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Single-shot quantum measurements sketch quantum many-body states
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Quantum measurements allow us to observe quantum many-body systems consisting of a multitude of
microscopic degrees of freedom. However, the quantum uncertainty and the exponentially large Hilbert space
pose natural barriers to simple interpretations of the quantum measurement outcomes. We propose a nonlinear
“measurement energy” based upon the measurement outcomes and a general approach akin to quantum machine
learning to extract the most probable states (maximum likelihood estimates), naturally reconciling noncom-
muting observables and getting more out of the quantum measurements. Compatible with established quantum
many-body ansatzes and efficient optimization, our strategy offers state-of-art capacity with control and full
information. We showcase the versatility and accuracy of our strategy on random long-range fermion and Kitaev
quantum spin-liquid models, where smoking-gun signatures were lacking.
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Introduction. Quantum many-body systems exhibit fas-
cinating yet elusive quantum phenomena, such as quantum
fluctuations, strong correlations [1], quantum entanglements
[2–9], and quantum anomalies [10–15], with no counterpart
in the macroscopic world [16]. For example, nontrivial spin
and electronic systems such as quantum spin liquids (QSLs)
[17–20], superconductors [21–24], and topological phases
[11,12,25–33], form a modern-day scientific cornerstone.
While scientists have made much progress and established
physical pictures that are simple and beautiful, it is common
that we scratch our heads over their complex behaviors when
encountering the vast and intertwined microscopic or emer-
gent degrees of freedom [34,35].

Experiments on quantum many-body systems are our win-
dow into their microscopic worlds. However, analysis of
quantum measurements is intrinsically difficult due to quan-
tum fluctuations that whenever a general observable Ô =∑

τ aτ P̂τ is measured, the outcome stochastically picks one
eigenvalue aτ with probability 〈P̂τ 〉, where P̂τ is the pro-
jection operators corresponding to the eigenvalue aτ [36].
Fortunately, if we measure the target state repeatedly, through
either identical copies or relaxation, the resulting average con-
verges to a nonstochastic and more physically interpretable
expectation value 〈Ô〉 [36]. We may further facilitate the in-
vestigation with a phenomenological picture or microscopic
model, whose predictions offer smoking-gun signatures that
we can compare with the quantum measurements. However,
by presuming a model or picture, we not only waste seemingly
unrelated data but also risk biases consciously or uncon-
sciously. In addition, exotic quantum matters such as QSLs
lack definitive signatures, compelling scientists to resort to a
negative-evidence stance [19,37] that may remain controver-
sial and less controlled to a degree.
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In this Letter, we discuss a general strategy to determine the
most probable quantum many-body states given the quantum
measurement data. We interpret the quantum measurements as
nonlinear measurement energy and offer an iterative effective-
Hamiltonian strategy to obtain the measurement outcomes’
maximum likelihood estimate (MLE) states in the Hilbert
space, which in turn provide us with all information, including
those unachievable directly, such as quantum entanglements
[2–9] and topological characters [7–11]. In this way, we can
utilize all measurement outcomes on a neutral and equal
footing and remove the necessity of any presumed model or
picture. We showcase the strategy’s generality and effective-
ness on random long-range fermion and Kitaev spin-liquid
models [18], which lack a smoking-gun signature for quan-
tum measurements. Especially, our strategy can work wonders
even for complex states such as the disordered Kitaev QSL
even with only nonrepeating single-shot quantum measure-
ments, fully capturing its non-Abelian topological degeneracy
(Fig. 4). Indeed, every single-shot quantum measurement mat-
ters, as its outcome carries information. On the other hand,
quantum state reconstruction through measurements, often
named quantum state tomography, has been a long-standing
topic in quantum physics [38]. The recent introduction of
neural network quantum state tomography (NNQST) [39,40]
and shadow tomography [41] has achieved practical efficiency
over multiple qubits. In comparison, our strategy provides
the full quantum states and even the topologically degenerate
ground-state manifold, complementing shadow tomography,
which estimates feasible physical quantities. Also, owing
to exceptional optimization efficiency [42] and compatibil-
ity with various quantum many-body ansatzes, including the
tensor network states and neural network states [43] (that
NNQST is based on), our strategy offers state-of-art tomog-
raphy capacity with control and full information. Further,
unlike the previous tomography based on computational basis,
our approach is more compatible with physical observables,
applicable to a broader range of experiments.
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The measurement energy. Consider the a priori probabil-
ity distribution p(�) of all quantum states |�〉 spanning the
Hilbert space, if a single-shot measurement of observable
Ô = ∑

