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Anomalous transition with modulation around band degeneracies
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A resonance transition occurs between two states when the system is under an oscillatory driving field with a
proper frequency. It is commonly believed that frequency must be matched at the resonance transition. Here we
show that the above condition is not necessarily satisfied when the system under driving encloses nontrivial band
degeneracies, such as a Dirac point. We consider a kagome lattice under the modulation of an artificial gauge
field and show the inequivalence of the modulation frequency and energy difference between states at transitions.
Meanwhile, our analytical formula reveals that the transitions exhibit chirality around the Dirac cone. When the
system Hamiltonian under modulation circles around a higher-order charged band degeneracy, the fundamental
one-photon transition is absent. These peculiar properties can be explained with the effective Hamiltonian under
n-fold rotational symmetry.
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Conservation of energy and momentum plays crucial roles
in various emission or absorption spectroscopies for iden-
tifying structural fingerprints, such as Raman spectroscopy
[1], electron energy-loss spectroscopy [2], etc. [3]. Generally,
frequency and momentum must be matched if one wants
to achieve a resonance transition between two states [4–9].
The two states under consideration can be quantum states of
atomic systems [7,8], optical states [4–7], electronic states
[9], qubits in superconducting circuits [10,11], etc. The mod-
ulation which induces the transition needs not be necessarily
optically induced. It can also be introduced by a phonon as
has been widely implemented in optomechanical cavities [12].
The energy conservation in resonance transition originates
from matching the phase factor. Meanwhile, we are also aware
that a geometric phase can introduce an additional phase term
independent of the dynamical phase [13,14]. Thus, asking
how such a geometric phase may modify the resonance transi-
tion process when the system Hamiltonian under modulation
encloses a nontrivial geometric phase is curious.

There are band degeneracies, such as the two-dimensional
(2D) Dirac points possessing nontrivial topological charges
and, thus, a nonzero geometric phase around them. Here
I show that such topological band degeneracies play vital
roles in a resonance transition process especially when the
system Hamiltonian is modulated to circle them. Under this
condition, the maximum transition amplitude occurs at a
modulation frequency (denoted by �p) which is not solely
determined by the frequency (energy) difference between two
states. The analytical solutions show that �p derivates from
the energy difference by the modulation strength (up to a
constant). Meanwhile, �p exhibits a linear dependence on the
mass term that lifts the Dirac point degeneracy. In return, �p

can be utilized to measure this effective mass.
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Consider a two-level system and assume the system ini-
tially only populates the lower-energy state as sketched in
Fig. 1(a). The system is modulated by either an incident opti-
cal wave (photon) or a mechanical oscillation (phonon) with
a modulation frequency �. In general, a resonance transition
is achieved when the energy difference of these two states is
multiple times the modulation frequency, i.e.,

�E = m�p, (1)

where m ∈ Z+. m > 1 represents the multiphoton (phonon)
process. To derive Eq. (1), one needs to assume that the
modulation can be treated as a perturbation where the system
Hamiltonian does not change much in the presence of the
modulation. This assumption is generally true for the vast
majority of scenarios, and, thus, Eq. (1) works for almost all
the known cases.

Exceptional cases exist where Eq. (1) does not hold, say,
when the system Hamiltonian under modulation involves sin-
gular points. The evolution path can enclose the singular
points, and the impacts of these singular points can still be
observed. Figure 1(b) provides one such example wherein the
singular point’s impact must be considered. Here I consider a
three-level system where the two excited energy levels form
a conical dispersion (2D Dirac cone). It is known that any
states, electric or photonic, located on the Dirac cone will
experience a Berry phase π whereas circulating the Dirac
point [15–17]. The modification of energy spectra due to the
Berry phase in the adiabatic limit is well studied [18–20].
However, how it affects the nonadiabatic resonance transition
process remains unexplored. The system under modulation
evolves along a predefined path as highlighted by the yellow
circle with modulation strength and frequency given by δA

