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Extrinsic and intrinsic nonlinear Hall effects across Berry-dipole transitions

Zheng-Yang Zhuang and Zhongbo Yan *

Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics,
Sun Yat-Sen University, Guangzhou 510275, China

(Received 13 August 2022; accepted 29 March 2023; published 6 April 2023)

Three-dimensional Hopf insulators are a class of topological phases beyond the tenfold-way classification.
At the critical point of the transition between two distinct Hopf insulators with rotational symmetry, the
band-touching points are point Berry dipoles with two opposite Berry charges overlapping in a mirror-symmetric
way, and carry unique Berry curvature structures leading to a special quantization of Berry flux. Close to such
Berry-dipole transitions, we find that the extrinsic and intrinsic nonlinear Hall conductivity tensors in the weakly
doped regime are characterized by two universal functions of the ratio between doping level and bulk energy
gap, and are directly proportional to the change in Hopf invariant across the transition. Our work suggests
that the nonlinear Hall effects display a generalized-sense quantized behavior across Berry-dipole transitions,
establishing a correspondence between nonlinear Hall effects and Hopf invariants.

DOI: 10.1103/PhysRevB.107.L161102

Introduction. Quantum responses that can extract topolog-
ical invariant information are of great interest in condensed
matter physics. For topological gapped systems, since the
topological protection and the existence of a bulk energy gap
can tolerate perturbations, there may exist quantum responses
that are quantized and directly connected to the topolog-
ical invariant encoded in the band structure [1], with the
quantum (anomalous) Hall insulators being the most well-
known example, where the Hall conductance is quantized
and connected to the Chern number [2–4]. In comparison,
metallic systems are known to hardly support quantized re-
sponses since the Fermi surface deforms under perturbations
and generally lacks of a topological characterization. Known
exceptions include ballistic conductors where the conductance
is shown to be quantized and connected to the Euler charac-
teristic of the Fermi sea [5,6], and Weyl semimetals without
inversion and mirror symmetries where a quantzied circular
photogalvanic effect can emerge in the absence of disorders
and interactions [7,8]. It is worth mentioning that the circular
photogalvanic effect is a second-order optical response effect
and its quantization in Weyl semimetals is rooted in the quan-
tized Berry-monopole charge of the Weyl point enclosed by
the Fermi surface [9].

Recently, extrinsic nonlinear Hall effect (ENHE) and in-
trinsic nonlinear Hall effect (INHE) in metallic systems, as
another two kinds of second-order quantum responses derived
by semiclassical equations of motion, have gained consider-
able interest since they have a quantum geometry origin and
can emerge in systems without linear-order anomalous Hall
effect [10–12]. It was shown that the ENHE and INHE de-
pend on the Berry curvature dipole [13] and Berry-connection
polarizability (BCP) [14], respectively, and both of them
are Fermi-surface properties. The adjectives “extrinsic” and
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“intrinsic” applied to distinguish them reflect one essential
difference between these two kinds of nonlinear Hall effects;
namely, the former depends on the relaxation time associated
with carrier scatterings [13], whereas the latter does not in-
volve any time scale and only depends on the band geometry
quantity [14]. Although both of them require the breaking of
inversion symmetry, the ENHE is a time-reversal-even effect
and can emerge in systems with time-reversal symmetry, but
the INHE is a time-reversal-odd effect and can only appear in
systems without time-reversal symmetry. Interestingly, when
the system has neither time-reversal symmetry nor inversion
symmetry, but their combination, PT symmetry, the ENHE is
absent as the Berry curvature is forced to vanish [15], whereas
the INHE can be significant. Two recent works have shown
that the INHE could be applied to measure the Néel vector of
PT -symmetric antiferromagnets [16,17].