τ aτ P̂τ yields an outcome, which is labeled as event
γ . The posterior probability after this measurement (event) is

p(�|γ ) = p(γ |�)p(�)/p(γ ), (1)

where p(γ |�) = 〈�|P̂γ |�〉 is the probability of γ given the
quantum state |�〉, P̂γ is the projection operator corresponding
to event γ , and p(γ ) offers normalization [44].

As the measurements progress, we obtain a series of results
D = {γ1, γ2, . . .} of single-shot measurements over observ-
ables {Ô1, Ô2, . . .}, and update the probability as

p(�|D) ∝
∏

γ∈D
p(γ |�) =

∏

γ∈D
〈�|P̂γ |�〉. (2)

We define the “measurement energy” [45],

E (�|D) = −
∑

γ∈D
log 〈�|P̂γ |�〉, (3)

so that p(�|D) ∝ exp[−E (�|D)] becomes analogous to a
Boltzmann distribution with energy E (�|D) in units of kBT .
The measurement energy also responds to the negative loga-
rithm of the likelihood function in MLE studies [46–52]. We
will show a protocol to locate the MLE states with minimum
E (�|D).

The statistical meaning of Eq. (3) becomes clear in the
case of multiple measurements NÔ on the same observable
Ô, yielding Nτ instances of aτ outcomes. By binning them
together, we reexpress the measurement energy as

E (�|D) = −
∑

Ô

∑

τ

NÔ fτ log 〈�|P̂τ |�〉, (4)

which describes the cross entropy between the expected prob-
ability given a quantum state |�〉 and the measured frequency
fτ = Nτ /NÔ. In addition, the lower bound for measurement
energy on given data is min E (D) = −∑

Ô

∑
τ NÔ fτ log fτ ,

which makes E (�0|D) − min E (D) a feasible indicator for
satisfiability and convergence.

Measurement-energy minimizations via iterative effective
Hamiltonians. For a generic nonlinear cost function E =
f (〈Ô〉) defined for the expectation values 〈Ôκ〉 = 〈�|Ôκ |�〉,
its functional derivative with respect to |�〉 should vanish at
its minimum,

δE =
∑

κ

∂ f (〈Ô〉)

∂〈Ôκ〉

∣∣∣∣∣
〈Ô〉gs

· δ〈Ôκ〉gs = 0, (5)

where 〈Ôκ〉gs are the expectation values at the minimum. We
note that a Hamiltonian Ĥeff on the same Hilbert space,

Ĥeff =
∑

κ

ακÔκ , (6)

should possess a ground state |�′
gs〉 that satisfies δ〈Ĥeff〉 =∑

κ ακ · δ〈Ôκ〉gs = 0, which coincides with Eq. (5) if we set
|�′

gs〉 = |�gs〉 and

ακ = ∂ f (〈Ô〉)

∂〈Ôκ〉

∣∣∣∣∣
〈Ô〉gs

. (7)

FIG. 1. We outline our strategy for the MLE quantum state:
Given the quantum measurement results, we iteratively update Ĥ0

with Ĥeff and solve its ground state |�0〉, which converges to the MLE
state |�gs〉. The measurement energy E (�0|D) − min E (D) serves
as an indicator of convergence and also reveals whether additional
measurements and/or observables are preferable.

Equations (6) and (7) form a self-consistent equation for the
minimum of measurement energy E (�|D).

