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The Wiedemann-Franz law and Mott relation are textbook paradigms on the ratios of the thermal and thermo-
electric conductivities to electrical conductivity, respectively. Deviations from them usually reveal insights for
intriguing phases of matter. The recent topological kagome magnets TbMn6Sn6 and Mn3Ge show confusingly
opposite derivations in the Hall measurement. We calculate the topological and disorder corrections to the
Wiedemann-Franz law and Mott relation for the Hall responses in topological kagome magnets and Dirac
materials. The calculation indicates the dominance of the topological correction in the experiments. More
importantly, we derive analytic correction formulas, which can universally capture the two opposite experiments
with the chemical potential as the only parameter and will be a powerful guidance for future explorations on the
magnetic topological matter and Dirac materials.
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In most metals, the ratio between the thermal conduc-
tivity κ and electric conductivity σ is characterized by the
Wiedemann-Franz law κ/σ = L0T [1], where T is the tem-
perature and the Lorentz number

L0 = (πkB/e)2/3 (1)

is composed of the elementary charge e and the Boltzmann
constant kB. The deviations from them usually provide in-
sights for exotic phases of matter, such as in non-Fermi liquids
and hydrodynamics [2–11]. Recently, the thermoelectric and
thermal transports have become promising tools to probe
topological phases of matter [12–24]. In particular, topolog-
ical magnets have attracted tremendous interest because of
their outstanding electromagnetic conversion abilities for po-
tential device applications [25–30]. The latest experiments
on the topological kagome magnets TbMn6Sn6 [31] and
Mn3Ge [32] show confusingly opposite deviations from the
Wiedemann-Franz law in the Hall measurements [Fig. 1(b)],
raising questions on their microscopic mechanisms. In partic-
ular, disorder and topology could both play sophisticated roles
in the anomalous Hall transport [33], but their contributions
and competition remain unclear in these experiments.

In this Letter, we calculate the ratios of thermal Hall con-
ductivity κxy and thermoelectric Hall (Nernst) conductivity
αxy to the electric Hall conductivity σxy [Fig. 1(a)]. Beyond
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the previous works, we take into account the disorder contri-
bution and topological contribution on the same footing. By
comparing the calculation with the experiments, we find that
the topological contribution may dominate in the experiments.
More importantly, we can derive the analytic formulas for the
corrections to the Wiedemann-Franz law (κ/σ ) and Mott rela-
tion (α = −eL0T ∂σ/∂μ, where μ is the chemical potential),
with the help of the Dirac model that carry the topological
and magnetic properties of the topological kagome magnets
(Fig. 2). The analytic formulas depend not explicitly on the
model details, but only on the chemical potential, implying
the universal nature of the corrections. Our analytic formulas
can reproduce both the negative and positive derivations from
the classical Wiedemann-Franz law [Fig. 1(b)], as well as
the tendencies in the Mott relation [Fig. 1(c)] in the experi-
ments, with the same chemical potential in each experiment.
These formulas will be helpful for further explorations on the
electric, thermoelectric, and thermal transports in topological
magnets and Dirac materials.

Despite the sophisticated magnetic structures of the topo-
logical kagome magnets, in the metallic phase as those in the
experiments [31,32], the magnon [36–38] and phonon [1,39–
43] degrees of freedom are inactive compared to electrons
in the thermal Hall effect. Therefore, the electronic, thermo-
electric, and thermal transports are fairly described by the
electronic Hamiltonian. The electronic structure of TbMn6Sn6

can be described by the two-dimensional (2D) massive Dirac
model, which has been confirmed by the spectroscopic mea-
surement [30]. The electronic structure of the noncollinear

2469-9950/2023/107(16)/L161302(6) L161302-1 ©2023 American Physical Society

https://orcid.org/0000-0002-8377-5666
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.L161302&domain=pdf&date_stamp=2023-05-23
https://doi.org/10.1103/PhysRevB.107.L161302


QIANG, DU, LU, AND XIE PHYSICAL REVIEW B 107, L161302 (2023)

Experiment 1
Classical

Experiment 2
Theory

FIG. 1. (a) The electric Hall conductivity σxy ≡ Jy/Ex , ther-
moelectric Hall coefficient αxy ≡ Jy/(−∂xT ), and thermal Hall
conductivity κxy ≡ JQ

y /(−∂xT ), as the response of the transverse
electric current Jy or thermal current JQ

y to the longitudinal electric
field Ex or temperature gradient −∂xT . Our analytical corrections
(solid lines) to the classical behaviors (dashed lines) of (b) the ratios
κ in

xy/σ
in
xy and (c) αin

xy/σ
in
xy can capture two types of experiments (scat-

ters), with the chemical potential μ as the only tuning parameter. We
choose μ = 0.11 and 0.05 eV for the TbMn6Sn6 [31] (Exp. 1) and
Mn3Ge [32] (Exp. 2) experiments, respectively. In the TbMn6Sn6

experiment, μ = 0.13 eV.