Since various quantum geometry quantities are promi-
nent near band crossings or avoid crossings, topological
semimetals or doped small-gap topological insulators are
ideal material systems to seek for strong ENHE and INHE
[18–39]. For topological insulators, it is known that the
change of global topology across a topological phase transi-
tion is a result of the dramatic change in quantum geometry
near the band edge. Thus, although the ENHE and INHE
are Fermi-surface properties that are generally not possible
to determine the topological invariant associated with the
whole Brillouin zone, they are possible to detect the change of
band topology if the topological insulators are weakly doped.
Previous works indeed found that the ENHE can manifest
topological phase transitions described by low-energy Dirac
Hamiltonians through the dramatic sign change of a nonlinear
Hall conductivity tensor (NHCT) [22,40,41]. However, since
therein, the tilt or warping of massive Dirac cones is necessary
to have nonzero ENHE [13,26]; the NHCT does not have a
simple and universal form revealing the change of topological
invariant.
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In this work, we explore the behaviors of ENHE and INHE
across the critical regime of three-dimensional Hopf insula-
tors with C4z rotational symmetry. As a class of topological
insulators beyond the tenfold-way classification [42,43], the
Hopf insulators follow a Z classification and do not have time-
reversal and inversion symmetries [44–48]. In addition, at the
critical point of the transition between two Hopf insulators
with rotational symmetry, the band-touching points turn out
to be neither Dirac points nor Weyl points, which are known
to describe critical points of many topological phase transi-
tions [49]. Interestingly, they resemble point dipoles with two
opposite Berry charges overlapping and are thus termed Berry
dipoles [50]. Across this class of Berry-dipole transitions, we
find that the extrinsic and intrinsic NHCTs in the weakly
doped regime are characterized by two universal functions
and explicitly contain the information of the change in the
Hopf invariant. Although extrinsic and intrinsic NHCTs are
independent quantities of different origins, here they display
similar laws and are simply related across the critical regime.

C4z-rotational-invariant Hopf insulators and Berry-dipole
transitions. Hopf insulators have a diversity of model realiza-
tions [44–46,51,52]. In this work we focus on the two-band
realization for simplicity. The minimal models for Hopf insu-
lators are constructed by the so-called Hopf map [44]

H(k) = d(k) · σ (1)

with the three components of the d-vector given by

di(k) = ζ †(k)σiζ (k), ζ (k) = (ζ1(k), ζ2(k))T ,

ζ1(k) = η1(k) + iη2(k), ζ2(k) = η3(k) + iη4(k), (2)

where σi are the Pauli matrices, and ηi(k) are real functions
of momentum. Mathematically, the above equations define a
map from S3 to S2. In this paper, we focus on models with C4z

rotational symmetry. To be specific, we consider [50]

ζ1(k) = λn[sin(kxa) + i sin(kya)]n,

ζ2(k) = λz sin(kzc) + i

⎡
⎣M + t

∑
i=x,y,z

cos(kiai )

⎤
⎦, (3)

where the lattice constants ax = ay = a and az = c. The en-
ergy spectra of the Hamiltonian take the simple form

E±(k) = ±(|ζ1(k)|2 + |ζ2(k)|2). (4)

For the constructed Hamiltonian, the energy gap can only
close at time-reversal invariant momenta of the Brillouin zone.
Without loss of generality, we consider that the band edge
is located at � = (0, 0, 0), then an expansion of the complex
spinor up to the leading order in momentum gives

ζ1(k) = vn(kx + iky)n,

ζ2(k) = vzkz + im, (5)

where v = λa, vz = λzc, and m = M + 3t . Accordingly, the
low-energy Hopf Hamiltonian has the form

H(k) = 2vnkn
ρ (vzkz cos nθ + m sin nθ )σx

+ 2vnkn
ρ (m cos nθ − vzkz sin nθ )σy

+ (
v2nk2n

ρ − v2
z k2

z − m2
)
σz, (6)

where kρ =
√

k2
x + k2

y , and θ is the polar angle in the kx-ky

plane. It is worth noting that the C4z rotational symmetry of the
lattice Hamiltonian evolves to a continuous rotational sym-
metry under the low-energy approximation. The low-energy
spectra are given by

E±(k) = ±(
v2nk2n

ρ + v2
z k2

z + m2
)
. (7)

For the simplest case n = 1, one sees that the low-energy
Hamiltonian at the critical point m = 0 is distinct to the Weyl
Hamiltonian [9] and the energy dispersion is quadratic rather
than the linear dispersion of usual critical points.

For the Hamiltonian constructed by Hopf map, the Hopf
invariant characterizing it can be determined by [46]

Nh = 1

2π2

∫
d3kεabcd η̂a∂kx η̂b∂ky η̂c∂kz η̂d , (8)

where η̂i = ηi/
√

η2
1 + η2

2 + η2
3 + η2

4 , εabcd is the fourth-order
Levi-Civita symbol, and a sum over repeated indices is im-
plied. For the low-energy Hopf Hamiltonian, one has [53]

Nh = −sgn(vzm)
n

2
. (9)

When m changes sign, the Hopf invariant changes by n. It
is worth emphasizing that the low-energy Hopf Hamiltonian
can only determine the change of Hopf invariants since it
only faithfully captures the low-energy part of the bands. One
needs the tight-binding Hamiltonian to determine the absolute
values of Hopf invariants before and after the transition.

