU(N) quantum magnetism
with 2 < N � 10 has been extensively studied in the context
of ultracold atoms in optical lattices [9–13].

The specific case of the SU(4) Heisenberg model has
been the focus of many recent studies due to its relevance in
novel solid-state platforms. The system is a special case of
a Kugel-Khomskii (KK) model [14–16] for Mott insulators
retaining two-fold orbital degeneracy, and will be henceforth
called the SU(4) KK model. Besides the symmetry princi-
ple outlined above, it is often observed in KK models that
spin and orbital fluctuations cooperate to increase quantum
corrections to order parameters, thus providing another mech-
anism to exotic quantum phases [17,18]. The SU(4) KK
model was initially studied as a simplified model loosely
motivated by eg Mott insulators such as LiNiO2 [19–21] and
Ba3Sb2CuO9 [22,23]. The first realistic proposal of the SU(4)
KK in one-dimensional systems was for Mott insulators with
face-sharing octahedra [24]. Realistic two-dimensional imple-
mentations of the model have also been discussed in j = 3/2
Mott insulators [25–28] and moiré materials. In the former
case, the honeycomb material ZrCl3 is suggested to imple-
ment an exchange-frustrated model which can be mapped
into an SU(4) symmetric Hubbard model by SU(4) gauge

transformations [25] or sublattice-dependent pseudospin ro-
tations [26], though recent density functional theory calcu-
lations indicate a dimerized phase in this material [29,30].
The SU(4) KK systems are also proposed to be realized in
the correlated insulating phase of moiré materials, specially
for those systems whose low energy degrees of freedom form
triangular lattices [31–36]. For instance, the SU(4) KK model
on the honeycomb lattice was initially put forward as a good
starting point for magic-angle twisted bilayer devices [37–39],
which was later ruled out because of the impossibility of
defining Wannier orbitals out of graphene Dirac points [32].
However, more recent ab initio studies suggest that the honey-
comb SU(4) KK can be relevant in moiré systems on transition
metal dichalcogenide bilayers [40,41].

For the past decades, a great effort has been devoted to
investigating quantum phases in SU(4) symmetric quantum
magnets. In one dimension, the SU(4) KK model is integrable
and has gapless excitations [42,43], which is described by the
SU(4)1 Wess-Zumino-Witten conformal field theory (CFT)
[44–46]. The ground state of the SU(4) KK model on a two-
leg ladder is an SU(4)-singlet plaquette valence-bond crystal
breaking the translational invariance [47–49]. In two dimen-
sions, this model is less well studied and many important
questions remain open, as can be illustrated for the case of the
honeycomb lattice. Earlier infinite projected entangled pair
states (iPEPS) and variational Monte Carlo (VMC) studies
indicated that the ground state of the SU(4) KK model is a
Dirac-type spin-orbital liquid [22]. An extended version of
the Lieb-Schultz-Mattis theorem has been extensively studied
for this model [25,27,28] and allows for such a gapless QSL.
However, a recent investigation focusing on the specific heat
indicates a gapped QSL with topological order [28]. Overall,
the ground state of the SU(4) KK model on the honeycomb
lattice still remains elusive.

In this work, we revisit the SU(4) KK model on the hon-
eycomb lattice. We utilize the density matrix renormalization
group (DMRG) method [50,51] (up to bond dimension χ =

2469-9950/2023/107(18)/L180401(6) L180401-1 ©2023 American Physical Society

https://orcid.org/0000-0002-0880-6557
https://orcid.org/0000-0002-0956-2419
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.L180401&domain=pdf&date_stamp=2023-05-01
https://doi.org/10.1103/PhysRevB.107.L180401


JIN, NATORI, AND KNOLLE PHYSICAL REVIEW B 107, L180401 (2023)