and �, respectively. δA is assumed to be a small number, and,
hence, the energy of the lowest band can be approximated by a
constant and the Dirac cone by a linear dispersion. Under such
an evolution path, the energy differences between the lowest
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FIG. 1. (a) A system is excited from a lower-energy state to a higher-energy state with a modulation frequency �. (b) Similar as (a) but the
higher two levels now exhibit a conical dispersion. (c) A kagome lattice with a nonvanishing local magnetic flux. Here the green arrows denote
the positive hopping phase direction, and colored disks denote different sublattices. (d) The band structure of the kagome lattice in (c) with
φ = 0, which exhibits a flat band and a conical dispersion at the K and K ′ points. (e) and (f) The minimal amplitude of wave function remains
on band 1 as a function of the modulation frequency � and the magnetic flux φ. The lower left insets in (e) and (f) sketch the corresponding
modulation profiles. Here the solid white line shows the energy difference among bands 2, 3, and 1, and the dashed white lines are halves of
the energy differences. δA = 0.15 and the circling center �kc is at 2π (1,

√
3)/3 + (0.2, 0) for (e).δA = 0.2 and �kc is at the K point in (f).

band and the excited states remain constant, simplifying the
situation. Thus, one would expect two explicit values of �

at which the lowest band reaches resonance with the higher
bands as indicated by Eq. (1). However, as will be shown later,
Eq. (1) does not hold for the case in Fig. 1(b).

I consider a kagome lattice as shown in Fig. 1(c) [21–23].
To achieve the modulation presented in Fig. 1(b), I include a
uniform vector potential given by

�A(t )=δA[cos(�t )x̂ + sin(�t )ŷ]. (2)

Meanwhile, I added a nonuniform magnetic flux that can
lift the Dirac cone degeneracy for later purposes. Here the
red, blue, and orange disks represent three sublattices, and the
green arrows denote the directions of positive phase hopping.
According to the Peierls substitution [24,25], θ1 + θ2 + θ3 =
φ and for simplicity, we set θ1–3 = φ/3 and the hopping
amplitude h ≡ 1. The possible realizations are discussed at
the end. Also, until otherwise specified, we set the charge of
electron e = 1 and h̄ = 1 throughout this Letter; hence, the
gauge potential shares the same unit as the wave vector. The
Hamiltonian of this system is given by

Ĥ =

⎛
⎜⎝

0 2eiθ1 cos[(�k + �A) · �r1] 2e−iθ3 cos[(�k + �A) · �r3]
2e−iθ1 cos[(�k + �A) · �r1] 0 2eiθ2 cos[(�k + �A) · �r2]
2eiθ3 cos[(�k + �A) · �r3] 2e−iθ2 cos[(�k + �A) · �r2] 0

⎞
⎟⎠, (3)

where �r1 = (1,
√

3)/4, �r2=(1, − √
3)/4 and �r3=(−1, 0)/2.

Here for simplicity, the dependence of Ĥ and �A on time (t)
are not given explicitly. The equation that governs the system
dynamics is

i
∂

∂t
|ψ (t )〉 = Ĥ |ψ (t )〉. (4)

The band structure when δA = 0 (modulation is off) and
φ = 0 is provided in Fig. 1(d), which exhibits the band

dispersion needed in Fig. 1(b) near the K = 2π (1,
√

3)/3
point. The �A field I introduced shifts the kinetic momentum
and, thus, raises the circling modulation. Here the perfect
flatness of the lowest band presented for the kagome lattice
is not necessary, but it does simplify the discussion.

Then I proceed to turn on the modulation. When the modu-
lation frequency � is small, the system evolves adiabatically,
and one can easily identify the Berry phase possessed by the
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TABLE I. List of resonance transitions. The second column labels initial band number → excited band number. The third column gives
the corresponding coupling term, where “⊕” represents a two-photon process. The rightmost column labels the modulation frequency at the
resonance transition.

