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Disorder-induced spin-charge separation in the one-dimensional Hubbard model
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Many-body localization is believed to be generically unstable in quantum systems with continuous non-
Abelian symmetries, even in the presence of strong disorder. Breaking these symmetries can stabilize the
localized phase, leading to the emergence of an extensive number of quasilocally conserved quantities known as
local integrals of motion, or l bits. Using a sophisticated nonperturbative technique based on continuous unitary
transforms, we investigate the one-dimensional Hubbard model subject to both spin and charge disorder, compute
the associated l bits and demonstrate that the disorder gives rise to a novel form of spin-charge separation. We
examine the role of symmetries in delocalizing the spin and charge degrees of freedom, and show that while
symmetries generally lead to delocalization through multiparticle resonant processes, certain subsets of states
appear stable.
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I. INTRODUCTION

The study of localization in low-dimensional quantum
systems due to disorder has a long history, from the orig-
inal works of Anderson [1,2] through to modern ideas of
many-body localization [3–10]. Conventionally, many-body
localization (MBL) in systems with a random disordered po-
tential is now understood in terms of the existence of an
extensive number of local integrals of motions (LIOMs, or l
bits), which decay exponentially in space and are related to the
constituents of the microscopic model via a quasilocal unitary
transform [11–15]. Several methods for constructing these l
bits exist, including computing them directly via unitary trans-
forms [16–20], extracting them from the long-time behavior
of various observables [21,22], and from other hydrodynamic
considerations [23].

Much of the focus has been on spinless fermionic systems
or spin-1/2 chains, however, experiments [24–26] have also
studied localization in systems of spinful fermions, which ex-
hibit an SU(2) spin rotation symmetry. It has been argued that
full many-body localization cannot exist unless all continuous
non-Abelian symmetries are broken [27–37], and that even
then, not all eigenstates may display typical MBL phenomena
[38]. Models of spinful fermions present a major challenge
to exact numerical methods due to the additional degree of
freedom compared with spinless fermions, and this places
strong limitations on the system sizes which can be studied
numerically. In particular, little is known about the form of
l bits of spinful fermions [34,39], despite their experimental
relevance and the central role that l bits play in describing
and understanding many-body localized quantum matter. The
study of MBL in spinful fermionic systems is also relevant for
the broader question of the stability of MBL, as the interaction
between fermionic species can be viewed as a pseudo-system-
bath coupling.

In this work, we make use of a technique designed to
compute the local integrals of motion associated to a model
with multiple fermionic species, and show that the existence

of any continuous non-Abelian symmetry prevents the Hamil-
tonian from being written as a sum of mutually commuting
local integrals of motion. When the symmetry is broken, we
demonstrate that it is possible to write an effective Hamil-
tonian describing the system in terms of local integrals of
motion associated to charge and spin degrees of freedom. This
is reminiscent of the spin-charge separation seen in various
regimes of the disorder-free Hubbard model, notably in the
Luttinger liquid regime [40–42], the related strongly interact-
ing t-J model [43–48] as well as in novel driven phases [49],
but here it arises solely due to the presence of disorder [33].

II. MODEL

We will study the behavior of spinful fermions on a lattice
in one dimension using the Fermi-Hubbard model, sketched
in Fig. 1, which is given by:

H =
∑

i

∑

σ=↑,↓
hσ

i ni,σ −
∑

i

∑

σ=↑,↓
tσ (c†

i,σ ci+1,σ + H.c.)

+ U
∑

i

ni,↑ni,↓, (1)

where hσ
i ∈ [−d, d] represents the (spin-dependent) on-site

disorder potential. Throughout, we will use tσ ≡ t = 1.0 as
the unit of energy, and set U/t = 0.1 unless otherwise stated.
The disorder-free (d = 0) model has an SU(2) symmetry
associated to global spin rotations, as well as an SU(2) pseu-
dospin symmetry associated with charge degrees of freedom
[38,50–54]. We will consider two types of disorder. The
case of h↑

i = h↓
i represents disorder in the charge degrees

of freedom only, which preserves the SU(2) spin symme-
try but breaks the SU(2) pseudospin symmetry, while the
opposite case of h↑

i = −h↓
i represents spin disorder, which

breaks the SU(2) spin symmetry but preserves the pseudospin
symmetry. In the noninteracting case of U/t = 0, the spin-up
and spin-down fermions become completely decoupled and
one can imagine the Hamiltonian Eq. (1) as describing two
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independent chains of noninteracting particles. In the presence
of disorder (h↑

i �= 0, h↓
i �= 0), these noninteracting chains will

both be Anderson localized.