Applying such a protocol to the measurement energy in
Eq. (4), the effective Hamiltonian is

Ĥeff =
∑

Ô

∑

τ

NÔατ P̂τ , ατ = − fτ
〈�gs|P̂τ |�gs〉

, (8)

NÔ = 1 for single shots. Note that different observables may
contribute to the same projection operator. Equation (8) is
one of the main conclusions of this Letter: Given the quan-
tum measurements, the self-consistent ground state |�gs〉 of
Eq. (8) is our MLE quantum state.

However, as the iteration state approaches the target state,
every 〈P̂τ 〉 → fτ , resulting in a diminishing Ĥeff and unstable
eigenstates. Inspired by supervised machine learning [53–56],
we introduce an iteration Hamiltonian Ĥ0, which is initiated
randomly and updated as Ĥ0 → Ĥ0 + λĤeff, where λ is the
step size. The ground state |�0〉 of Ĥ0 moves closer and
converges to the MLE state upon updates, while Ĥeff’s noises
average out over the iterations. We summarize the strategy
in Fig. 1, and provide further details, rigorous proof, and
generalizations to mixed states in Refs. [42,57].

To see how Ĥeff performs as an optimizing gradient for Ĥ0,
let us consider a toy model with a single qubit |�t (θ, ϕ)〉 =
cos(θ/2)|ẑ,+〉 + sin(θ/2)eiϕ |ẑ,−〉 as the target state. Among
various measurements, let us focus on the Ŝz = σ z/2 measure-
ments whose outcomes approach

lim
NÔ→∞

N± = NÔ〈�t |P̂±|�t 〉 = NÔ
(1 ± cos θ )

2
, (9)

where P̂± = (1 ± σ z )/2 are the projection operators onto the
σ z = ±1 eigenspaces, respectively. Correspondingly, given
an iteration state |�0(θ ′, ϕ′)〉, these Sz measurements con-
tribute to the next Ĥeff as follows:

NÔ(α+P̂+ + α−P̂−) = −NÔ
cos θ − cos θ ′

1 − cos2 θ ′ σ z + const, (10)

whose σ z coefficient is negative (positive) when θ ′ > θ (θ ′ <

θ ), opting for a smaller (larger) θ ′ at the next iteration, and
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so on until convergence at θ . As Ŝz measurements provide no
information on ϕ, ϕ′ remains its initial value. Measurements
of Ŝn 	=z contribute additional terms to Ĥeff and a more compre-
hensive optimization of Ĥ0 and |�0(θ ′, ϕ′)〉.

Unlike previous tomography that faces costly direct
parametrization of quantum states and challenging noncon-
vex optimization, we encode |�0〉 intrinsically via Ĥ0, which
holds several advantages: Our strategy guarantees efficient
descent and convergence [42], and also takes advantage of
various established quantum many-body ansatzes, such as
Lanczos, density-matrix renormalization group [58,59], and
quantum Monte Carlo methods [60,61], neural network states
[43], or quantum simulators [62–64]. Essentially, the ansatz
choice relies on a priori knowledge, such as symmetries and
localities, which allows us to conduct more relevant and effi-
cient searches in Hilbert space submanifolds.

It is high time we discussed the choices of observables Ô.
If the a priori knowledge about the target state is sufficient,
we may choose the most physically relevant measurements,
usually lower-order and/or local operators; otherwise, such
observables still make a good starting point for tentative stud-
ies. In reality, we are often limited by experiments and data
availability as well. Fortunately, our strategy can still locate
the MLE state even under such circumstances and also tell
whether the information is inadequate [65], upon which one
may decide to resort to additional operators or experiments.
We illustrate such a procedure on Haar random quantum states
without any a priori knowledge in the Supplemental Material
[57].

Example: Random long-range fermion model. Let us con-
sider the ground state of the following Hamiltonian,

Ĥ = −
∑

i j

ti j
(
c†

i c j + c†
j ci

) −
∑

i

μic
†
i ci, (11)

where 1 � i, j � L. We apply random ti j ∈ [0, 1] between
arbitrary sites and μi ∈ [−0.5, 0.5] to deny the system sym-
metries and locality. Still, our strategy can derive the target
states, placed in a black box and tangible only via quantum
measurements, even on relatively large systems. Two-point
correlators are key to a fermion direct-product state, whose
other properties are obtainable via Wick’s theorem, thus we
choose the observables Ôi = c†

i ci and Ô′
i j = (c†

i + c†
j )(ci +

c j )/2, each with two eigenvalues [66], making P̂τ and Ĥeff

fermion-bilinear and the subsequent procedure straightfor-
ward.

