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Spectral winding of complex eigenenergies represents a topological aspect unique in non-Hermitian systems,
which vanishes in one-dimensional (1D) systems under the open boundary conditions (OBC). In this Letter, we
discover a boundary spectral winding in two-dimensional non-Hermitian systems under the OBC, originating
from the interplay between Hermitian boundary localization and non-Hermitian nonreciprocal pumping. Such
a nontrivial boundary topology is demonstrated in a non-Hermitian breathing Kagome model with a triangle
geometry, whose 1D boundary mimics a 1D non-Hermitian system under the periodic boundary conditions with
nontrivial spectral winding. In a trapezoidal geometry, this boundary spectral winding can even coexist with
corner accumulation of edge states, instead of extended ones along the 1D boundary of a triangle geometry. An
OBC type of hybrid skin-topological effect may also emerge in a trapezoidal geometry, provided the boundary
spectral winding completely vanishes. By studying the Green’s function, we unveil that the boundary spectral
winding can be detected from a topological response of the system to a local driving field, offering a realistic
method to extract the nontrivial boundary topology for experimental studies.
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I. INTRODUCTION

Non-Hermitian systems can support not only topological
phases with boundary states protected by conventional band
topology [1,2], but also spectral winding topology of com-
plex eigenenergies which has no Hermitian analog. Nontrivial
spectral winding generally emerges in many non-Hermitian
lattices under the periodic boundary conditions (PBC), and
vanishes when the boundary is opened, i.e., the open bound-
ary conditions (OBC), resulting in the non-Hermitian skin
effect (NHSE) where bulk states become skin localized at the
system’s boundary [3–7]. One of the most noteworthy con-
sequences of the interplay between conventional and spectral
winding topology is the breakdown of conventional topolog-
ical bulk-boundary correspondence [8,9], which has led to
recent extensive investigations of its recovery through several
different methods [3,10–14] and many other exciting phenom-
ena induced by NHSE and spectral winding topology [15–37].

In contemporary literature, spectral winding topology is
most clearly studied in one-dimensional (1D) systems, as
by definition it corresponds to 1D trajectories in the two-
dimensional (2D) complex-energy plane, which cannot be
straightforwardly generalized into higher spatial dimensions.
On the other hand, being a boundary phenomenon, NHSE in
two or higher dimensions is also far more sophisticated than
in one dimension, possessing many variations associated with
different boundaries and defects due to their richer geometric
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structures [38–43]. In this Letter, we unveil an exotic aspect
of spectral winding in higher dimensions, namely, nontrivial
spectral winding for 1D boundary states of 2D lattices under
the OBC, in sharp contrast to our knowledge of vanishing
spectral winding topology of OBC systems. This enigmatic
phenomenon has been noticed in recent literature [44,45],
yet the mechanism behind it remains ambiguous. Here we
find that its emergence originates from the interplay between
Hermitian boundary localization and a non-Hermitian chiral
pumping along the boundary, i.e., asymmetric hoppings with
stronger amplitudes toward a chiral direction [see Fig. 1(a) for
an illustration]. A similar mechanism is known to be respon-
sible for the hybrid skin-topological effect (HSTE) [46–49],
a type of higher-order NHSE with topological protection
[44,50,51], which induces corner skin-topological localiza-
tion in 2D lattices. Interestingly, our example model of a
non-Hermitian breathing Kagome lattice can support both
nontrivial boundary spectral winding and an OBC type of
HSTE under the same parameters, but with different trian-
gle and trapezoidal geometries, where the chiral pumping is
forbidden by boundary geometry of the latter case. These
two phenomena represent different types of nontrivial higher-
order non-Hermitian topological properties and require rather
different geometric properties for 1D boundaries, unlike the
bulk-geometry-dependent NHSE in two or higher dimensions
[42]. In the intermedia regime between these two scenar-
ios, nontrivial boundary spectral winding may even coincide
with a weak corner localization, indicating a coexistence of
the seemingly contradictory boundary spectral winding and
HSTE. Moreover, we discover that this boundary spectral
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FIG. 1. (a) A sketch of the non-Hermitian breathing Kagome
lattice with L = 5 rows of unit cells. The gray area represents the
first-order boundary of the system, which gives the effective bound-
ary Hamiltonian discussed latter. Blue arrows indicate the direction
of non-Hermitian chiral pumping along the boundary. (b) Energy
spectrum vs ta, for the system with a triangle geometry in the Her-
mitian limit of α = 0. Eigenenergies are marked by different colors
according to their corresponding FD. Other parameters are tb = 1 and
L = 30.

winding can be detected from a topological response to a
driving field when locally perturbing the 2D system, providing
a feasible method to extract the nontrivial boundary topology
from realistic non-Hermitian systems.

