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Light-hole gate-defined spin-orbit qubit

Patrick Del Vecchio and Oussama Moutanabbir *

Department of Engineering Physics, École Polytechnique de Montréal, C.P. 6079,
Succursale Centre-Ville, Montréal, Québec, Canada H3C 3A7

(Received 4 December 2022; revised 27 March 2023; accepted 29 March 2023; published 10 April 2023)

The selective confinement of light holes (LHs) is demonstrated by introducing a low-dimensional system
consisting of a highly tensile-strained Ge quantum well enabling the design of an ultrafast gate-defined spin
qubit under the electric dipole spin resonance. The qubit size-dependent g factor and dipole moment are mapped,
and the parameters inducing their modulation are discussed. It is found that the LH qubit dipole moment is two
to three orders of magnitude higher than that of the canonical heavy-hole qubit. This behavior originates from
the significant spin splitting resulting from the combined action of large cubic and linear Rashba spin-orbit
interactions that are peculiar to LHs. The qubit relaxation rate is also affected by the strong spin-orbit interaction
and follows typically a B7 behavior. The proposed all-group IV, direct band-gap LH qubit provides an effective
platform for a scalable qubit-optical photon interface sought after for long-range entanglement distribution and
quantum networks.
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Gated quantum dots (QDs) exploiting the strong spin-
orbit interaction (SOI) of holes and their quiet quantum
environment provide practical building blocks for quantum
processors [1–11]. However, due to the restricted choice of
low-dimensional systems (e.g., Ge/SiGe), current hole spin
qubits are based predominately on heavy-hole (HH) spins
[12]. Notwithstanding this progress, the ability to utilize light-
hole (LH) spins would enable additional degrees of freedom
to engineer qubits with extended functionalities. Indeed, LHs
allow simple schemes for a direct mapping of superposition
from a flying qubit to a stationary spin qubit [13] as well as
a better resilience against charge noise [14] and an enhanced
proximity-induced superconductivity transfer [15]. Addition-
ally, LHs are also known to have strong SOI yielding fast
Rabi oscillations [14]. Nevertheless, the development of LH
qubits has been hampered by the lack of proper material
systems. Here, we address this limitation and introduce a
low-dimensional system to control LH states.

The selective confinement of LHs in Ge quantum well
(QW) requires sufficiently high tensile strain, which can
be achieved using the emerging germanium-tin (Ge1−xSnx)
alloys [16]. Ge/Ge1−xSnx hole spin devices combine all
advantages that are inherent to group IV semiconductors
[17,18]. Besides the weaker hyperfine interaction with the
surrounding nuclear spin bath resulting from the p symmetry
of the hole wave function [19–21], the strong SOI in the
valence band of Ge and Sn would enable all-electrical driving
of the qubit without the need for an external rf transmission
line and create rich spin-related phenomena unique to holes
[22,23]. Moreover, the Ge1−xSnx alloy spans a wide range of
lattice parameters [24–26], which is useful to control the hole
spin properties through the epitaxial strain directly on silicon
wafers [16,27,28].
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Figure 1 illustrates the gate-defined LH QD. Note that the
lattice mismatch between Ge and Ge1−xSnx induces a signif-
icant tensile strain in the Ge layer, which lifts the HH-LH
degeneracy yielding a LH-like valence band edge [Fig. 1(b)].
The Ge1−xSnx/Ge/Ge1−xSnx heterostructure confines LHs in
the Ge layer for x typically higher than 0.11, while the HHs are
pulled into the Ge1−xSnx barriers [16]. A set of electrostatic
gates on top of the heterostructure helps confine the LH in the
plane by applying a dc voltage. Note that Ge becomes a direct
band-gap semiconductor at a tensile strain higher than 1.8%.
The electric dipole spin resonance (EDSR) is performed by
applying a microwave voltage. A feature that is sometimes
neglected [29–31] but needs to be accounted for in this sys-
tem is the spread of the LH wave function into the barriers.
Because the HHs are located in the barriers, LH-HH mixing
wave-function overlap only occurs outside the QW. Assuming
a hard wall potential at the interface is therefore equivalent
to neglecting entirely the LH-HH mixing. Moreover, the LH
subband dispersion nonparabolicity must also be considered.
The theoretical framework below for the in-plane motion of
the LHs explicitly takes into account these peculiar features.