FIG. 1. (a) YC-8 cylinder for the honeycomb lattice with unit
vector r̂x and r̂y, where the half transparent bonds indicate twisted
boundary conditions for SU(4) spins. The colored area denotes a
unit cell of the π -flux state defined in Eq. (3), where the the solid
black bonds and red dashed bonds are +1 and −1 hopping terms,
respectively. (b) The first Brillouin zone (dashed hexagon) of the
honeycomb lattice and the folded Brillouin zone (blue dashed rect-
angle) for the π -flux state. The two Dirac points of the π -flux state
are at ±Q = ±(π/2, π/2). Red rough lines (green dashed lines)
represent momenta on YC-8 cylinders that are allowed by PBC
(APBC) along the y direction for partons. (c) The gapless sector |ψ1〉
and gapped sector |ψ2〉 of the π -flux state. It is easy to see that with
the same number of allowed momenta, the gapped sector has lower
energy than the gapless sector by ∼vpLxL2

y , where vp is the Fermi
velocity of partons. (d) The honeycomb SU(4) KK model on a finite
cylinder without spin flux (θ = 0) is gapped due to emergent gauge
flux, while it has exact gapless Dirac points by inserting a spin flux
θ = π .

14 000) to investigate the ground states on finite cylinders. A
newly developed methodology [52–57] allows us to exploit
the Gutzwiller projected wave functions to characterize the
ground states obtained by DMRG. With extensive numerical
efforts and analytical analyses, we find that the ground states
can be well described by a Gutzwiller projected π -flux state
with Dirac-type gapless excitations by verifying the wave
function fidelity. Although these Dirac points are gapped by
emergent gauge fluxes on finite cylinders, we argue that they
can manifest themselves in the 2D limit where the effect
of gauge fluxes are negligible. Remarkably, we can twist
the Dirac points to the ground state sector by inserting a
θ = π spin flux. Usually, the 2D DMRG algorithm can only
work well on cylindrical geometries, which might provide
misleading information, known as one of the biggest disad-
vantages. We emphasize that the combination of DMRG and
the Gutzwiller projected state can make up for this shortcom-
ing and provide a promising way for approaching the 2D limit.

Model. We focus on the SU(4) KK model on the honey-
comb lattice [see Fig. 1(a)] defined by

H = 1

2

∑
〈i j〉

(σ i · σ j + 1)(τ i · τ j + 1), (1)

where 〈i j〉 denotes the nearest-neighbor (NN) bonds and σ (τ)
represents Pauli matrices for spin (orbital) degrees of freedom.
The spin-orbital system has a four-dimensional local basis
denoted by |m〉 with m = 1, 2, 3, 4. Indeed, the local Hilbert
space can form the fundamental representation of the SU(4)
Lie algebra, and the Hamiltonian (1) can be rewritten in an
SU(4)-invariant form as

H =
∑
〈i j〉

[
1

2

3∑
α=1

λα
i λα

j +
4∑

m=1

∑
n>m

(
λmn

i λnm
j + H.c.

)]
,

where the above 4 × 4 matrices λ’s are the fifteen SU(4)
generators. Explicitly, λα

i (α = 1, 2, 3) are three Cartan gen-
erators and λmn = |m〉〈n| (n �= m and m, n = 1, 2, ..., 4) are
twelve raising (m > n) and lowering (m < n) operators of the
SU(4) Lie algebra [58].

Fermionic parton construction. For SU(N) quantum mag-
nets, parton constructions are usually considered an efficient
method to derive effective theories and to construct variational
wave functions. Here, we adopt this strategy by introducing
the SU(4) fermionic parton representation [22,27,36,59–61],

λα
i → f †

i λ
α f i, λmn

i → f †
i λ

mn f i, (2)

where f †
i = ( f †

i,1, f †
i,2, f †

i,3, f †
i,4) is a four-component vector of

the creation operators for fermionic partons ( f i denote anni-
hilation operators). This parton representation will enlarge the
Hilbert space and introduces a redundant U (1) gauge structure
[62]. In order to obtain the physical wave functions, one has
to enforce the constraint

∑4
m=1 f †

i,m fi,m = 1 by projecting the
local Hilbert space onto single occupancy.