II. NON-HERMITIAN BREATHING KAGOME MODEL

We consider a non-Hermitian breathing Kagome model
with asymmetric intracell hoppings [52] as shown in Fig. 1(a),
with its bulk Hamiltonian given by

H (k) =

⎛
⎜⎝

0 ta + t+
b e−ik1 ta + t−

b eik3

ta + t−
b eik1 0 ta + t+

b e−ik2

ta + t+
b e−ik3 ta + t−

b eik2 0

⎞
⎟⎠, (1)

where k1 = −kx/2 − √
3ky/2, k2 = kx, k3 = −kx/2+√

3ky/2,
and t±

b = tbe±α represent asymmetric intercell (downward tri-
angle) hopping parameters, and ta is the amplitude of intracell
(upward triangle) Hermitian hopping. Here we set tb = 1 as
the unit energy. In the Hermitian scenario with α = 0, the
Kagome lattice model supports both first-order edge states
and second-order corner states in certain parameter regimes,
as shown in Fig. 1(b) where different bulk and boundary states
are characterized by different values of their fractal dimension
(FD), defined as

Dfrac = − ln

[ ∑
r

|ψn,r|4
]/

ln
√

3N, (2)

with ψn,r the wave amplitude at position r of the nth eigen-
state, and N the total number of unit cells. In a triangle
geometry, N = (1 + L)L/2 with L the number of rows of unit
cells in the lattice. A 2D bulk state and a 1D edge state in our
system shall have their FD close to 2 and 1, respectively. As
seen in Fig. 1(b), the breathing Kagome lattice supports 1D
edge states (represented by green color for Dfrac � 1.2) in a
large parameter regime.

III. DESTRUCTIVE INTERFERENCE
OF NONRECIPROCITY AND BOUNDARY

SPECTRAL WINDING

By construction, the model can be viewed as a combination
of three sets of non-Hermitian Su-Schrieffer-Heeger (SSH)
chains [3,53–55] along different directions. Specifically, the
three non-Hermitian SSH chains are chosen to be identical,
resulting in a C3 rotation symmetry of the system, as shown in
Fig. 1(a). In this way, the asymmetric hoppings along the three
directions form a closed loop and balance out in each unit cell,
leading to a destructive interference of nonreciprocity in the
bulk. The system is thus net reciprocal even in the presence of
asymmetric hoppings. As seen in Fig. 2(a), FD is close to 2 for
eigenstates in three bulk bands (yellow color) for the system
with a triangle geometry, indicating the absence of NHSE
for bulk states. Consistently, the summed bulk distribution,
defined as

ρbulk (r) =
∑

n∈bulk

|ψn,r|2

with summation running over all eigenstates in the bulk bands,
also distributes uniformly in the 2D bulk [Fig. 2(b)]. On the
other hand, first-order edge states distribute mostly along 1D
edges, and are subjected to a net non-Hermitian nonrecip-
rocal pumping. The same mechanism is known to induce
the HSTE in different square and honeycomb lattices. How-
ever, in our model with a triangle geometry, the destructive
interference of nonreciprocity limits the choices of the non-
reciprocal directions and forbids the HSTE. Namely, in the
presence of destructive interference of nonreciprocity along
three directions, a triangle lattice must have chiral nonrecip-
rocal pumping along its 1D boundary, hence it is impossible to
have two edges with nonreciprocity toward their shared cor-
ner. Consequently, we anticipate no hybrid skin-topological
corner mode to appear in our system.

As verified in our numerical calculations, first-order edge
states are indeed extended along 1D edges, as shown in
Fig. 2(c) by the summed edge distribution

ρedge(r) =
∑

n∈edge

|ψn,r|2

with summation running over all edge states. Interestingly, a
nontrivial spectral winding is seen to emerge for edge states,
even when the system is under OBC [Fig. 2(a)]. To under-
stand its emergence, we note that these edge states inhabit
within the edges of a 2D lattice, which form an effective 1D
boundary system without an open boundary, analogous to a
1D nonreciprocal system under PBC. By taking the edges of
the 2D lattice as a 1D system decoupled from the 2D bulk,
we find that its spectrum is almost identical to that of the
first-order edge states of the original 2D system, as shown
in Fig. 2(d). As seen in Fig. 2(e), their eigenstates display a
slightly different but still extended distribution, as shown by
ρeff = ∑

n |ψ1D
n,x |2 with ψ1D

n,x the wave amplitude at position x
of the nth eigenstate of the 1D boundary system. Thus, the ori-
gin of nontrivial boundary spectral winding in our model can
be qualitatively understood from this 1D boundary system.
Note that, in contrast to an actual 1D PBC system, 1D edges
of our 2D model possess an extra lattice site in each corner,