antiferromagnet Mn3Ge [Fig. 2(c)] [32] is the Weyl semimetal
[35], which can be viewed as layers of coupled 2D mas-
sive Dirac models [44]. More importantly, the massive Dirac
model can describe two of the most important characteristics
of the topological kagome magnets, i.e., time-reversal sym-
metry breaking and topological properties. More importantly,
later we will see that κ in

xy/σ
in
xy and αin

xy/σ
in
xy in Eqs. (4) and (6)

do not depend on the model details.
The electric, thermoelectric (Nernst coefficient), and ther-

mal Hall conductivities can be expressed in an organized form

σχ
xy = −e2

h
Cχ

0 , αχ
xy = kBe

h
Cχ

1 , κχ
xy = −k2

BT

h
Cχ

2 , (2)

where h is the Planck constant and the coefficient Cχ
n (see [45]

for details) can be expressed as

Cχ
n =

∫
dε[χ ]

(
ε − μ

kBT

)n(
−∂ f 0

∂ε

)
, (3)

where ε is the energy, μ is the chemical potential, and
f 0 = 1/(e(ε−μ)/kBT + 1) is the Fermi distribution function.
The kernel function χ denotes different mechanisms in the
anomalous transport, including the topological contribution
revealed in the seminal works [12–14] and disorder con-
tribution [46–48]. For the topological contribution, χ in =
2π

∑
l 	z

l f 0
l , where l = (k, n) stands for the quantum num-

bers (momentum, band index), and 	z
l is the z component

of the Berry curvature of band n with the definition 	l =
i∇k × 〈ψn|∇kψn〉. The Berry curvature can be understood as
the “magnetic field” in the parameter space, as a result of the
geometric structure of the quantum states [49], and is found

FIG. 2. Two typical topological kagome magnets. (a) TbMn6Sn6

with the out-of-plane magnetization [31] can be described by the
2D massive Dirac model (b), as verified by the fan diagram of
the Landau levels under magnetic fields [30,34]. (c) The electronic
behaviors of the layered (red for one sublayer, blue for the other)
in-plane noncollinear antiferromagnet Mn3Ge [32] is believed to be
described by the Weyl semimetal [35], which can be viewed as layers
of coupled 2D massive Dirac models (d).

critical in understanding the anomalous Hall effect [33,50],
topological magnetoresistance [51–54], and thermal transport
[12–14]. For the 2D Dirac model H = v(kxσx + kyσy) + mσz,
	z

± = ∓mv2/(2ε3
+), where the band dispersions are ε±(k) =

±[v2(k2
x + k2

y ) + m2]1/2, v is the model parameter, σx,y,z are
Pauli matrices, and m is the band gap.

The main results of this work are the analytic formulas for
the topological contributions κ in

xy/σ
in
xy (the Wiedemann-Franz

law of the Hall signals) and αin
xy/σ

in
xy , which can repro-

duce two opposite types of experiments of the topological
kagome magnets. By performing the Sommerfeld expansion
of the transport coefficients [Eqs. (2)] with respect to the
energy scale of temperature [up to σ ∝ (kBT )4, α ∝ (kBT )4,
κ ∝ (kBT )4], we obtain the analytic expression for the ratio
κ in

xy/σ
in
xy ,

κ in
xy

σ in
xy

= 15μ2/π2 + 21(kBT )2

15μ2/π2 + 5(kBT )2 + 7π2(kBT )4/μ2
L0T, (4)

where the Lorentz number L0 = (πkB/e)2/3, and the chemi-
cal potential μ is measured from the center of the gap. This
formula can be simplified in two limits [45]:

κ in
xy

σ in
xy

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 + 16π2

15

k2
BT 2

μ2

)
L0T, μ � μc

(
1 + π2

3

k2
BT 2

μ2

)−1

L0T, μ 	 μc,

(5)

where the critical chemical potential is found as μc =√
7πkBT/4 (at which κ in

xy/σ
in
xy recovers the classical value

L0T ). The μ � μc limit of Eq. (5) has been used to fit the
positive deviation in the experiment of TbMn6Sn6 [31], but
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only the new formula Eq. (4) can give both the positive and
negative deviations in Fig. 1.