III. METHOD

We diagonalize the Hamiltonian up to terms of quartic
order in the fermionic operators using the tensor flow equa-
tion (TFE) method [55,56], implemented using PYFLOW [57]
and building on a variety of earlier works [20,58–60]. It is
based on the Głazek-Wegner-Wilson flow, a method that has
been widely used in condensed matter physics (and beyond)
for a large variety of problems [17,19,61–73], including time-
dependent [60,74–76] and open [77] systems. This technique
is nonperturbative [70], but its success in fully diagonalizing
the Hamiltonian depends on the microscopic model having a
well-defined separation of energy scales. The method works
by successively applying infinitesimal unitary transforms to
the Hamiltonian until convergence is achieved, at each step
removing some fraction of off-diagonal terms at the cost of
inducing new higher-order terms proportional to powers of the
interaction strength. In order to keep these terms under con-
trol, we will mainly work at weak interactions U/t � 1, such
that any newly generated terms are small and can be neglected.
A full error analysis is available in Ref. [56]. Here, we will
focus on the qualitative form of the transformed Hamiltonian:

H̃ =
∑

i

(h̃↑
i : ñi,↑ : +h̃↓

i : ñi,↓ :) +
∑

i j

+�̃i j : ñi,↑ñ j,↓ :

+
∑

i j

(U ∗
i j : c̃†

i,↑c̃ j,↑c̃†
i,↓c̃ j,↓ : +U i j : c̃†

i,↑c̃ j,↑c̃†
j,↓c̃i,↓ :)

+
∑

i j

(�̃↑
i j : ñi,↑ñ j,↑ : +�̃

↓
i j : ñi,↓ñ j,↓ :) + · · · , (2)

where the ... refers to higher-order terms which are neglected
within the approximations made here, the : O : notation sig-
nifies normal ordering, and the tilde notation indicates that all
quantities are expressed in the transformed basis. The form of
this Hamiltonian is independent of the dimensionality of the
system.

A few comments are in order about the form of this
effective Hamiltonian. First, and in contrast with previous
implementations of the TFE method, this Hamiltonian is not
always fully diagonalized. The presence of the spin SU(2)
symmetry leads to a degeneracy between spin-up and spin-
down sectors of the Hamiltonian, which in turn leads to a
spin-flip term U i j . Similarly, the presence of the pseudospin
SU(2) symmetry leads to a pair hopping term U ∗

i j . If ei-
ther symmetry is broken, and the resulting degeneracy lifted,
the corresponding coupling constant is zero. These resonant
terms couple degenerate states, and therefore cannot be re-
moved by the TFE method. They do not commute with the
rest of the Hamiltonian, ruling out the possibility of writing
Eq. (1) solely in terms of mutually commuting quasilocal in-
tegrals of motion (as removing real-space degeneracies in this
framework typically requires a nonlocal unitary transform).
We will nonetheless refer to this as the diagonal basis, as
all single-particle off-diagonal and multiparticle off-diagonal,
off-resonant terms have been removed, and refer to number

operators in this basis as l bits. Second, the action of the flow
equation method leads to the emergence of new interaction
terms �̃σ

i j ∝ tU 2, which act within each spin species: these
terms arise due to nonperturbative corrections computed with
respect to an appropriate reference state (here taken to be
an excited state of the noninteracting system) via a normal-
ordering procedure [56], and are in some cases equivalent
to one-loop renormalization group contributions [70,78]. The
computational cost of each step of this method is O(L6),
restricting us to small system sizes. For normal ordering with
respect to the vacuum state, the corrections are zero and �̃σ