For the low-energy Hopf Hamiltonian (6), the three com-
ponents of the Berry curvature can be determined by [54]

�
(±)
l (k) = ±εi jl

d(k) · (∂ki d(k) × ∂k j d(k))

4d3(k)
, (10)

where d (k) = |d(k)| is the norm of the d-vector, the super-
script +(−) refers to the conduction (valence) band, and εi jl

is the third-order Levi-Civita symbol. An explicit calculation
gives [53]

�(±)
x (k) = ±2nvzv

2nk2n−1
ρ (m sin θ + vzkz cos θ )

d2(k)
,

�(±)
y (k) = ±2nvzv

2nk2n−1
ρ (−m cos θ + vzkz sin θ )

d2(k)
,

�(±)
z (k) = ±2n2v2nk2(n−1)

ρ

(
m2 + v2

z k2
z

)
d2(k)

. (11)

At the critical point m = 0, it turns out that the integral of
the Berry curvature over a closed surface enclosing the band-
touching point at � identically vanishes; however, the integral
over the upper (kz > 0) or lower (kz < 0) half of the surface is
quantized, namely [50],

1

2π

∫
kz>0

� · dS = n. (12)

Band-touching points with such a quantized behavior are
termed Berry dipoles [50]. Pictorially, such band-touching
points correspond to point dipoles for which the Berry
monopole and Berry antimonopole composing them over-
lap but do not annihilate due to mirror symmetry protection
[50,55]. Before proceeding, it is worth emphasizing that here
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the Berry dipoles are different from the Berry curvature dipole
defined in Eq. (14) below, which has the physical meaning
as the dipole moment of Berry curvature over the occupied
states.

The results in Eqs. (9) and (12) indicate that the change
of Hopf invariants across the transition equals the quantized
value of the Berry dipole at the critical point, so this class
of topological phase transitions is also termed Berry-dipole
transitions [50]. As the Berry dipole carries a unique Berry
curvature structure, it is natural to expect that the ENHE
would display some novel behaviors across such Berry-dipole
transitions.

ENHE across Berry-dipole transitions. Sodemann and Fu
revealed that an a.c. electric field would result in a mix-
ture of d.c. and second-harmonic Hall-type currents in the
second-order-response regime in systems without inversion
symmetry [13], i.e., j = j0 + j2ω with j0

i = χi jkE jE∗
k and

j2ω
i = χi jkE jEk . The extrinsic NHCT is given by [13]

χ ext
i jk = − e3τ

2(1 + iωτ )
εilkD jl , (13)

where τ denotes the relaxation time whose value depends on
the carrier scattering. Djl is the Berry curvature dipole given
by [13]

Djl =
∑

α

∫
d3k

(2π )3
f (α)

(
∂k j �

(α)
l

)

= −
∑

α

∫
d3k

(2π )3

(
∂k j f (α)

)
�

(α)
l , (14)

where the sum is over all bands, and f (α) represents the
Fermi-Dirac distribution function of the αth band. The first
line of this formula reveals that the Berry curvature dipole is
the dipole moment of the Berry curvature over the occupied
states, while the second line indicates that this quantity can
also be interpreted as a Fermi-surface property.

Using the Berry curvature in Eq. (11), we find that the
extrinsic NHTC only contains four nonzero components, in-
cluding χ ext

zxx , χ ext
xxz , χ ext

zyy , and χ ext
yyz . However, there is in fact

only one independent component. This can be inferred by
noting that the rotational symmetry forces χ ext

zxx = χ ext
zyy , and

the Hall nature forces χ ext
zxx = −χ ext

xxz and χ ext
zyy = −χ ext

yyz , which
can also be simply inferred from the antisymmetric property
of the Levi-Civita symbol in Eq. (13). Focusing on the zero-
temperature limit and only showing the explicit form of χ ext

zxx ,
one has [53]

χ ext
zxx = Nhχ1B1(μ/m2), (15)

where Nh is the Hopf invariant given by Eq. (9), χ1 =
e3τ/2(1 + iωτ ), and B1(x) is a dimensionless universal func-
tion of the form

B1(x) = 2(x − 1)3/2

3π2x2
�(x − 1). (16)

Here electronic doping is assumed, i.e., μ > 0. Since the
energy gap of the low-energy Hamiltonian (6) is equal to
2m2, B1(μ/m2) is a universal function of the ratio between
chemical potential and bulk energy gap.