One can exploit the parton representation to perform a
mean-field decomposition of the original Hamiltonian to
obtain an effective Hamiltonian of partons. The effective
Hamiltonian is usually quadratic in partons, which fully de-
termines the trail mean-field ground states and corresponding
low-energy excitations. For instance, the uniform π -flux state
proposed in Ref. [22] is the ground state of the following
effective Hamiltonian [58]:

H�=π = −
4∑

m=1

∑
〈i j〉

ti j
(

f †
i,m f j,m + f †

j,m fi,m
)
. (3)

Here, ti j = ±1 and their signs are indicated in Fig. 1(a).
Although the parton Hamiltonian breaks the translational
symmetry along the y direction by doubling the unit cell, this
broken symmetry is restored after the Gutzwiller projection
[58,62]. At one quarter filling, the band structure of Eq. (3)
for each flavor has two gapless Dirac cones at momenta
±Q = ±(π/2, π/2) in the folded Brillouin zone, as shown
in Fig. 1(b). Therefore, after counting all four flavors, overall
there are eight Dirac cones in the parton mean-field level.

Next, we study the ground state of the original Hamil-
tonian (1) and various effective parton Hamiltonians with
matrix product state (MPS) techniques. For the effective par-
ton Hamiltonians, we adopt the newly developed method
[52,53,57], rather than conventional DMRG, to directly con-
vert the mean-field ground state into the MPS form. Then
we can easily implement the Gutzwiller projection upon the
parton MPS to obtain the physical many-body wave function.
In their MPS forms, these many-body wave functions serve
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as variational ansatz for Hamiltonian (1), and meanwhile can
be utilized to initialize DMRG calculations for Hamiltonian
(1), which greatly improves the convergence of the DMRG
algorithm [56].

To perform MPS-related calculations on 2D lattices, we
place the systems on cylindrical geometries. We work with
the YC-2Ly cylinders with circumference Ly, where the pe-
riodic boundary condition (PBC) for spin-orbital degrees of
freedom is imposed along the y direction [corresponding to
r̂y in Fig. 1(a)] while the x direction with length Lx is left
open. The mapping of the YC cylinders can be found in the
Supplemental Material [58]. Note that the fermionic partons
are coupled to the emergent U (1) gauge field which can
lead to a global gauge flux, �, through the cylinder [63]. A
time-reversal invariant state requires either � = 0 or � = π ,
corresponding to PBC or an antiperiodic boundary condition
(APBC) for parton degrees of freedom, respectively. For finite
cylinders, those PBC and APBC correspond to different ways
of cutting the Brillouin zone, see Fig. 1(b). Crucially, for a
YC-2Ly cylinder with Ly/2 being even (odd), the allowed
momenta can exactly cut the Dirac points of the π -flux state
given by the parton Hamiltonian H�=π in Eq. (3) when
� = 0 (� = π ). Because the partons with different flavors
are decoupled from each other in our U (1) parton theories,
we can treat �m separately as discrete parameters to tune the
appearance and disappearance of the Dirac points for each
flavor m = 1, 2, 3, 4.

Results. Thanks to the combinative methods, i.e., DMRG
and Gutzwiller projected wave function, we have obtained
the ground state of the honeycomb KK model (1) (denoted
by |	G〉 hereafter) on YC-4 and YC-8 cylinders. In order to
characterize it, we first calculate the SU(4) spin correlation
function, 
i j ≡ 〈Si · S j〉, where Si = (σ a

i , τ b
i , σ a

i τ b
i )a,b=x,y,z.

The values of 
i j on the NN bonds, i.e., the local energy den-
sities, exhibit a uniform pattern in the bulk [58], indicating that
there is no translational symmetry breaking in both directions.
This important observation rules out the possibility of stripy
states [61] and valence-bond crystals [11].

To address the “gapped or gapless” issue of Hamiltonian
(1), we study the von Neumann entanglement entropy (EE) of
|	D〉. By treating a cylinder as a quasi-1D chain with a column
unit cell of 2Ly spins, we can divide the whole cylinder into
two parts, i.e., the first lx column unit cells and the remaining
Lx − lx ones [58]. Then we are able to calculate the bipartite
EE S(lx ) as a function of lx. For a quasi-1D gapless state, S(lx )
is described by a CFT, satisfying the following scaling law
[64–66]:

S(lx ) = c

6
log

(
Lx

π
sin

π lx
Lx

)
+ γ (4)

with central charge c > 0. As shown in Figs. 2(a) and 2(b),
S(lx ) saturates quickly with lx and changes little with bond
dimension χ for both YC-4 and YC-8 cylinders, respectively,
indicating that the ground state of Hamiltonian (1) is gapped
on finite cylinders. We emphasize that this gapped signature
is somehow consistent with the results of Ref. [28].