i j =
0 ∀ σ, i, j. For normal ordering with respect to an arbitrary
excited state, more appropriate for the study of many-body
localization, these corrections are nonzero. This suggests that
the low-energy and high-energy sectors of Eq. (1) may behave
differently in the presence of disorder. Here, we choose the
reference state to be a normalised eigenstate of the nonin-
teracting system, which in the diagonal basis takes the form
|0,↑↓, 0,↑↓ . . .〉 for charge disorder, and |↑,↓,↑,↓ . . .〉 for
spin disorder [56]. We assume that superconductivity plays no
role (as we consider a disordered system far from the ground
state) and consequently no anomalous terms appear in Eq. (2).

Using the definition of charge (ρi =: ñi,↑ : + : ñi,↓ :) and
spin (σi =: ñi,↑ : − : ñi,↓ :), we can (partially) rewrite this
Hamiltonian in terms of mutually commuting l bits associated
with spin and charge degrees of freedom:

H̃ =
∑

i

(hiρi + hiσi ) +
∑

i j

(
�

ρ
i jρiρ j + �σ

i jσiσ j
)

+
∑

i j

(U i jS
+
i S−

j + U ∗
i jP

+
i P−

j )

+
∑

i j

�i j (ρiσ j + σiρ j ) + · · · (3)

with hi = 1
2 (h̃↑

i + h̃↓
i ), hi = 1

2 (h̃↑
i − h̃↓

i ), �
ρ
i j = 1

4 (�̃↑
i j +

�̃
↓
i j + �̃i j ), �σ

i j = 1
4 (�̃↑

i j + �̃
↓
i j − �̃i j ), �i j = 1

4 (�̃↑
i j − �̃

↓
i j )

and we define the spin-flip term S+
i S−

j =: c̃†
i,↑c̃ j,↑c̃†

j,↓c̃i,↓ : and

the pair hopping term P+
i P−

j =: c̃†
i,↑c̃ j,↑c̃†

i,↓c̃ j,↓ : [79]. The first
line of Eq. (3) represents two independent systems of charge
and spin l bits, respectively, while the second line contains a
coupling between them. In the case of charge disorder where
only the spin SU(2) symmetry is preserved, we have hi = 0 ∀i
and U ∗

i j = �i j = 0 ∀i, j, implying that in the absence of any
other coupling all degrees of freedom would be localized.
The spin-flip coefficient U i j is not zero, however, and this
term does not commute with the σi operators. This means
that even though the charge degrees of freedom may be
localized, the spin degrees of freedom are not. Similarly, in
the case of spin disorder, the presence of an SU(2) pseudospin
symmetry leads to the emergence of the pair hopping term
U ∗

i jP
+
i P−

j , which does not commute with the ρi operators,
resulting in localization of the spin degrees of freedom but
not the charges. In this case, however, both spin and charge
degrees of freedom may eventually be able to equilibrate via
the nonzero coupling �i j , although in practice we find that
this term is small and decays exponentially with distance,
and as such delocalization via this term is likely to become
extremely slow at strong disorder strengths. The spin-flip term
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FIG. 1. A sketch of the Hubbard model described in Eq. (1) as
two coupled chains of spinless fermions subject to a disordered on
site potential hσ

i and with hopping amplitude tσ , interacting via an
on-site repulsion U .

S+
i S−

j , when rewritten in terms of the original operators in the

l = 0 basis via the operator expansion : c̃†
i,σ : = ∑

j,σ ′ α̃
(i,σ )
j,σ ′ :

c†
j,σ ′ : + ∑

jkq,σ ′,σ ′′ β̃
(i,σ )
jkq,σ ′σ ′′ : c†

j,σ ′c
†
k,σ ′′cq,σ ′′ : + · · · [56],

contains a spin-mediated hopping term of precisely the type
obtained in Ref. [36], as well as additional higher-order
terms, which combine to constitute a (slow) relaxation
channel. The pair hopping term P+

i P−
j has a similar effect.