L161404-2



NON-HERMITIAN BOUNDARY SPECTRAL WINDING PHYSICAL REVIEW B 107, L161404 (2023)

FIG. 2. (a) Energy spectrum under the OBC, where colors indicate the FD of each eigenstate. (b), (c) Summed distribution of bulk states
and edge states, respectively. (d) Spectra of edge states for the 2D lattice (cyan dots) as in (a), and 1D effective boundary system corresponding
to the gray area in Fig. 1(a) (red circles). (e) Summed distribution of edge states for the 2D lattice (cyan), and of all eigenstates for the 1D
boundary system (red). Parameters are ta = 0.25, tb = 1, α = 0.5, and L = 30.

acting as impurities to the 1D effective model. As a result, we
observe weak eigenstate accumulations toward these corners
both for the edge states of the 2D model and for the effective
1D boundary system [Fig. 2(e)].

IV. TRAPEZOIDAL LATTICES AND AN OBC TYPE
OF HYBRID SKIN-TOPOLOGICAL LOCALIZATION

In the triangle lattice, the emergence of nontrivial boundary
spectral winding relies on the chiral nonreciprocal pumping
along the 1D boundary. To further confirm this mechanism,
here we break the chiral pumping channel by removing the top
few rows of lattice sites from the triangle lattice. Specifically,
we start from a triangle lattice with L unit cells along its bot-
tom row, then remove the top M rows of unit cells and the top
lattice sites of unit cells in the M + 1 row. A sketch of L = 5
and M = 2 is shown in Fig. 3(a). In the resultant trapezoidal
lattices, the top row of lattice sites does not form complete up-
ward unit cells, and asymmetric hoppings between these sites
have stronger amplitudes toward the opposite chiral direction
of the rest three edges, blocking the chiral pumping channel
circulating the 2D lattice.

Intuitively, two domain walls are formed between top and
remaining edges at corners 1 and 4, which shall lead to the
emergence of HSTE in the trapezoidal geometry of our model.
Yet its behaviors cannot be simply understood from this
domain-wall picture. To see this, we may redefine a unit cell
as a downward triangle, i.e., the green dashed line in Fig. 1(a)
(see Supplemental Material [56] for further discussion of dif-
ferent definitions of unit cells). Then, when excluding the
boundary lattice sites of left, right, and bottom edges, the
remaining part of a trapezoidal lattice is formed only by intact

unit cells. Therefore the top geometric edge of a trapezoidal
lattice is more closely related to the physical bulk, and shall be
considered as a part of it. In return, the effective 1D boundary
no longer forms a closed loop. Indeed, as observed in Fig. 3(b)
with L = 30 and M = 20, bulk states of the system show
vanishing distribution only along the left, right, and bottom
edges. On the other hand, edge states in this system exhibit
a clear accumulation at the top-right corner (corner 4) for
the chosen parameters, analogous to the behavior of a 1D
non-Hermitian OBC system with the NHSE.

To further understand the boundary behaviors, we demon-
strate the energy spectra for lattices with different sizes in
Figs. 3(d)–3(f), with insets illustrating the distributions of
their edge states and of a 1D boundary system under the OBC
[i.e., the gray area in Fig. 3(a)]. In Fig. 3(d), the top M = 5
rows of unit cells are removed from a triangle lattice with L =
30. The resultant system shows a nontrivial boundary spectral
winding in its complex spectrum, yet its edge states already
become corner localized (with FD close to zero) and accu-
mulate at corner 4. However, their accumulating strength is
considerably weaker than that of skin states of the effective 1D
OBC system. Such observations are analogous to the scale-
free localization induced by impurities in a 1D non-Hermitian
chain, where a boundary impurity connects the 1D chain head
to the tail, resulting in an impurity boundary condition (IBC)
between the OBC and PBC [31]. In our trapezoidal lattice, the
top row of lattice sites can be viewed as impurities connecting
the two ends (i.e., corners 1 and 4) of the 1D edges, mimicking
the IBC that gives rise to the scale-free localization.