For simplicity, we measure each observable Ô = ∑
τ ατ P̂τ

on the target quantum state an equal number NÔ → ∞ of
times to suppress fluctuations. Putting these results on L =
100 systems into the iterative process in Eq. (8), we obtain
the results in Fig. 2. We observe a quick convergence of the
iteration state |�0〉 towards the target state, and its average
measurement energy E (|�0〉) towards lower bound eigenval-
ues [67]. Our strategy also works for data laden with quantum
fluctuations due to finite numbers of quantum measurements
NÔ and the numerical studies reveal that NÔ necessary for a
certain fidelity level scales polynomially to the system size
[57].

We also extend applications to mixed states: ρ0 ∝ e−H0

as the quantum state and tr(ρ̂0P̂τ ) as the expectation value

FIG. 2. Following our strategy, the iteration state quickly con-
verges to the target quantum state, and the average measurement
energy converges to its lower bound. The infidelity for the pure
state and mixed state (shown in the inset) reaches ∼6 × 10−4 and
∼5 × 10−3, respectively. The shade is based upon 100 trials on
different target states—the ground states and Gibbs states of random
long-range fermion models with system size L = 100.

in Eq. (8). Based on NÔ → ∞ measurements of Ôi and Ô′
i j

observables for target Gibbs states ρtar = e−βĤ/tr(e−βĤ ) on
Ĥ in Eq. (11) with L = 100 sites, we observe a quick and
unambiguous convergence of the iteration ρ0 towards their
target (Fig. 2 inset). Further details, examples, and proof for
mixed states are in Refs. [42,57].

Example: Strongly correlated Kitaev QSL state. Let us
consider the nearest-neighbor spin Hamiltonian on the hon-
eycomb lattice,

Ĥ =
∑

〈i j〉∈αβ(γ )

[
Ji j �Si · �S j + Ki jS

γ
i Sγ

j + �i j
(
Sα

i Sβ
j + Sβ

i Sα
j

)]
,

(12)
which potentially describes the Kitaev physics in the A2IrO3-
family iridates [68] and Kitaev material RuCl3 [20]. Ki j , Ji j ,
and �i j are the amplitudes of the Kitaev interaction, isotropic
Heisenberg interaction, and the symmetric off-diagonal inter-
actions on bond 〈i j〉, respectively. Depending on the bond
dimension, each bond is labeled by αβ(γ ), where γ = x, y, z
is the spin direction in the Kitaev term, and α, β are the
two orthogonal spin directions in the �i j term. The pristine
Kitaev model (Ji j = �i j = 0) is analytically solvable [18,57].
We take the ground state of Ĥ with a dominant Kitaev term on
a 3 × 3 system with a periodic boundary condition, illustrated
in the inset of Fig. 3(b), as our target quantum state. The
resulting QSL states are notorious for their lack of smoking-
gun signatures. Instead, we probe the target quantum states
with seemingly trivial quantum measurements. As we will
see, these measurements still provide insightful information,
and our strategy leads to the target states and, in turn, their
abstract natures, including the QSL phase [7–9] and quantum
entanglements [2–6].