As the microscopic interaction strength U is increased, both
processes will become increasingly relevant for the dynamics,
favoring thermalization. Curiously, there are also exceptional
states where these terms can have no effect. Consider for
example applying the spin-flip term to a CDW state in the
diagonal basis, e.g., |ψ̃〉 = |0,↑↓, 0,↑↓ . . .〉 This term can
only exchange pairs of opposite spins on different sites,
and cannot modify the CDW state as double-occupancy of
the same spin species is forbidden by fermionic statistics.
Similarly, if we consider applying the pair hopping term
to a spin density wave (SDW) state in the diagonal basis,
|ψ̃〉 = |↑,↓,↑,↓ . . .〉, we find that it cannot change the state,
as it can only move pairs of spins from one site to another.
This suggests that for both types of disorder, although typical
states will be delocalized, there may be rare states in which
localization is stable to long times, although we cannot rule
out the existence of weak higher-order processes involving
three or more particles, which may destabilize these states on
long timescales. This has clear parallels with weak ergodicity
breaking, e.g., quantum many-body scars [80–82], and is
consistent with similar observations in Refs. [38,83].

IV. NUMERICAL RESULTS

The results of the flow equation procedure are shown in
Fig. 2 for both charge and spin disorder. We will use a system
of size L = 12 and show the typical (median) magnitudes of
various quantities [Ô] computed from Ns ∈ [100, 128] disor-
der realizations. Error bars represent the statistical uncertainty
(median absolute deviation) unless otherwise stated, and all
joining lines are guides to the eye. A few general features
are worth commenting on. First, the same-species interac-
tions for spin-up (solid lines) and spin-down (dashed lines)
l bits behave almost indistinguishably regardless of the type
of disorder used, in all cases exhibiting an exponential decay
with distance. The mixed spin interaction term �̃i j behaves
similarly. Interestingly, these coupling constants are all largely

FIG. 2. Coupling constants extracted from the diagonal Hamilto-
nian [Eq. (2)] for a system of size L = 12 with Ns = 128 in the case
of charge disorder (left column) and spin disorder (right column),
with d̃ = d/t . (a) Spin-up (crosses joined with solid lines) and spin-
down (open circles joined with dashed lines) interactions. The solid
and dashed lines are in most cases directly superimposed. b) The
same, but here for spin disorder. (c) The coefficient of the mixed
spin interaction term �̃i j in the case of charge disorder. (d) The same
again, but here for spin disorder. The decay of these interactions is
essentially independent of the type of disorder used.

independent of the presence of either SU(2) symmetry, mean-
ing those effects must be solely felt elsewhere. Second, for
small values of d/t , all coupling constants become highly
extended, at which point the neglected high-order terms in
Eq. (3) become relevant and must be included. It is also
interesting to see how the observed features change as the mi-
croscopic interaction strength U is increased. In Fig. 3(a), we
show the coupling constants �

ρ
i j and �σ

i j for a fixed (charge)
disorder strength of d/t = 3.0 and for varying interaction
strengths (with Ns = 100). Both interactions increase with U .
For U � 1, the neglected higher-order terms in Eq. (2) will
become relevant and the current approximation will break
down, but the qualitative behavior is nonetheless instructive
and remains well controlled.

To unveil the role of the SU(2) symmetries, we now turn
to the coupling between spin and charge l bits, namely the
spin-charge coupling �i j , the pair hopping term U ∗

i j , and the

spin-flip term U i j in Eq. (3), shown in Figs. 3(b)–3(d), respec-
tively (Ns = 128). The spin-flip term is only nonzero when the
SU(2) spin symmetry is preserved, while the spin-charge cou-
pling term is only nonzero when this symmetry is broken, and
the pair hopping term is only nonzero in the presence of the
SU(2) pseudospin symmetry. Figures 3(c) and 3(d) show that
for weak disorder the couplings U ∗

i j and Ũi j decay slowly and
long-range resonances are possible, while at stronger disorder
they are exponentially suppressed, suggesting delocalization
will become parametrically slow for strong disorder.