According to Eqs. (9) and (15), one sees that the extrinsic
NHCT reverses its sign across a Berry-dipole transition, thus
allowing a sensitive probe of the transition. Remarkably, if the
relaxation time is assumed to be constant, the extrinsic NHCT
turns out to be a universal function multiplied with the change
of Hopf invariants across the transition. Particularly, the peak
value of the extrinsic NHCT is quantized and directly con-
nected to the change of Hopf invariants. It might be interesting
to note that another class of systems exhibiting a similar con-
nection between quantized peak values of response functions
and topological invariants is one-dimensional topological su-
perconductors with chiral symmetry [56,57]. Using this result,
it is possible to precisely probe the change of topological
invariants across Berry-dipole transitions by measuring the
evolution of current with the change of doping level.

INHE across Berry-dipole transitions. Since the time-
reversal and inversion symmetries are both broken in the Hopf
Hamiltonian, the INHE is also allowed. However, quite differ-
ent from the ENHE, the INHE introduced by Gao, Yang, and
Niu depends on a band geometry quantity known as BCP [14],
which does not have a direct connection with the Berry curva-
ture. Although the ENHE and INHE have different origins, as
we will show below, a simple relation exists between Berry
curvature and BCP for the low-energy Hopf Hamiltonian,
leading to the INHE displaying a similar behavior like the
ENHE across Berry-dipole transitions.

The Hall current originating from INHE has the form
jint
α = χ int

αβγ EβEγ , where the intrinsic NHCT is given by
[14,16,17]

χ int
αβγ = −e3

∑
n

∫
d3k

(2π )3
v(n)

α G(n)
βγ

∂ f (En)

∂En
− (α ↔ β ), (17)

where En, v(n)
α = ∂En/∂kα and G(n)

βγ denote the nth band’s
dispersion, velocity in the α direction, and BCP, respectively.
Their k-dependence are made implicit in Eq. (17). The gauge-
independent BCP is given by [14,16,17]

G(n)
βγ (k) = 2Re

∑
m �=n

Anm,β (k)Amn,γ (k)

En(k) − Em(k)
, (18)

where Anm,β (k) = i〈un(k)|∂kβ
um(k)〉 is the interband Berry

connection. From Eq. (17), it is apparent that χ int
αβγ = −χ int

βαγ .
For the Hamiltonian considered, one has [14]

G(+)
βγ (k) = −∂kβ

d̂(k) · ∂kγ
d̂(k)

4d (k)
= −G(−)

βγ (k), (19)

where d̂(k) = d(k)/d (k) is the normalized d vector. Inter-
estingly, the numerator in Eq. (19) suggests that the BCP is
related to the quantum metric for a two-band Hamiltonian.
Since the BCP is a symmetric tensor, i.e., G(±)

βγ (k) = G(±)
γ β (k),

there are six independent components. By straightforward
calculations, one has [53]

G(±)
xx (k) = G(±)

yy (k) = ∓n2v2nk2n−2
ρ

(
m2 + v2

z k2
z

)
d3(k)

,

G(±)
zz (k) = ∓v2

z v
2nk2n

ρ

d3(k)
, G(±)

xy (k) = 0,
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G(±)
xz (k) = ±nv2nvzk2n−1

ρ (m sin θ + vzkz cos θ )

d3(k)
,

G(±)
yz (k) = ±nv2nvzk2n−1

ρ (−m cos θ + vzkz sin θ )

d3(k)
. (20)

A close look at Eqs. (11) and (20) finds that four of the
six independent components of the BCP tensor have a simple
relation with the three components of the Berry curvature, i.e.,

�(±)
x = 2dG(±)

xz , �(±)
y = 2dG(±)

yz , �(±)
z = −2dG(±)

xx(yy).