Peaks Transitions Coupling term Peak modulation frequency

Primary peak 1 band1 → band3 HK
31 �P1 = −3−φ/

√
3 + 3δ2

A/16
Primary peak 2 band1 → band2 HK

12 �P1 = 3−φ/
√

3−3δ2
A/16

Secondary peak 1 band1 → band3 HK
12 ⊕ HK

23 �P2 = 1.5 + φ/2
√

3−3δ2
A/32

Secondary peak 2 band1 → band2 HK
13 ⊕ HK

32 �P2 = −1.5 + φ/2
√

3 + 3δ2
A/32

Dirac cone. As � increases, field amplitudes oscillate between
different bands, similar to a complex version of Rabi oscil-
lation. I first set the wave-vector �k at �kc = K + (0.2, 0) and
δA = 0.15 as a control example where Eq. (1) is satisfied. Here
the Dirac cone is not enclosed by the circling path as sketched
by the lower-left inset in Fig. 1(e). Initially, (t = 0) only the
lowest band is populated, i.e., |ψ (0)〉 = |v1(0)〉, where |vi(t )〉
with i ∈ {1–3} represent the instantaneous eigenstates of the
system Hamiltonian. To characterize the transition probability
to higher bands, I record the minimum remaining amplitude at
the lowest state, i.e., mint |〈ψ (t )|v1(t )〉|. It as a function of the
modulation frequency � and flux φ is shown in Fig. 1(e). Note
here that the dependence of instantaneous eigenstates on t is
introduced as the Hamiltonian in Eq. (3) is time dependent
(not due to the dynamical phase, which is irrelevant for our
observation). For most sets of � and φ, the ground state
cannot be excited (the color remains red). There are four
prominent canyons (two roughly � ≈ 3 and the other two
� ≈ 1.5) where the ground states can be excited to higher
bands. The narrower canyon is almost at a half modulation fre-
quency of the broader one, which indicates that it comes from
a two-photon process. I also provide the time-average energy
difference between bands during the circling with the white
lines in Fig. 1(e). As expected, the modulation frequencies

at canyons match the average energy difference for both the
one-photon and the two-photon processes.

The situation becomes different when the circling path
is centered at the K point, i.e., �kc = K = 2π (1,

√
3)/3.

Figure 1(f) shows the excitation spectrum with δA = 0.2
where the average energy difference is the same as Fig. 1(e).
Different from Fig. 1(e), Fig. 1(f) shows only two prominent
canyons—one at around �p1 ≈ 3 for the one-photon process
and the other roughly �p2 ≈ 1.5 for the two-photon process.
Meanwhile, as δA is small, the band is almost isotropic, and the
energy difference is negligibly small along the circling path.
Thus, obviously, the modulation frequencies at the canyons
do not match either energy difference between those bands
[white lines in Fig. 1(f)]. In other words, an apparent in-
consistency emerges as the Dirac cone is enclosed in the
circling path.

To understand this inconsistency, I derive the effective
Hamiltonian which describes the system under modula-
tion. For small δA, the system’s dynamics can be captured
by the effective Hamiltonian around the K point. We
expand the Hamiltonian in Eq. (3), and perform a uni-
tary transformation such that the coupling terms appear
off-diagonal. When �kc = K , the effective Hamiltonian is
given by

HK =

⎛
⎜⎜⎜⎝

−2 + δ2
A
8

1
4 ei(�t+π/6)δA(

√
3 + φ) 1

4 e−i(�t+π/6)δA(
√

3 − φ)
1
4 e−i(�t+π/6)δA(

√
3 + φ) 1 − φ√

3
− δ2

A
16

√
3

2 ei(�t−π/3)δA

1
4 ei(�t+π/6)δA(

√
3 − φ)

√
3

2 e−i(�t−π/3)δA 1 + φ√
3

− δ2
A

16

⎞
⎟⎟⎟⎠. (5)

Distinctly different from other resonance transitions [say,
Fig. 1(e)], here the energy difference between diagonal
terms (3 ± φ/

√
3−3δ2

A/16) do not equal the energy dif-
ference between the ground and the excited states (3 ±√

φ2/3 + 3δ2
A/2). This explains why the canyons do not match

the white lines in Fig. 1(f). Meanwhile, the off-diagonal
coupling terms originate from modulation exhibit definite
chirality. (Only positive or negative frequency is allowed for
each transition). From the effective Hamiltonian in Eq. (5),
we can identify four possible resonance transition processes,
two with positive �p and the other two with negative �p as
listed in Table I. The two primary (secondary) peaks come
from one-photon (two-photon) processes. On the rightmost
column, we also provide the modulation frequencies at which
the system reaches resonance transition. Choose the primary

peak 1 as an example, �P1 = −3−φ/
√

3, which corresponds
to resonance transition from HK

11 to HK
33 with modulation term

HK
31 = e−i(�t+π/6)δA(

√
3−φ)/4. We can see only two transi-

tion processes for positive � which is consistent with Fig. 1(f).
More intriguingly, the above statement is true in the δA → 0
limit (independent of δA) where positive (negative) �P1 cou-
ples only to the lower (higher) excited state. Note here φ/

√
3

gives the effective mass at the valley, and, thus, the effective
mass near the band edge can be obtained through the opposite
dependence of the primary and secondary peaks on φ.