We can also directly compute the integrals of motion as-
sociated with the spin-up and spin-down fermions, using the
TFE method to transform the local operators in Eq. (2) back
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FIG. 3. (a) The coupling constants �
ρ
i j (solid lines) and �σ

i j

(dashed lines) extracted from Eq. (3) at fixed (charge) disorder
d/t = 3.0 and varying interactions Ũ = U/t . (b) The coefficient
of the spin-charge coupling term in Eq. (3), for spin disorder and
fixed interaction strength U/t = 0.1 and varying disorder strengths
d̃ = d/t . (c) The coefficient of the pair hopping term U ∗

i j in Eq. (3),
again for spin disorder and fixed interaction strength while varying
the disorder. (d) The coefficient of the spin-flip term U i j in Eq. (3),
for charge disorder.

into the original basis:

: ñi,σ :=
∑

j,σ ′=↑,↓
α

(i,σ )
j,σ ′ : n j,σ ′ : +

∑

jk,σ ′
β

(i,σ )
jk,σ ′ : c†

j,σ ′ck,σ ′ :

+
∑

jkpq,σ ′σ ′′
ζ

(i,σ )
jkpq,σ ′σ ′′ : c†

j,σ ′ck,σ ′c†
p,σ ′′cq,σ ′′ : + · · · .

(4)

The quadratic terms α
(i,σ )
j,σ for both σ =↑,↓ are shown in

Figs. 4(a)–4(b) as a function of disorder strength, for both spin
and charge disorder (Ns = 128). They decay exponentially
with distance r = |i − j| and can be fitted with an exponential
decay of the form ∼e−r/ξ2 to extract a localization length
ξ2. Similarly, we can plot the quartic coefficient ζ

(i,σ )
jkpq,σ ′σ ′′

[the �
(i,↑)
jk,↑↓ ≡ ζ

(i,↑)
j jkk,↑↓ component is shown in Fig. 4(c) other

components behave similarly], which also decays approxi-
mately exponentially at large distance for all combinations
of distances (e.g., |i − j|, |i − k|, | j − k|, and so on) for any
choice of σ ′ and σ ′′, and we can fit the tails of these coeffi-
cients with a function ∼e−r/ξ4 to extract a second localization
length ξ4. Both localization lengths are shown in Fig. 4(d),
and both exhibit similar monotonic decay with increasing
disorder strength. At weak disorder, the localization length
ξ4 associated to the interacting part of the l bits becomes
much larger then the noninteracting localization length ξ2 and
approaches the system size, suggestive of interaction-driven
delocalization at sufficiently low values of d/t .

V. DISCUSSION

Starting from two decoupled, Anderson-localized chains of
noninteracting spinful fermions, our results demonstrate that

FIG. 4. (a) The quadratic terms α
(i,σ )
j,σ of Eq. (4) in the case of

charge disorder, for σ = ↑ (solid lines) and σ = ↓ (dashed lines).
(b) The same quantity in the case of spin disorder. (c) The quartic
terms �

(i,↑)
jk,↑↓ ≡ ζ

(i,↑)
j jkk,↑↓ of Eq. (4) for charge disorder (solid) and

spin disorder (dashed). (d) localization lengths ξ2 (dashed) and ξ4

(solid), for charge disorder (blue) and spin disorder (black). Error
bars indicate the fitting uncertainty. The gray dashed line indicates
the system size, L = 12.

when a repulsive Hubbard contact interaction between both
species is switched on, two different delocalization mecha-
nisms emerge. One is the presence of the pair hopping and
spin-flip terms, which lead to transport of the type identi-
fied in Refs. [36,38], while the other arises due to the slow
decay of the coupling constants in the transformed Hamilto-
nian at weak disorder, resulting in a large l bit localization
length. The former mechanism is activated by the presence of
SU(2) symmetry (either spin or pseudospin), while the latter
is unrelated to symmetry and results from the interplay of
the microscopic interactions U/t and disorder strength d/t .
While the existence of weak resonant terms in the presence
of either SU(2) symmetry implies thermalization in the long-
time limit, they do not rule out the emergence of long-lived
prethermal or glassy states at large d where nonergodic fea-
tures may persist for long times. Further investigating the form
of this relaxation, and particularly whether it exhibits glassy
effects such as aging, may be an interesting topic for future
work.