In Fig. 3(e), we demonstrate results with the same number
of unit cells in the bottom row (L = 30), but removing the
top M = 10 rows from a triangle lattice. Its edge states still

L161404-3



ZUXUAN OU, YUCHENG WANG, AND LINHU LI PHYSICAL REVIEW B 107, L161404 (2023)

FIG. 3. (a) A sketch of a trapezoidal lattice of the non-Hermitian breathing Kagome model. (b), (c) Summed distribution of bulk states
and edge states, respectively, with L = 30 and M = 20. (d)–(f) Energy spectra under OBC with L = 30 and M = 5, 10, and 20, respectively,
where colors indicate the FD of each eigenstate. Summed distributions of edge states for the 2D trapezoidal lattice in (d) and (e) are illustrated
in their insets (cyan), together with those of all eigenstates for the 1D boundary system (red). Dashed lines correspond to corners 1 to 4 from
left to right, respectively. (g) �ρ = ∑

x |ρeff − ρedge|/Leff as a function of M, for several different values of ta. ta = 0.25 is chosen in (b)–(f).
Other parameters are tb = 1 and α = 0.5.

form a loop spectrum in the complex plane, yet their distri-
bution becomes closer to the skin states of the corresponding
1D boundary system under the OBC. Finally, when further
removing more rows from the triangle lattice [M = 20 in
Fig. 3(f)], the boundary spectral winding eventually vanishes,
and the distribution of edge states becomes almost identical
to the skin states. It indicates that the boundary of the 2D
trapezoidal lattice becomes an analog of a 1D OBC chain, and
supports an OBC type of HSTE, with a vanishing distribution
on the other side of the corner, i.e., the top geometric edge
of the trapezoidal lattice. This is because this edge acts as a
part of the bulk and hence behaves as a vacuum for the skin-
topological states. We note that such a geometric-dependent
behavior arises from an effective PBC-OBC transition for the
1D boundary system, induced by the competition between
boundary nonreciprocal pumping toward different chiral di-
rections, which manifests as the two types of nontrivial
higher-order topological phenomena along the boundary of
the system. This is essentially different from the geometry-
dependent bulk NHSE rooted in anisotropic properties of bulk
spectral winding, manifesting as emergence or disappearance
of NHSE for OBC along different directions [42].

To characterize this geometry-dependent behavior, we
demonstrate the difference between ρeff and ρedge in Fig. 3(g),
defined as

�ρ =
∑

x

|ρeff − ρedge|/Leff

with Leff the size of the 1D boundary system. It is seen that �ρ

reaches its minimal value at around M = 15 for ta = 0.25, the
parameter chosen in other figures. With larger ta, edge states
of a breathing Kagome lattice become less localized along its
1D boundary, and their distributions also slightly diverge from
that of the 1D boundary system, as shown by the increasing
minimal value of �ρ in Fig. 3(g). In Supplemental Material
[56], we further demonstrate examples of hexagon lattices,
which also exhibit HSTE and boundary spectral winding
similar to trapezoid lattices, and effective OBC and IBC for
their 1D edges can be more clearly identified from a Green’s
function analysis.

V. DETECTION OF BOUNDARY SPECTRAL WINDING
THROUGH A TOPOLOGICAL RESPONSE

In 1D non-Hermitian systems, it has been recently revealed
that nontrivial spectral winding has a one-to-one correspon-
dence to a quantized quantity in response to an external local
driving field [34]. Despite that its generalization to higher-
dimensional systems is still unclear, a similar topological
response corresponding to the boundary spectral winding can
be expected to emerge here, since edge states of our 2D
model effectively give a 1D boundary system. Specifically, the
topological response quantity is defined as

νmn(β ) = ∂ ln |Gmn(β )|/∂β,

L161404-4



NON-HERMITIAN BOUNDARY SPECTRAL WINDING PHYSICAL REVIEW B 107, L161404 (2023)

FIG. 4. (a) Element Gmn(β ) of the Green’s function for the triangle lattice with the same parameters as in Fig. 1(a), for different reference
energies Er enclosed by the looplike boundary spectrum (blue dots) and within the gap (red dots), respectively. (b) Topological response νmn(β )
for the same system and parameters as in (a). (c)–(f) Topological response νmn(β ) at β = 0 for (c) the triangle lattice with L = 30 rows of unit
cells and (d)–(f) the trapezoidal lattices for Figs. 3(d)–3(f) M = 5, 10, and 20 rows removed from the triangle lattice, respectively. In all these
results, m and n are chosen as the bottom-left and -right sites of the 15th unit cell in the bottom row of the lattices.