Eight-band k · p theory [33] is used for the derivation of
an effective Hamiltonian for the two-dimensional (2D) LH
gas incorporating the Bir-Pikus Hamiltonian and thus the ef-
fects of biaxial epitaxial strain [34]. [001]-oriented substrates
are considered, with the growth direction parallel to the z
axis. The operator ordering between material parameters and
wave-vector components require special care to avoid spuri-
ous solutions and to properly include the effects of an external
magnetic field [35,36]. An out-of-plane magnetic field B =
Bez results in the following commutation relations for the
mechanical wave-vector components: [Kα, Kβ ] = εαβ,z/iλ2,
where ε is the Levi-Civita tensor, λ = √

h̄/eB is the mag-
netic length, and α, β = {x, y, z}. The mechanical wave vector
K = k + eA/h̄ is given in terms of the canonical wave vec-
tor k → −i∇. In the symmetric gauge, the vector potential
A = B/2(−yex + xey).
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FIG. 1. (a) Schematic of a gate-defined Ge/Ge1−xSnx LH qubit. (b) Band structure of the valence band in bulk Ge without strain (dashed
lines) and with 2% tensile strain (solid lines). k · p parameters taken from Ref. [32]. (c), (d) Ground LH subband dispersion from the numerical
diagonalization of H‖ (black solid lines) and from Heff with (without) k4 terms in solid (dashed) blue. (c) Ge/Ge1−xSnx LH QW with Ez =
1 MV/m. (d) Infinite Ge LH QW with Ez = 5 MV/m. Energy scale is in meV in both panels. Insets show the envelope probability density
of the lowest subband [ground HH subband is also shown in (d)]. The larger component of the wave function is the LH part of the spinor
(red). The smaller component with one lobe corresponds to the SO part (green) and the component with two small lobes at the Ge interfaces
corresponds to the conduction band (CB) part (black). The tensile strain in Ge is 2.38% in both cases corresponding to x = 0.15.

The total Hamiltonian H‖ for the in-plane motion of
holes and electrons is written as a sum of different contri-
butions [36], H‖ = Hk·p(K‖; kz ) + V (z), where K‖ = Kxex +
Kyey, Hk·p is the eight-band k · p matrix including strain and
magnetic effects [33,36,37], and V (z) is the band alignment.
This last term also includes the effects of an out-of-plane
electric field E = Ezez. The first step to find an effective
LH Hamiltonian is to calculate the envelope functions and
energies of H‖ at Kx = Ky = 0 and B = 0. This provides an
orthonormal basis (a set of subband edges) on which H‖ is
projected at finite K‖ and B > 0. This orthonormal basis con-
tains two types of subbands. The first are pure HH subbands
(H subbands) and the second are superpositions of LH, SO
holes, and conduction band (CB) electrons (η subbands),

|H; l, σ 〉 =
∣∣∣∣3

2
,

3σ

2

〉
|l〉h, (1a)
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〉
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2
,
σ

2

〉
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where l and j are respectively the subband indices for H and
η subbands and σ = ±1 is the pseudospin index. The first
ket in each term represents bulk Bloch functions at the 	

point, while the second ket represents the envelope functions.
The labels h, c, �, s refer to the HH, CB, LH, and SO part
of the spinor, respectively. Because subbands are either of
type H or η, a “LH” subband is understood as an η subband
such that �〈 j| j〉� > c〈 j| j〉c and �〈 j| j〉� > s〈 j| j〉s. Following
the projection of H‖ upon the basis {|η〉, |H〉}, a fourth-order
Schrieffer-Wolff transformation [38] is applied leading to an
effective Hamiltonian for η subbands,

Heff = α0γ̃ K2
‖ + α0

λ2
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2
σz + α2

0 γ̃
′K4

‖ + α2
0

λ4
g̃′ + α2
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‖ σz

+α2
0[(ζK4
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−σ−)