However, for finite cylinders, a gapped ground state is not
necessarily in conflict with the π -flux state, since the allowed
momenta along y directions might not exactly cut the Dirac
points of Eq. (3) due to the emergent gauge flux �m [for

FIG. 2. The bipartite EE S(lx ) versus subsystem length lx for the
ground states of Hamiltonian (1) (a) on YC-4 cylinders, (b) YC-8
cylinders, and (c) on twisted YC-4 cylinders. The quickly saturated
S(lx ) in (a) and (b) indicate gapped states. The extracted central
charge for the lower branches of S(lx ) in (c) is c ≈ 0.93 for Lx = 16,

and c ≈ 0.99 for Lx = 32.

instance, see Fig. 1(b)]. Indeed, this emergent gauge flux �m

can be extracted by verifying the wave function fidelity F =
|〈	G|	D〉| with |	G〉 the Gutzwiller projected π -flux state. As
listed in Table I, for a YC-4 cylinder with length Lx = 8, we
find that F ≈ 0.985 for a projected π -flux state with �m = 0
(zero Dirac point cut) and F ≈ 0.014 for that with �m = π

(two Dirac points for each flavor). Similar results can be
obtained on a YC-8 cylinder, in which F ≈ 0.907 for a π -flux
state without Dirac point (�m = π ) and F ≈ 0.216 with eight
Dirac points (�m = 0). These remarkably large wave function
fidelities indicate that the ground state of Hamiltonian (1)
indeed is a π -flux state, but avoids cutting the Dirac points
on finite cylinders. Notice that the number of Dirac points
is naively counted at the mean-field level, which usually is
reduced after Gutzwiller projection. We also find that the
quality of zero-flux states with uniform hoppings is poor as
it has a negligible wave function fidelity.

As illustrated in Fig. 1(c), by filling the single-particle
states below the Dirac point, the gapped sector can gain
energy of δELy ∼ vpLx/L2

y with vp the Fermi velocity of par-
tons. Therefore, the ground state |	D〉 always energetically
favors the emergent gauge flux � which avoids cutting the

TABLE I. The wave function fidelity between |	D(θ )〉 obtained
by DMRG and the Gutzwiller projected π -flux state |	G〉. Here
θ = 0 and θ = π corresponds to |	D〉 on usual PBC and twisted
boundary conditions, respectively. The number of Dirac cones for
|	G〉 is controlled by gauge flux �m.

|〈	G|	D〉| on YC-4 cylinder with Lx = 8

8 Dirac points 0 Dirac points 2 Dirac points
θ = 0 0.014 0.985 0.192
θ = π 0.022 0.213 0.904

|〈	G|	D〉| on YC-8 cylinder with Lx = 4

8 Dirac points 0 Dirac points 2 Dirac points
θ = 0 0.286 0.907 0.320
θ = π 0.229 0.344 0.893
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Dirac points, but in the thermodynamic limit, with this energy
difference δELy → 0 when Ly → ∞, the gapped and gap-
less sectors are degenerate. Our results thus strongly support
the gapless spin-orbital liquid scenario obtained by previous
iPEPS and VMC studies [22].

Twist boundary condition. The gapless nature of Hamil-
tonian (1) can still be revealed even on finite cylinders.
Following the strategy introduced in Refs. [67–70], we con-
sider generalized PBC in which the SU(4) spin operators
acquire a twisted boundary condition, namely, taking the
raising operators associated with the |m = 1〉 local states as
λn1

i+Lyr̂y
= eiθ/2λn1

i (n = 2, 3, 4) [corresponding lowering op-

erators: λ1n = (λn1)†] [58]. Here θ is a so-called spin flux
in the cylinder which reduces the SU(4) symmetry into a
U(1)⊗3 one. This effect is of order 1/Ly and we expect that
it will not have a significant effect in the bulk. To preserve the
time-reversal symmetry, we only consider a θ = π spin flux
besides the trivial one θ = 0. By choosing a proper gauge, a
θ = π spin flux modifies the exchange terms on the NN bonds
〈i j〉 only along the y (periodic) boundary [see Fig. 1(a)] as

4∑
n=2

(
λn1

i λ1n
j + H.c.