Similar to the classical Mott relation [1], we also get the
relation between the thermoelectric and the electric Hall coef-
ficients

αin
xy

σ in
xy

=
(

μ

e
+ π2

3

k2
BT 2

eμ

)−1

L0T . (6)

Note that the formulas are independent of the model parame-
ters but solely depend on μ, i.e., the position of the chemical
potential. This is reasonable because the model details are
canceled as the quantities on the denominator and numerator
of the ratios both depend on the model parameters, such as
the band gap m. In this sense, the ratios are more intrinsic and
universal. Additionally, these formulas, i.e., Eqs. (4) and (6),
can be generalized to other systems that can be well described
by the 2D massive Dirac model, such as gapped 2D materials.

To test Eqs. (4) and (6), we use μ as the only parameter to
fit the experimental data from Refs. [31,32]. Figures 1(b) and
1(c) show a good agreement between the experiments and our
analytic formulas for κ in

xy/σ
in
xy and αin

xy/σ
in
xy as functions of tem-

perature T . In particular, we use μ = 0.11 eV to fit the data of
TbMn6Sn6, very close to the measured μ = 0.13 ± 0.004 eV
in the experiment [30]. We stress that the fitting parameter μ is
the same for κ in

xy/σ
in
xy and αin

xy/σ
in
xy for the same experiment in

the comparison. Constrained by the Sommerfeld expansion,
our formulas in Eqs. (4) and (6) are valid for temperatures
below the Fermi temperature TF = μ/kB, which is more than
1000 K for the high chemical potentials in the experiments.
Nevertheless, there is a derivation from the formula above
300 K.

It is reasonable to employ the formulas, because the elec-
tronic behaviors of the topological kagome magnet TbMn6Sn6

[30,31,34] and the noncollinear antiferromagnet Mn3Ge
[32,35] can be reduced to the 2D massive Dirac model
(Fig. 2). The description of Mn3Ge by the 2D model is fur-
ther supported by considering a three-dimensional (3D) tilted
massless Weyl cone [55,56] H = s(vk · σ + tkz ), where v is
the model parameter, and s = ±1 labels the chirality of a
single node. The tilt term tkz is necessary to cover a more
general case, and we assume t/v 	 1 to get the analytical
result. This model can well describe the Weyl semimetal phase
in the bulk Mn3Ge [56]. We find that there is no deviation
from the Wiedemann-Franz law and Mott relation when both
the topology and disorder contributions are taken into account
for the tilted massless Weyl cone (details can be found in
[45]), additionally justifying that the 2D model is a better
description for the layered structure of Mn3Ge.

Up to now, we only consider the topological correction.
However, disorder in real materials can contribute to the
anomalous transport [33,46–48,57]. We use the Boltzmann
kinetics to account for the disorder contribution, which is
widely used in explaining magnetotransport [54,58–60] and
nonlinear transport [61–65]. To have analytic results, we con-
sider a δ-correlated disorder model V̂imp = ∑

i Viδ(r − Ri )
with the randomly distributed vector Ri and the disorder
strength Vi satisfying the second-order correlation 〈V 2

i 〉dis =
V 2

0 and third-order correlation 〈V 3
i 〉dis = V 3

1 . This model can
well describe the elastic scattering (even the electron-phonon

scattering approximately below the Debye temperature [1]).
After a lengthy calculation [45], we find the kernel func-
tions for the disorder contributions, including the side-jump,
extrinsic skew-scattering, and intrinsic skew-scattering parts,
respectively,

χ s j = 2m(ε2 − m2)

ε(ε2 + 3m2)
,

χ sk,1 = V 3
1

niV 4
0

m(ε2 − m2)2

(ε2 + 3m2)2
,

χ sk,2 = 3m(ε2 − m2)2

2ε(ε2 + 3m2)2
.

(7)

By substituting χ ′s into Eq. (3), we can have the total contri-
bution that includes the topological and disorder contributions
for all transport coefficients, as well as the ratios κ tot

xy /σ tot
xy and

αtot
xy /σ tot

xy .
Interestingly, in the presence of the disorder contribu-

tion, up to the leading-order [σ ∝ (kBT )0, α ∝ (kBT )2, κ ∝
(kBT )2] Sommerfeld expansion of Eq. (3), the ratios can re-
cover the classical Wiedemann-Franz law and Mott relation,
i.e. (check [45] for details),

κ in(0)
xy + κdis(0)

xy = L0T
[
σ in(0)

xy + σ dis(0)
xy

]
,

αin(0)
xy + αdis(0)

xy = −eL0T
∂

∂μ

[
σ in(0)

xy + σ dis(0)
xy

]
,

(8)

where the superscript (0) means leading order and dis(0)
includes the leading-order side-jump and skew-scattering
contributions.