+ iβ3(K−K+K−σ+ − K+K−K+σ−), (2)

with α0 = h̄2/(2m0), m0 the free-electron mass, K± = Kx ±
iKy, σ± = (σx ± iσy)/2, and σx,y,z the Pauli matrices. The
first term in (2) corresponds to the parabolic contribution in
the dispersion relation, with γ̃ the effective mass parameter.
The second term corresponds to the linear Zeeman splitting,
with g̃ the effective g factor. The next three terms correspond
to nonparabolicity (γ̃ ′), Zeeman splitting nonlinearity (g̃′),
and a hybrid term proportional to K2

‖ /λ2. The band-structure
anisotropy is taken into account by the ζ parameter. Finally,
the last three terms correspond to the linear Rashba splitting
(β1) and two kinds of cubic Rashba splitting (β2 and β3). The
effective parameters in (2) in terms of the envelopes |l〉h and
| j〉c,�,s are presented in the Supplemental Material (SM) [37].
This approach is similar to that employed by Refs. [29–31]
for instance. However, here the spread of the wave function
into the barriers and the effects of E are implicitly taken into
account from the shape of the envelopes, and the effective
parameters in (2) are calculated from a larger subband edge
basis due to the large amount of HH levels in the barriers.
Figure 1 shows the dispersion of the ground LH subband for
two different QWs. Figure 1(c) displays the case of a 13-nm
Ge QW with relaxed Ge0.85Sn0.15 barriers. Close to k‖ = 0,
Heff fits exactly H‖ because the effective parameters in (2)
are given exactly by fourth-order perturbation theory. Heff

diverges from H‖ further away from k‖ = 0 because k5 terms
or higher become important. This behavior is exacerbated for
a QW with infinite band offsets [Fig. 1(d)]. In both cases, Heff

diverges faster when k4 terms are neglected.
The calculations also predict an effective mass for the

ground LH subband of the opposite sign [clearly visible in
Fig. 1(d)] for certain QW parameters. Such behavior was also
observed for different material systems [39–41]. This effect
becomes more prominent as the QW thickness decreases. The
typical holelike dispersion is recovered above a critical thick-
ness, corresponding to 11 nm for the Ge/GeSn QW system in
Fig. 1(c). To simplify the LH qubit calculations, the thickness
is fixed at 13 nm.

The QD Hamiltonian includes the isotropic and parabolic
confinement from the top gates, HQD = Heff + m∗ω2

0
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(x2 + y2)/2, where m∗ = m0/γ̃ is the in-plane effective
mass. HQD is diagonalized by first writing HQD = H0 + H ′,
where H0 consists of the first two terms in (2) plus the
parabolic confinement,

H0 = α0γ̃ K2
‖ + 1

2
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2
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2
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2
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are ladder operators, k± = kx ± iky, ωc = eB/m∗, ω2
l = ω2

0 +
ω2

c/4, and r = √
h̄/(m∗ωl ) is the effective quantum dot radius

[37]. The eigenstates of H0, the so-called Fock-Darwin or-
bitals |n1, n2, σ 〉 with n1,2 = 0, 1, . . . and σ = ±1, provide an
orthonormal basis on which HQD is projected. The eigenvalues
of the resulting matrix for HQD in the Fock-Darwin basis
are then solved numerically. The two lowest-energy orbitals
|0〉 and |1〉 corresponding to energies E0 and E1 define the
qubit. These are mostly composed of the Fock-Darwin or-
bitals |0, 0,−〉 and |0, 0,+〉 respectively, plus higher-energy
orbitals,

|0〉 = |0, 0〉 |−〉 + (
c(0)

0,1 |0, 1〉 + c(0)
3,0 |3, 0〉 + c(0)

1,2 |1, 2〉) |+〉 ,

(6a)

|1〉 = |0, 0〉 |+〉 + (
c(1)

1,0 |1, 0〉 + c(1)
0,3 |0, 3〉 + c(1)

2,1 |2, 1〉) |−〉 .