VI. CONCLUSION

In this work, we have investigated the role of continuous
non-Abelian symmetries on the formation of local integrals
of motion in the one-dimensional Fermi-Hubbard model, and
shown the origin of a form of disorder-induced spin-charge
separation. While these numerical results specify to one di-
mension, the qualitative form of the Hamiltonian does not
depend on the dimensionality, and it seems reasonable to
expect that the presence of a continuous non-Abelian sym-
metry will generically forbid a multicomponent system from
being written solely in terms of mutually commuting lo-
cal integrals of motion in any dimension. This will prevent
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full many-body localization, although there may exist atyp-
ical states, which the resonant terms cannot act upon [83].
These results obtained from the l bits complement prior stud-
ies, which examined the effects of SU(2) symmetry on the
entanglement structure [30,38] and more general symmetry
considerations [28]. Any perturbations, which break both the
spin and pseudospin SU(2) symmetries, no matter how slight
(e.g., uncontrolled impurities or stray magnetic fields) will
act to stabilize localization. It would be very interesting to
apply similar techniques in the limit of strongly interacting
spinful fermions, e.g., to the disordered t-J model [43,84,85]
or t-0 model recently studied in the context of MBL [86,87],
and examine the effects of disorder in a sector where the
clean system already exhibits strong spin-charge separation.

In this regime, one might expect to see even more dramatic
differences between spin and charge l bits.
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[35] M. Środa, P. Prelovšek, and M. Mierzejewski, Instability of sub-
diffusive spin dynamics in strongly disordered hubbard chain,
Phys. Rev. B 99, 121110(R) (2019).

[36] I. V. Protopopov and D. A. Abanin, Spin-mediated particle
transport in the disordered hubbard model, Phys. Rev. B 99,
115111 (2019).

[37] K. Suthar, P. Sierant, and J. Zakrzewski, Many-body localiza-
tion with synthetic gauge fields in disordered hubbard chains,
Phys. Rev. B 101, 134203 (2020).

[38] X. Yu, D. Luo, and B. K. Clark, Beyond many-body localized
states in a spin-disordered hubbard model, Phys. Rev. B 98,
115106 (2018).

[39] R. Wortis and M. P. Kennett, Local integrals of motion in the
two-site anderson-hubbard model, J. Phys.: Condens. Matter
29, 405602 (2017).

[40] F. Haldane, ‘Luttinger liquid theory’ of one-dimensional quan-
tum fluids. I. Properties of the Luttinger model and their
extension to the general 1d interacting spinless Fermi gas,
J. Phys. C 14, 2585 (1981).

[41] C. Kollath, U. Schollwöck, and W. Zwerger, Spin-Charge Sep-
aration in Cold Fermi Gases: A Real Time Analysis, Phys. Rev.
Lett. 95, 176401 (2005).

[42] Y. Jompol, C. J. B. Ford, J. P. Griffiths, I. Farrer, G. A. C. Jones,
D. Anderson, D. A. Ritchie, T. W. Silk, and A. J. Schofield,
Probing spin-charge separation in a tomonaga-luttinger liquid,
Science 325, 597 (2009).

[43] J. Spałek, Effect of pair hopping and magnitude of intra-atomic
interaction on exchange-mediated superconductivity, Phys. Rev.
B 37, 533 (1988).

[44] Y. R. Wang and M. J. Rice, Exact expression of the t-j model in
terms of local spin and fermionic holon operators, Phys. Rev. B
49, 4360 (1994).

[45] W. O. Putikka, R. L. Glenister, R. R. P. Singh, and H.
Tsunetsugu, Indications of Spin-Charge Separation in the Two-
Dimensional t-J Model, Phys. Rev. Lett. 73, 170 (1994).

[46] Y. C. Chen, A. Moreo, F. Ortolani, E. Dagotto, and T. K. Lee,
Spin-charge separation in the two-dimensional hubbard and t-j
models at low electronic density, Phys. Rev. B 50, 655 (1994).