To fully examine the disorder correction, we numerically
evaluate κ tot

xy /σ tot
xy and αtot

xy /σ tot
xy by using Eqs. (3) and (7) for

different values of m and μ. As shown in Figs. 3(a) and 3(b),
both κ tot

xy /σ tot
xy and αtot

xy /σ tot
xy show the m dependence, which

is different when there is only the topological contribution.
We adopt the value m = 0.017 eV for TbMn6Sn6 [31], i.e.,
black curves in [Figs. 3(c) and 3(d)]. It can be seen that the
topological and total contributions show different behaviors.
For κxy/σxy, the total contribution shows almost only negative
correction to the Wiedemann-Franz law, unable to describe
the positive deviation in the TbMn6Sn6 experiment [31].
Similarly, if we include the disorder contribution, the total
correction to αxy/σxy is also not consistent with the experiment
[31]. These results imply that the topological contribution is
dominant in these topological kagome magnet experiments so
far [31,32].

To see if the above results based on the 2D Dirac model
can be generalized to 3D, we also use a 3D Dirac model to
calculate the topological correction to κ in

xy/σ
in
xy and αin

xy/σ
in
xy

[67–69],

H = vk · α + (m − bk2)β + Mσ0 ⊗ σz, (9)

where v, m, b, and M are model parameters, αi = σx ⊗ σi

and β = σz ⊗ σ0 are Dirac matrices, and k = (kx, ky, kz ) is
the wave vector with k = |k|. When the parameters mb > 0,
this model can characterize a magnetic topological insulator.
The last term is the Zeeman energy that describes magnetism,
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Topological

Classical

Topological

Topological
+Disorder

Topological
+Disorder

FIG. 3. (a) The total (topological + disorder) contribution to the
deviation of the Wiedemann-Franz law κ tot

xy /σ tot
xy − L0T in units of

k2
B/e2, and (b) αtot

xy /σ tot
xy in units of kB/e for the 2D massive Dirac

model. The dashed lines represent m = 0.017 eV for the TbMn6Sn6

[31]. (c),(d) The chemical potential μ dependence of two ratios
for the topological (red) and total (black) contributions with m =
0.017 eV. The parameters are v = 1 eV nm, niV 4

0 /V 3
1 = 1 eV, and

T = 100 K.

which breaks time-reversal symmetry to unveil the hidden
Berry curvature, as seen in the inset of Fig. 4(d).

In Fig. 4, we present the numerical results of κ in
xy/σ

in
xy and

αin
xy/σ

in
xy for the 3D Dirac model in Eq. (9), which show simi-

lar temperature and chemical potential dependencies to those
described by the 2D Dirac model and in the experiments.
Specifically, the violation of the classical Wiedemann-Franz
law becomes stronger as the chemical potential approaches
the band edge and as temperature is increased, and κ in

xy/σ
in
xy

is below and above the classical value, respectively, as the
chemical potential is very close to and moves away from the
band edge. These numerical results of the 3D Dirac model
show that our analytical formulas based on the 2D Dirac
model could be a qualitative tool to study the topological
corrections to the Wiedemann-Franz law and Mott relation in
the topological magnets and Dirac materials.

FIG. 4. (a),(b) For the 3D Dirac model [Eq. (9)], κ in
xy/σ

in
xy (a) and

αin
xy/σ

in
xy (b) as functions of the chemical potential μ at 100 K.

The dashed lines represent the classical Wiedemann-Franz law. The
purple and blue circles indicate μ = 0.06 eV and μ = 0.13 eV, cor-
responding to the two curves in (c) and (d). (c),(d) κ in

xy/σ
in
xy (c) and

αxy/σxy (d) as functions of temperature T , for μ = 0.06 eV and
μ = 0.13 eV (the solid curves). Inset of (d) depicts the dispersion
and Berry curvature 	 of the energy bands for the 3D Dirac model
with the Zeeman energy, which lifts the degeneracy of the bands. The
parameters are v = 0.1 eV nm, m = −0.04 eV, b = −0.18 eV nm2,
and M = 5.788 × 10−3 eV [66].

To conclude, we analytically and numerically calculated
the corrections to the Wiedemann-Franz law and Mott re-
lation for topological kagome magnets and Dirac materials,
by treating the topological correction and disorder correction
on the same footing. By comparing our results with the recent
experiments with opposite behaviors, we show the domi-
nance of the topological correction from the Berry curvature
in the experiments. More importantly, our analytic formulas
for the topological correction will be a useful tool to explore
the emergent topological magnets and Dirac materials.
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