I proceed to supplement the theoretical predictions in
Table I with numerical simulations. First, I set φ = 0 and
|ψ (0)〉 = |v1(0)〉. The maximum probability of finding a
state on band 3, i.e., maxt |〈ψ (t )|v3(t )〉|2, as functions of
δA and � is shown in Fig. 2(a). There are two primary
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FIG. 2. (a) The maximum probability of finding a state on band
3 (color code) around the K point as a function of the modulation
strength δA and the modulation frequency �. (b) Modulation fre-
quency at resonance transition �p as a function of the magnetic
flux φ. The solid magenta disks are extracted from the numerical
simulations, and the blue lines are analytical results from Table I.
Here I set |ψ (0)〉 = |v1(0)〉 and �kc is at the K point for both (a) and
(b), φ = 0 in (a), and δA = 0.2 in (b).

peaks located at �p1 = ±3 and two other secondary
peaks located at �p2 = ±1.5 whose maximum are in-
dependent of δA as predicted. The peaks broaden with
the increasing of δA. The full width at half maximum
(FWHM) is fitted to be 1.776δA (0.453δ2

A) for the two pri-
mary (secondary) peaks. (See Sec. I in the Supplemental

Material of Ref. [26] for more details [18–20,27–33].) The lin-
ear (quadratic) dependence on δA for the primary (secondary)
peaks confirms that it is a one-photon (two-photon) process.
According to the Rabi model, a one-photon process should
exhibit an FWHM of

√
3δA when φ = 0, which is reasonably

close to 1.776δA as a first-order approximation. Second, I fix
δA = 0.2 and numerically investigate the dependence of �p

on φ. The results are shown with magenta dots in Fig. 2(b).
Meanwhile, the analytical solutions in the rightmost column
of Table I are also provided with blue lines, which agree
reasonably well with the numerical simulations.

A Dirac point is a band degeneracy that exhibits the
lowest-order topological singularity, and there are also other
higher-order charged band degeneracies. With the same
Hamiltonian in Eq. (3) at φ = 0, the lower two bands at 
 con-
sist of a degeneracy with a Berry phase of 2π . At any nonzero
φ, this degeneracy is lifted. As before, I set |ψ (0)〉 = |v1(0)〉.
For the modulation, I set �kc = 
 and �A is still given by Eq. (2)
as sketched in Fig. 3(a). The maximum probability of finding
a state on the highest band, maxt |〈ψ (t )|v3(t )〉|2 at δA = 1 is
shown in Fig. 3(b). We can see two primary peaks located
at �p1 ≈ ±2.8 and two secondary peaks at �p2 ≈ ±1.4. At
δA = 1, the energy difference between band 1 and band 3 is
5.625, indicating the absence of the fundamental transition
�P ≈ �E for such a modulation scheme.

To unveil the underline physics, I derive the effective
Hamiltonian,

H
 =

⎛
⎜⎜⎝

(−2 + δ2
A/8

)
(1 − φ/

√
3) −e−2i�tδ2

A/8 −e2i�tδ2
A(1 + φ/

√
3)/16

−e2i�tδ2
A/8

(−2 + δ2
A/8

)
(1 + φ/

√
3) −e−2i�tδ2

A(1 − φ/
√

3)/16

−e−2i�tδ2
A(1+φ/

√
3)/16 −e2i�tδ2

A(1 − φ/
√

3)/16 4 − δ2
A/4

⎞
⎟⎟⎠. (6)

One distinct difference from Eq. (5) is that the off-diagonal
coupling term is exp(±2i�t ) instead of exp(±i�t ), although
the modulation frequency is still �. According to the effective
Hamiltonian at the 
 point (H
), there should be only two
possible resonance transitions between bands 1 and 3. How-
ever, due to the near degeneracy at 
, states switch rapidly
between bands 1 and 2 during the circling process. As a
result, one can also observe another two resonance transitions
between bands 2 and 3, although initially, only band 1 is
excited. Hence, following the analysis above, �P as functions
of φ for the major and secondary peaks are given by