[47] Z. Y. Weng, D. N. Sheng, and C. S. Ting, Spin-charge separation
in the t-j model: Magnetic and transport anomalies, Phys. Rev.
B 52, 637 (1995).

[48] J. Vijayan, P. Sompet, G. Salomon, J. Koepsell, S. Hirthe, A.
Bohrdt, F. Grusdt, I. Bloch, and C. Gross, Time-resolved ob-
servation of spin-charge deconfinement in fermionic hubbard
chains, Science 367, 186 (2020).

[49] H. Gao, J. R. Coulthard, D. Jaksch, and J. Mur-Petit, Anoma-
lous Spin-Charge Separation in a Driven Hubbard System,
Phys. Rev. Lett. 125, 195301 (2020).

[50] C. N. Yang, η Pairing and Off-Diagonal Long-Range Order in a
Hubbard Model, Phys. Rev. Lett. 63, 2144 (1989).

[51] S. Zhang, Pseudospin Symmetry and New Collective
Modes of the Hubbard Model, Phys. Rev. Lett. 65, 120
(1990).

[52] S.-Q. Shen and X. Xie, Pseudospin SU (2)-symmetry breaking,
charge-density waves and superconductivity in the Hubbard
model, J. Phys.: Condens. Matter 8, 4805 (1996).

[53] J. Boretsky, J. Cohn, and J. Freericks, Spin and pseudospin
towers of the hubbard model on a bipartite lattice, Int. J. Mod.
Phys. B 32, 1840021 (2018).

[54] S. Moudgalya, N. Regnault, and B. A. Bernevig, η-pairing in
hubbard models: From spectrum generating algebras to quan-
tum many-body scars, Phys. Rev. B 102, 085140 (2020).

[55] S. J. Thomson and M. Schirò, Local integrals of motion in
quasiperiodic many-body localized systems, SciPost Phys. 14,
125 (2023).

[56] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.107.L180201 for details, which includes
Refs. [89–91].

[57] S. J. Thomson, pyflow: A python package for flow equation
methods, https://github.com/sjt48/PyFlow.

[58] S. J. Thomson and M. Schiró, Dynamics of disordered quan-
tum systems using flow equations, Eur. Phys. J. B 93, 22
(2020).

[59] S. J. Thomson and M. Schiró, Quasi-many-body localization of
interacting fermions with long-range couplings, Phys. Rev. Res.
2, 043368 (2020).

[60] S. J. Thomson, D. Magano, and M. Schiró, Flow equations for
disordered floquet systems, SciPost Phys. 11, 028 (2021).

[61] R. Brockett, Dynamical systems that sort lists, diagonalize ma-
trices, and solve linear programming problems, Linear Algebra
Appl. 146, 79 (1991).

[62] M. T. Chu, A list of matrix flows with applications, Fields Inst.
Commun. 3, 87 (1994).

[63] F. Wegner, Flow-equations for hamiltonians, Annalen der
Physik 506, 77 (1994).

[64] S. D. Głazek and K. G. Wilson, Renormalization of hamiltoni-
ans, Phys. Rev. D 48, 5863 (1993).

[65] S. D. Glazek and K. G. Wilson, Perturbative renormalization
group for hamiltonians, Phys. Rev. D 49, 4214 (1994).

[66] J. Stein, Flow equations and the strong-coupling expansion for
the Hubbard model, J. Stat. Phys. 88, 487 (1997).

[67] A. Mielke, Flow equations for band-matrices, Eur. Phys. J. B 5,
605 (1998).

[68] C. Knetter and G. S. Uhrig, Perturbation theory by flow equa-
tions: dimerized and frustrated s = 1/2 chain, Eur. Phys. J. B
13, 209 (2000).

[69] C. Knetter, K. P. Schmidt, and G. S. Uhrig, The structure of
operators in effective particle-conserving models, J. Phys. A:
Math. Gen. 36, 7889 (2003).

[70] S. Kehrein, The Flow Equation Approach to Many-Particle
Systems (Springer, Berlin, 2007), Vol. 217.