(21)

Bringing Eq. (20) into Eq. (17), one finds that χ int
αβγ is nonzero

only when α �= β �= γ , and the nonzero independent compo-
nents have the simple relation [53]

χ int
xyz = −2χ int

yzx = −2χ int
zxy. (22)

Also focusing on the zero-temperature limit and only showing
the explicit form of χ int

xyz, one has [53]

χ int
xyz = −Nhχ2B2(μ/m2), (23)

where χ2 = e3/m2 and

B2(x) = 2(x − 1)3/2

3π2x3
�(x − 1) = B1(x)

x
. (24)

Compared to the ENHE, one sees that the INHE displays
a similar universal behavior, but a big difference is that the
factor χ2 goes divergent as m2 → 0, suggesting that the peak
of the intrinsic NHCT goes divergent as the bulk energy gap
decreases to infinitely small but nonzero (note that the low-
energy Hopf Hamiltonian at the critical point has emergent
inversion symmetry so the INHE is forced to vanish when
m = 0). This property implies that the INHE can provide an
even more sensitive probe of the Berry-dipole transition. Fur-
thermore, one can find χ ext/χ int ∼ m2τ , thus a simultaneous
study of ENHE and INHE can also provide a probe of the
relaxation time.

Discussions and conclusions. It is worth emphasizing that
because the low-energy Hopf Hamiltonian does not have time-
reversal symmetry, the linear Hall conductivity tensor σi j does
not identically vanish. By analyzing the Berry curvature in
Eq. (11), it is easy to find that σxz and σyz identically vanish,
and only σxy is finite in the doped regime. This can also be
figured out by noting that, despite the absence of global time-
reversal symmetry, the Hamiltonian has spinless time-reversal
symmetry at any ky or kx plane. This result suggests that the
linear anomalous Hall effect only appears in the xy plane. For
the ENHE and INHE, their nonzero components indicate that
the Hall current will flow in the z direction if the electric vector
lies in the xy plane, thus they can be easily distinguished from
the linear-order Hall current according to the current direction.
Of course, they can also be distinguished by using lock-in

method since the linear-order and second-order Hall signals
have different dependence on the frequency of the ac electric
field. The ENHE and INHE can also be easily distinguished
from each other by controlling the electric vector to lie in the
xz or yz plane. For the former, the current will flow in parallel
with the electric component in the xy plane, while the latter
will flow perpendicular to the electric vector plane.

Now we discuss potential systems to observe our pre-
dictions. In theory, the considered two-band Hopf insulators
provide the simplest realization of Berry-dipole transitions,
however, two-band Hopf insulators remain elusive in exper-
iment except in the context of electric circuit systems [58].
Since the Berry dipole is equivalent to the overlap of two
mirror-symmetry-related Weyl points [55], a potential route
to realize the Berry-dipole transition is to consider magnetic
Weyl semimetals with a mirror plane and then break ap-
propriate symmetries to gap out the nodal points [50]. The
experimental implementation of two-band Hopf insulators has
also been explored in the context of cold-atom systems, and it
was suggested that cold-atom systems with long-range dipolar
interaction and Floquet modulations may realize the Hopf
insulators [59–61]. On the other hand, a recent work revealed
that Bloch oscillations provide a counterpart realization of
ENHE in cold-atom systems [62]. Therefore, the cold-atom
systems are a potential platform to observe our predictions.
Furthermore, it is worth pointing out that Berry-dipole transi-
tions are not restricted to two-band realizations. N-fold (N �
3) Berry-dipole critical points also exist with linear dispersion
[52]. Compared to the two-band realizations of Berry-dipole
transitions, an important advantage of the N-band (N � 3)
realizations is that their corresponding tight-binding Hamil-
tonians can only involve nearest-neighbor hoppings, and are
thus more feasible in experiments. By investigating the N =
3 case, we find that the ENHE and INHE do also display
the expected generalized-sense quantized behaviors across
Berry-dipole transitions [53]. The only difference is that the
associated universal functions have a different form due to
the difference in dispersion. This suggests that this class of
systems can also be applied to test our predictions on the
ENHE and INHE across Berry-dipole transitions.

In conclusion, we have shown that the nonlinear Hall
effects display generalized-sense quantized behaviors across
Berry-dipole transitions, building up a correspondence be-
tween nonlinear Hall effects and Hopf invariants. A direction
for future study is to consider semimetals with nodal points
or insulators with critical points associated with more exotic
Berry curvature structures and explore what kinds of quantum
responses can uniquely reflect them.
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