To begin with, we set Ki j = −1, Ji j = 0.1. Given the C3

rotation symmetry, there are three degenerate ground states,
shown in the inset of Fig. 3(a). These ground states are
topologically degenerate with no quasiparticles [18,29,57,69].
The ground states of local Hamiltonians follow the area law,
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FIG. 3. (a) We apply our strategy to the quantum-measurement
outcomes of σλ

i σλ
j , λ = x, y, z, on one of the ground states of Eq. (12)

with Ki j = −1, Ji j = 0.1, and �i j = 0 (spectrum in the inset), where
the measurement energy E (�0|D) quickly saturates the lower bound,
while the iteration states |�0〉 converge to the target state with infi-
delity ∼10−3. (b) With the same measurements on the ground states
for Ki j = 1, Ji j = 0.1, and �i j ∈ [0, 0.1], the measurement energy
E (�0|D) still quickly saturates the lower bound, while the MLE
states |�gs;trial〉 show a slight infidelity ∼0.1 with the target state and
differ between trials with an average overlap ∼0.83. The red dashed
line shows the state �CG averaged over multiple trials [57], which
offers an improved approximation with infidelity ∼0.03. The shades
are based on multiple trials with different initializations. The inset in
(b) is a sketch of the Kitaev model on a 3 × 3 honeycomb lattice.

allowing us to limit to k-local, starting from 2-local operators.
Here, we first consider quantum measurements on simple ob-
servables σλ

i σλ
j of each 〈i j〉 bond on one of the ground states,

λ = x, y, z. Similar quantum measurements are potentially
available to QSL models in Rydberg-atom systems [70–72],
or via electron-spin-resonance scanning tunneling microscopy
experiments [73,74], etc. In the large NÔ → ∞ limit, we
obtain N±(i j, λ) = NÔ × 〈P̂±(i j, λ)〉 counts of ±1 outcomes,
P̂±(i j, λ) = (1 ± σλ

i σλ
j )/2, respectively. Putting these results

into the iterations in Eq. (8), |�0〉 successfully converges to
the target ground-state manifold [see Fig. 3(a)]. Interestingly,
starting from a single ground state, we possess the entire
topologically degenerate manifold with high fidelity [57],
with which we can achieve fundamental properties such as
quasiparticle statistics [7–9]. On the one hand, these states
share identical local properties, thus equal qualifications for

the MLE states; on the other hand, their simultaneous pres-
ence implies that Ĥ0 inherits topological information already
present in the target state.

Another interesting scenario is when the observables in-
volved are insufficient to locate the target state fully, as
multiple states saturate the measurement energy to the lower
bound. For example, we consider the ground state of Ki j = 1,
Ji j = 0.1, and random �i j ∈ [0, 0.1] on each bond. The sys-
tem possesses a unique ground state without topological
degeneracy on a 3 × 3 system [57]. We keep our observables
σλ

i σλ
j , λ = x, y, z and a large number NÔ → ∞ of quantum

measurements as before, whose results on ten independent
trials are summarized in Fig. 3(b). While all trials converge
fully and leave little measurement-energy residue, the ob-
tained MLE states |�gs;trial〉 differ from trial to trial, with an
average overlap ∼0.83 in between. We cannot further distin-
guish these states, which satisfy the quantum measurements
equally, until additional observables for further information.
Also, we may seek common ground |�CG〉 between |�gs;trial〉
as a contingency plan in the case of limited ambiguity; see the
red dashed line in Fig. 3(b) and details in the Supplemental
Material [57].

Finally, we consider the following scenario to show-
case the adaptability of our strategy: The observables on
nearest-neighbor bonds are σ n̂

i σ n̂
j for random n̂ directions and

measured once each. Such single-shot results, a list of ±1
outcomes, are plagued with ultimate fluctuations and hard
to make use of; nevertheless, our strategy can capitalize on
their intrinsic information and unravel the underlying target
state. To further increase the challenge, we pick disordered
non-Abelian topologically ordered states by setting Ki j = −1
and random Ji j ∈ [0, 0.1], �i j ∈ [0, 0.3] on each bond for our
target quantum many-body states, whose topological proper-