(6b)

The coefficients c(0,1)
n1,n2

were extracted from the numeri-
cal diagonalization of HQD to avoid artifacts near crossings
between Fock-Darwin orbitals. They can be evaluated with
perturbation theory away from these crossings [37]. For a
driving field Ẽ(t ) = exEAC cos(ωt ), where h̄ω = |E0 − E1| is
the qubit energy, the Rabi frequency 
 is given in terms of the
qubit dipole moment d = e〈0 | x | 1〉 by 
 = EAC|d|/h̄.

Figure 2 shows the QD orbital energies as a function of the
out-of-plane magnetic field for a QD radius r0 = √

h̄/m∗ω0 =
25 nm and the same QW parameters as in Fig. 1(a). The qubit
undergoes a transition from a spin qubit to a charge qubit at the
crossing between |1〉 and the mostly |0, 1,−〉 orbital near B =
0.275 T. The two levels cross because |0, 1,−〉 is not present
in the expansion of |1〉.

The qubit dipole moment d and the qubit g factor |gQD| are
plotted in Fig. 3 as a function of the QD radius r0 and B =
0.05 T. The g factor has a strong dependence on r0 for small
radii, and approaches asymptotically the QW value g̃ = 8.69
at large r0. The large g̃ value originates from the first-order ap-
proximation g̃ ≈ 2κ for a LH spin in a perpendicular magnetic
field with κ = 3.41 in Ge. Deviations from 2κ come from
the spread of the wave function and second-order corrections
[37,42]. The dipole moment d takes very large values for
two main reasons. First, the coefficient β3 that contributes to
EDSR by introducing a |1, 0,−〉 contribution into |1〉 depends
on the sum (γ2 + γ3) for LHs [37] whereas for HHs it depends
on the difference (γ2 − γ3). In Ge, γ2 ≈ γ3 [43] and therefore

FIG. 2. LH QD orbital energies as a function of B. The QD radius
r0 at B = 0 is kept constant at 25 nm. Black dotted lines represent the
eigenvalues of H0, while the solid green lines are those of HQD. The
qubit levels |0〉 and |1〉 and excited orbitals are displayed with their
main contributions from the eigenstates |n1, n2, σ 〉 for B = 0.1 T.
The QW parameters are the same as in Fig. 1(c).

β3 is much larger for LHs. Second, LHs are subject to a linear
Rashba spin splitting proportional to β1, which is nonexistent
for HHs. This additional term contributes to a large d similarly
to β3 by increasing the contribution of |1, 0,−〉 into |1〉. At
≈27.5 nm, |d| reaches a maximum as a result of the combined
effects of β1 and β3, which gives a dipole moment that is
two to three orders of magnitude larger than that of HHs in
a compressively strained Ge [29,44]. For instance, an in-plane
driving field as small as EAC = 1 mV/µm gives a Rabi fre-
quency 
 ≈ 1.2 GHz.

There is, however, a range of QD radii where the dipole
moment is very small (Fig. 3). This happens because both β1

and β3 contribute to d . When B is small such that |1〉 is far

FIG. 3. LH qubit dipole moment (left) and absolute value of the
g factor (right) as a function of the QD radius r0. The magnetic field
is fixed at 0.05 T. The QW parameters are the same as in Fig. 1(c).
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FIG. 4. Relaxation rate 	 = 1/T1 as a function of the magnetic
field. The QW parameters are the same as in Fig. 1(c).

from the excited orbitals, the dipole moment is given by

|d| ≈ em∗2r2|g̃|μBB

h̄4

∣∣r2β1 + 2β3

∣∣. (7)

Therefore, when β1β3 < 0, d can vanish at specific val-
ues of r0 and B. For the QW parameters in Fig. 1(a), β1 =
0.42 meV nm and β3 = −290 meV nm3 which causes the
dipole moment to vanish at B = 0.05 T and r0 ≈ 37 nm. For
r0 > 37 nm, d increases again, but at the cost of a smaller
orbital energy spacing.