�P1 = ±
(

3 − 3

16
δ2

A

)
− φ/

√
3, (7a)

and

�P2 = ±
(

3

2
− 3

16
δ2

A

)
+ φ/2

√
3, (7b)

respectively. The analytical relations in Eq. (7) are also pro-
vided in Fig. 3(b) with the gray dashed lines, which perfectly
explain the numerical simulations. Note here the energy dif-
ference between the lower two bands and band 3 is

�E = 3 − 3

16
δ2

A ±
√

1

64
δ4

A + 4

3
φ2. (8)

Thus, Eq. (1) is still not satisfied under such a modula-
tion scheme. Above, I use the kagome lattice as an example
to illustrate the peculiar behaviors. In Secs. II and III in
the Supplemental Material of Ref. [26], I analyze the mod-
ulation around the Dirac cone in the graphene lattice and

FIG. 3. (a) A sketch shows a modulation scheme around the 


point. (b) The maximum probability of finding a state on band 3
(color code) as a function of the modulation frequency � and the
magnetic flux φ. Here I set |ψ (0)〉 = |v1(0)〉 and δA = 1.

L180101-4



ANOMALOUS TRANSITION WITH MODULATION AROUND … PHYSICAL REVIEW B 107, L180101 (2023)

around the double Dirac cone in the shrunk graphene lat-
tice at the 
 point. For the graphene lattice, we can still
see the off-diagonal chiral transition term. Meanwhile, for
the modulation around the double Dirac cone, I find that
the fundamental transition �P ≈ �E appears for the shrunk
graphene. Thus, the absence of a fundamental transition pro-
cess �P ≈ �E is a unique feature for H
 in the kagome
lattice. To unveil which feature is tied to the specific model,
I analyze the requirements on the effective Hamiltonian as
enforced by the n-fold rotational symmetry (n ∈ {2–4, 6}) in
the Supplemental Material of Ref. [26]. The results are sum-
marized in Table S1 of the Supplemental Material of Ref. [26].
It shows that the off-diagonal chiral transition terms are gen-
erally presented in systems with n-fold rotational symmetry.
The specific form of the off-diagonal chiral transition, i.e.,
δm

A exp(±im�t ) with m ∈ {1–3}, depends solely on the ratio of
the rotational eigenvalues between the two bands under con-
sideration. Meanwhile, the effective Hamiltonian also reveals
that �p should be generally different from the energy differ-
ence between these two bands. Previous works had shown the
shift of resonance frequency [18,29,31] and the change of the
transition probability [30,32] due to the presence of the Berry
phase. However, the underline mechanisms are fundamentally
different from our Letter. (See a detailed discussion in Sec. V
in the Supplemental Material of Ref. [26].)

The systems discussed herein should be implementable
with the state-of-the-art technique. The kagome lattice has
already been fabricated and studied in photonic crystals, cold
atoms, and electronic systems [22,34–36]. In photonic sys-
tems, the vector potential �A(t ) (including the local magnetic
flux potential) can be introduced by dynamical modulations

where the hopping phase between two lattice sites can be
arbitrarily tuned [4,37,38]. �A(t ) generated with dynamical
modulation has also been confirmed experimentally [39,40].
In cold atoms, �A(t ) can be realized with an effective elec-
tric field that has already been demonstrated experimentally
[41,42]. In electronic systems, �A(t ) can be introduced by a
circularly polarized light [43–45].

To summarize, this Letter shows that if the system un-
der modulation evolves around topologically charged band
degeneracies with nonzero geometric phases, the energy con-
servation condition needs to be modified. I derive the relation
between the modulation frequency at resonance and the mass
term which lifts the degeneracy. Off-resonance transitions
are routinely used in quantum information processing for
preparing or manipulating quantum states [46,47]. Here the
resonance transitions under modulation in our Letter provides
new insights for identifying structure fingerprint and measur-
ing elementary parameters. As discussed in Sec. VI in the
Supplemental Material of Ref. [26], the band structure of a
kagome lattice is not a necessity, and the phenomena dis-
cussed herein can be observed in diverse systems exhibiting
n-fold rotational symmetry. The observations in our Letter
can be verified experimentally in photonics, cold atoms, and
electronic systems with state-of-the-art techniques.
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