FIG. 4. Single-shot quantum measurements σ n̂
i σ n̂

j for random
n̂ directions yield a list of fluctuation-laden ±1. Based upon
such single-shot outcomes from non-Abelian topologically ordered
ground states with Ki j = −1, Ji j ∈ [0, 0.1], �i j ∈ [0, 0.03] in the
Kitaev model in Eq. (12), our strategy allows the MLE states to con-
verge asymptotically well to the target states within 1500 iterations
as the number of single shots increases. The error bars are based on
ten different trials. The inset demonstrates the fidelity between the
lowest three eigenstates of the iteration Ĥ0 at convergence and the
topological degenerate states of the target system.
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ties are analyzed in detail in the Supplemental Material [57].
We summarize the demonstration in Fig. 4: The more single
shots, the more information is at disposal, and the higher the
fidelity of the MLE states |�gs〉; based on a single state, we
also obtain the degenerate manifold, even low-lying excited
states [57], with high fidelity eigenvalues [75]. We emphasize
that although our setup resembles the shadow tomography
[41], it neither satisfies nor requires the shadow’s randomness
prerequisite. Indeed, our strategy is generally applicable and
does not rely on any scheme of measurements.

Discussions. Considering the exponentially large Hilbert
space of a quantum many-body system, we have offered a
quantum strategy to interpret quantum measurements in a
general and precise way. With full information and reliable
convergence, our approach yields state-of-art performance,
as demonstrated by several previously intractable examples
above and even for a generic quantum many-body state (in
the Supplemental material [57]). We note that the additive
form of the measurement energy in Eq. (3) means that every

single-shot quantum measurement counts. On the other hand,
for cases where the measurement outcomes D are not directly
obtainable, we can reverse engineer values of fτ from the
expectation values 〈Ô〉, 〈Ô2〉, . . . [36], and NÔ as a confidence
measure. Our strategy also paves the way for Hamiltonian
reconstruction [42,76,77]. Generalizations on quantum mea-
surements connecting ground state and excited states, e.g.,
inelastic spectroscopy experiments, remain an open question
for future research.
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and M. D. Lukin, Probing topological spin liquids on a pro-
grammable quantum simulator, Science 374, 1242 (2021).

[72] R. Samajdar, W. W. Ho, H. Pichler, M. D. Lukin, and S.
Sachdev, Quantum phases of Rydberg atoms on a kagome
lattice, Proc. Natl. Acad. Sci. USA 118, e2015785118
(2021).

[73] A. V. Balatsky, M. Nishijima, and Y. Manassen, Electron spin
resonance-scanning tunneling microscopy, Adv. Phys. 61, 117
(2012).

[74] M. Ternes, Spin excitations and correlations in scanning tunnel-
ing spectroscopy, New J. Phys. 17, 063016 (2015).

[75] Note that a measurement-energy lower bound is no longer avail-
able for such single-shot measurements.

[76] X.-L. Qi and D. Ranard, Determining a local Hamiltonian from
a single eigenstate, Quantum 3, 159 (2019).

[77] X. Turkeshi, T. Mendes-Santos, G. Giudici, and M. Dalmonte,
Entanglement-Guided Search for Parent Hamiltonians, Phys.
Rev. Lett. 122, 150606 (2019).

[78] J. Chaloupka, G. Jackeli, and G. Khaliullin, Kitaev-Heisenberg
Model on a Honeycomb Lattice: Possible Exotic Phases in
Iridium Oxides A2IrO3, Phys. Rev. Lett. 105, 027204 (2010).

[79] S. Mandal and A. M. Jayannavar, An introduction to Kitaev
model-I, arXiv:2006.11549.

[80] E. H. Lieb, Flux Phase of the Half-Filled Band, Phys. Rev. Lett.
73, 2158 (1994).

[81] F. L. Pedrocchi, S. Chesi, and D. Loss, Physical solutions of the
Kitaev honeycomb model, Phys. Rev. B 84, 165414 (2011).

[82] F. Zschocke and M. Vojta, Physical states and finite-size effects
in Kitaev’s honeycomb model: Bond disorder, spin excitations,
and NMR line shape, Phys. Rev. B 92, 014403 (2015).

[83] Z. Zhu, I. Kimchi, D. N. Sheng, and L. Fu, Robust non-Abelian
spin liquid and a possible intermediate phase in the antiferro-
magnetic Kitaev model with magnetic field, Phys. Rev. B 97,
241110(R) (2018).

[84] A. Dawid, J. Arnold, B. Requena, A. Gresch, M. Płodzień,
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