[71] H.-Y. Yang, A. F. Albuquerque, S. Capponi, A. M. Läuchli, and
K. P. Schmidt, Effective spin couplings in the mott insulator of
the honeycomb lattice hubbard model, New J. Phys. 14, 115027
(2012).

L180201-6

https://doi.org/10.1103/PhysRevB.96.041122
https://doi.org/10.1103/PhysRevLett.120.246602
https://doi.org/10.1103/PhysRevB.97.064204
https://doi.org/10.1103/PhysRevB.98.014203
https://doi.org/10.1103/PhysRevB.100.125132
https://doi.org/10.1103/PhysRevB.99.121110
https://doi.org/10.1103/PhysRevB.99.115111
https://doi.org/10.1103/PhysRevB.101.134203
https://doi.org/10.1103/PhysRevB.98.115106
https://doi.org/10.1088/1361-648X/aa818e
https://doi.org/10.1088/0022-3719/14/19/010
https://doi.org/10.1103/PhysRevLett.95.176401
https://doi.org/10.1126/science.1171769
https://doi.org/10.1103/PhysRevB.37.533
https://doi.org/10.1103/PhysRevB.49.4360
https://doi.org/10.1103/PhysRevLett.73.170
https://doi.org/10.1103/PhysRevB.50.655
https://doi.org/10.1103/PhysRevB.52.637
https://doi.org/10.1126/science.aay2354
https://doi.org/10.1103/PhysRevLett.125.195301
https://doi.org/10.1103/PhysRevLett.63.2144
https://doi.org/10.1103/PhysRevLett.65.120
https://doi.org/10.1088/0953-8984/8/26/012
https://doi.org/10.1142/S0217979218400210
https://doi.org/10.1103/PhysRevB.102.085140
https://doi.org/10.21468/SciPostPhys.14.5.125
http://link.aps.org/supplemental/10.1103/PhysRevB.107.L180201
https://github.com/sjt48/PyFlow
https://doi.org/10.1140/epjb/e2019-100476-3
https://doi.org/10.1103/PhysRevResearch.2.043368
https://doi.org/10.21468/SciPostPhys.11.2.028
https://doi.org/10.1016/0024-3795(91)90021-N
https://doi.org/10.1090/fic/003
https://doi.org/10.1002/andp.19945060203
https://doi.org/10.1103/PhysRevD.48.5863
https://doi.org/10.1103/PhysRevD.49.4214
https://doi.org/10.1007/BF02508481
https://doi.org/10.1007/s100510050485
https://doi.org/10.1007/s100510050026
https://doi.org/10.1088/0305-4470/36/29/302
https://doi.org/10.1088/1367-2630/14/11/115027


DISORDER-INDUCED SPIN-CHARGE SEPARATION IN … PHYSICAL REVIEW B 107, L180201 (2023)

[72] V. L. Quito, P. Titum, D. Pekker, and G. Refael, Localization
transition in one dimension using Wegner flow equations, Phys.
Rev. B 94, 104202 (2016).

[73] S. P. Kelly, R. Nandkishore, and J. Marino, Exploring
many-body localization in quantum systems coupled to an en-
vironment via wegner-wilson flows, Nucl. Phys. B 951, 114886
(2020).

[74] C. Tomaras and S. Kehrein, Scaling approach for the time-
dependent kondo model, Europhys. Lett. 93, 47011 (2011).

[75] A. Verdeny, A. Mielke, and F. Mintert, Accurate Effective
Hamiltonians via Unitary Flow in Floquet Space, Phys. Rev.
Lett. 111, 175301 (2013).

[76] M. Vogl, P. Laurell, A. D. Barr, and G. A. Fiete, Flow Equation
Approach to Periodically Driven Quantum Systems, Phys. Rev.
X 9, 021037 (2019).

[77] L. Rosso, F. Iemini, M. Schirò, and L. Mazza, Dissipative flow
equations, SciPost Phys. 9, 091 (2020).

[78] F. Wegner, Flow equations and normal ordering: a survey,
J. Phys. A: Math. Gen. 39, 8221 (2006).

[79] In general : nin j :�=: ni :: nj :, however, in this case all lower-
order normal-ordering terms evaluate to zero.

[80] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and
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