) −→ −
4∑

n=2

(
λn1

i λ1n
j + H.c.

)
, (5)

and leaves the other terms in Eq. (1) unchanged. Since the
ground state of the original Hamiltonian (1) is a π -flux state,
we expect that this θ = π spin flux can pump the m = 1 flavor
partons to exactly cut the Dirac point.

We denote the ground state of the Hamiltonian (1) with
twisted boundary obtained by DMRG as |	D(θ = π )〉. The
entanglement entropy S(lx ) of |	D(θ = π )〉 splits into two
branches, where the upper (lower) branch corresponds to an
odd (even) lx, see Fig. 2(c). The even-odd oscillations are
induced by the open boundary condition along the x direction
[71]. Both branches of S(lx ) on the YC-4 cylinders with θ = π

are well described by Eq. (4), and the extracted central charge,
c ≈ 1, for the lower branch is consistent with the results
predicted by the CFT of a single-component massless fermion
system.

By treating the gauge flux coupling to the m = 1 partons
and the other gauge fluxes separately, we can prepare the
projected parton states which efficiently characterize |	D(θ =
π )〉. For instance, by choosing �1 = π and �m = 0 (�1 = 0
and �m = π ) with m = 2, 3, 4, again we can prepare a parton
state on a YC-4 (YC-8) cylinder which only contains two
Dirac points [see Fig. 1(d)]. We find that the wave function
fidelities between |	D(θ = π )〉 and those projected states
containing two Dirac points are F ≈ 0.907 on YC-4 cylinder
and F ≈ 0.893 on YC-8 cylinder, as listed in Table I. These
remarkably high fidelities further provide strong evidence that
the gapless state |�m(θ = π )〉 is still a π -flux state.

Discussion. In summary, we have studied the SU(4) KK
model on the honeycomb lattice by a DMRG method built

on Gutzwiller projected parton wave functions. We provide
strong evidence for a gapless quantum spin-orbital liquid
ground state with Dirac-type excitations in the 2D limit, which
is efficiently described by a π -flux state. The Dirac points of
this spin-orbital liquid are gapped due to an emergent gauge
flux on finite cylinders. Using a parton ansatz, we have shown
how it can be revealed by inserting a θ = π spin flux to
twist the boundary condition. We expect that this π -flux Dirac
liquid state is stable beyond the quasi-1D geometry and serves
as an excellent ground-state candidate for the honeycomb
SU(4) KK model in the thermodynamic limit, in agreement
with Ref. [22].

The MPS representation of Gutzwiller projected wave
functions provides a powerful tool for directly computing sev-
eral quantities of interest such as wave function fidelities. Our
results demonstrate the advantages of the method, i.e., to cir-
cumvent the strong finite-size effects of standard 2D DMRG
simulations. Besides being a useful tool for probing topolog-
ical quantities [67–69,72], twisting boundary conditions can
also be used to uncover possible parton Fermi surface states
gapped by emergent gauge flux, e.g., the proposed deformed
parton Fermi surface in the SU(4) KK model on the triangular
lattice [61].

For future works, it would be interesting to map out the
phase diagram of the KK model near the SU(4) symmetric
point but including experimentally relevant perturbing inter-
actions. For instance, the Dirac spin-orbital state might serve
as a critical point for several nearby phases such as a chi-
ral spin liquid induced by three-body interactions [36,73]. It
will be very worthwhile to further generalize our numerical
method to explore the alternative parton ansatzes introduced
in Ref. [74]. Another intriguing prospect is to determine signa-
tures of the Dirac spin-orbital liquid in real materials such as
ZrCl3 [25,26]. The newly developed MPS-based method will
also allow the simulation of dynamical properties [75–77],
albeit restricted to cylindrical geometries. As a promising trial
wave function, the π -flux state is an excellent starting point
for predicting various dynamical spectral functions approach-
ing the thermodynamic limit, which is currently beyond the
capabilities of MPS-based methods.
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