An important feature of LH qubits is that EDSR is
driven by both η-H and η-η mixing. This is because there
is an allowed first-order coupling between η subbands
〈η; j,+ | H‖ | η; j′,−〉 = Rj, j′K− that is nonexistent for HHs
[37]. The η-H mixing part contributes mainly to the β3 pa-
rameter through a term proportional to (γ2 + γ3), while η-η
mixing contributes to both β3 and β1. Notably, these two types
of mixing are of equal importance given that β1 and β3 can
interfere to suppress the dipole moment [cf. (7)].

The relaxation time T1 = 1/	 of the LH qubit was also
evaluated for the system in Fig. 1(a). The coupling of the hole
to acoustic phonons was considered. The total relaxation rate
	 = 	em + 	abs, where 	em (	abs) is the rate associated with
the emission (absorption) of one phonon. Each of these rates
is calculated by Fermi’s golden rule,

	i = 2πV
h̄

∑
α

∫
d3q

8π3
|〈 f |Wα | i〉|2δ(h̄ω − h̄ωαq), (8)

where V is the volume of the system and h̄ωαq = h̄vαq is the
phonon energy in branch α = {LA,TA1,TA2} and with mo-
mentum q = qq̂. |i, f 〉 represent initial and final qubit levels

upon absorption or emission of a phonon. The operator Wα

is derived from the hole-phonon Hamiltonian in a procedure
similar to that in Refs. [31,45–47]. See SM [37] for details.
Importantly, the matrix element 〈 f |Wα | i〉 takes into account
the relaxation rate associated with all three spin-orbit param-
eters β1, β2, and β3.

Figure 4 shows the computed 	 as a function of B for the
Ge/GeSn QW system in Fig. 1(a) at r0 = 25 nm. A relaxation
time T1 = 100 µs was extracted at B = 0.1 T. Moreover, 	

follows a B7 behavior when B 
 √
12kBT/(gQDμB) and a

B6 behavior when B � √
12kBT/(gQDμB). This higher relax-

ation rate for LHs compared to HHs [12,31] is due to the
larger spin-orbit coupling parameters β1,2,3. The B7 behav-
ior at low temperature is associated to the spin-orbit term
|r2β1 + 2β3| that was encountered in Eq. (7) and from the sum
c(0)

0,1 + c(1)
1,0 ∼ B.

Similar calculations were also performed at a QD radius
r0 = 37.9 nm for which the dipole moment vanishes at B =
0.05 T (Fig. 4). In this case, two different regimes were
observed: For B � 0.05 T the relaxation rate exhibits a B7 be-
havior, but at B 
 0.05 T it evolves as ∼B11. This is because
the term associated with |r2β1 + 2β3| vanishes and the dom-
inating terms in 	 are those associated with β2, β3 alone and
the superposition coefficients c(0,1)

n1,n2
with n1 + n2 = 3. At B =

0.1 T, T1 = 8 ms, which is consistent with a much smaller
dipole moment at this radius. The abrupt change in behavior
around B = 0.14 T is due to a very small anticrossing between
|1〉 and the mostly |1, 0,−〉 orbital, while at B = 0.5 T it is
caused by a small anticrossing between the mostly |1, 0,−〉
and the mostly |0, 3,−〉 orbital.

In conclusion, this Letter unravels the spin properties of
a light-hole gated quantum dot in tensile strained Ge under
EDSR. A detailed framework is described taking into account
the spread of the envelopes in the barriers surrounding the
quantum well and the effects of the dispersion nonparabol-
icity. It was found that light holes have a dipole moment d
significantly larger than that of the heavy holes due to a larger
cubic Rashba parameter (β3) and the existence of a nonzero
linear Rashba parameter (β1). Interestingly, β1 and β3 can
interfere destructively and cause the dipole moment to vanish
at a specific quantum dot size. The relaxation rate 	 of a light-
hole qubit follows a B7 behavior, except when d ≈ 0 where 	

follows a B11 behavior. This direct band-gap Ge/GeSn device
structure provides additional degrees of freedom to implement
silicon-compatible and scalable quantum processors leverag-
ing the advantages of light-hole spin properties in addition to
their efficient coupling with optical photons and their ability
to transfer superconductivity.
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