with β describing a perturbation to the amplitude of one
intracell hopping along the system’s 1D boundary ta → tae−β ,
G(β ) = 1/[Er − H (β )] the Green’s function regarding a ref-
erence energy Er , and (m, n) labeling the two sites connected
by the perturbed hopping. By definition, G(β ) involves all
eigenstates of H (β ) (which can be seen as an effective Hamil-
tonian from the quantum master equation [21]), and those with
eigenenergies closer to Er shall have larger contributions. We
note that to obtain a topological response for the boundary
spectral winding, the modified hopping can be chosen arbitrar-
ily from the 1D boundary for the triangle lattice, but cannot
be chosen from the top row of a trapezoidal lattice, which
belongs to the bulk system [56]. In the following discussion, it
is chosen to locate at the center of the bottom boundary. Phys-
ically, |Gmn(β )| describes the amplitude of a response at site m
to a local driving field at site n [21], thus νmn(β ) describes the
changing rate of this response strength with varying β [56].
We first consider the triangle lattice with the same parameters
as in Fig. 2. As seen in Figs. 4(a) and 4(b), Gmn(β ) and νmn(β )
behave rather differently for reference energies inside (blue)
and outside (red) the loops of the boundary spectrum. For
the former case, |Gmn(β )| increases with β and eventually
stops at a large constant value (≈e5), analogous to the direc-
tion signal amplification 1D non-Hermitian system [20,21].
In contrast, |Gmn(β )| decreases to a small value (≈e−3) for a
reference energy outside the loops of the boundary spectrum.
More importantly, it is seen that νmn(β ) � 1 [νmn(β ) � 0]
for small β when Er is (not) enclosed by the loops of the
boundary spectrum, consistent with the quantized topological
response in actual 1D systems [34–36]. Therefore we scan Er

for a parameter regime covering the system’s full spectrum,
and demonstrate the value of νmn(β ) at β = 0 in Fig. 4(c).
As seen in the results, the region with nontrivial boundary
spectral winding is characterized by νmn(0) � 1, while other

regions generally have a nonpositive νmn(0). Furthermore, in
Figs. 4(e) and 4(f) we demonstrate the same response quantity
νmn(β ) for trapezoidal lattices with the same lattice size and
parameters as in Figs. 3(d)–3(f). The nontrivial region is seen
to shrink and disappear for trapezoidal lattices when removing
more rows of unit cells, which perfectly matches the boundary
spectra displayed in Figs. 3(d)–3(f).

VI. CONCLUSION

In summary, we highlight a boundary spectral winding
in 2D non-Hermitian systems under the OBC, originating
from the interplay between Hermitian (topological) bound-
ary localization and non-Hermitian nonreciprocal pumping.
The mechanism is similar to that of the HSTE, yet these
two phenomena require rather different boundary geometric
properties. Specifically, nontrivial boundary spectral wind-
ing naturally arises in a triangle lattice of a non-Hermitian
breathing Kagome model, where a destructive interference of
nonreciprocity along three directions ensures chiral nonrecip-
rocal pumping along the 1D boundary of the lattice. On the
other hand, a trapezoidal lattice of the same model supports
different directions of nonreciprocal pumping for different
parts of its boundary, leading to either a boundary spectral
winding with a weak corner localization of edge states or an
OBC type of HSTE, depending on the exact shape of the
trapezoidal lattice. In both cases, we find that the boundary
spectral winding can be detected from a topological response
to a local driving field in the presence of a local boundary
perturbation, established from an element of the Green’s func-
tion matrix associating the response and the driven lattice
sites. Our model is ready for experimental realization with
RLC circuit lattices, as it is constructed with the same hop-
ping components as several non-Hermitian lattices already
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realized in this platform [60–62]. The topological response
νmn can also be detected in such systems by measuring the
two-point impedance between sites m and n, which takes a
similar form of the Green’s function [34]. As further veri-
fied in our Supplemental Material [56], the boundary spectral
winding and its corresponding topological response are also
robust against a relatively strong disorder. We also note that
while this Letter has focused on a non-Hermitian breathing
Kagome model with triangle and trapezoidal geometries, the
boundary spectral winding shall also emerge in other models
and geometries, as long as the boundary states experience
certain non-Hermitian chiral pumping. Several examples are
demonstrated in the Supplemental Material [56].

Note added. Recently, we became aware of Ref. [63],
where boundary spectral winding topology emerges for eigen-
values of the Floquet operator of a Hermitian system.
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