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Origin of the Coulomb pseudopotential
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We address the outstanding problem of electron pairing in the presence of strong Coulomb repulsion at small
to moderate values of the Coulomb parameter, rs � 2, and demonstrate that the pseudopotential framework is
fundamentally biased and uncontrolled. Instead, one has to break the net result into two distinctively different
effects: the Fermi liquid renormalization factor and the change in the effective low-energy coupling. The latter
quantity is shown to behave nonmonotonically with an extremum at rs ≈ 0.75. Within the random-phase approx-
imation, Coulomb interaction starts to enhance the effective pairing coupling at rs > 2, and the suppression of the
critical temperature is entirely due to the renormalized Fermi liquid properties. Leading vertex corrections change
this picture only quantitatively. Our results call for radical reconsideration of the widely accepted repulsive
pseudopotential approach and show the need for precise microscopic treatment of Coulomb interactions in the
problem of superconducting instability.
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Introduction. The pairing of electrons in the presence
of strong repulsive Coulomb forces remained unsolved for
nearly half a century until it was recognized that in the vast
majority of low-temperature superconductors, the scenario of
Cooper instability is of the emergent BCS type, implying
a quantitatively accurate low-energy effective description in
terms of the two (partially related) parameters: the energy-
frequency cutoff ω0 � EF (EF is the Fermi energy; h̄ =
1) and the dimensionless effective coupling constant g � 1.
Within this effective BCS theory, the expression for the criti-
cal temperature reads

Tc = ω0e−1/g. (1)

For the phonon-mediated Cooper instability, one has ω0 ∼
ωph, where ωph is a typical phonon frequency. (The exact
choice of ω0 is a matter of convention, because changes in
ω0 can be absorbed into g.)

The emergent BCS regime implies that g can be de-
composed into a product of two distinctive factors—the
pseudopotential U and the Fermi liquid factor fFL:

g ∝ U fFL. (2)

The pseudopotential is understood as an amplitude of the
dimensionless attractive coupling between bare electrons near
the Fermi surface (FS), and fFL is given by

fFL = z2 (m∗/m0), (3)

where z is the quasiparticle residue and m∗/m0 is the FS
effective mass renormalization. It accounts for the fact that we
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are dealing with the correlated liquid rather than an ideal gas.
Exponential sensitivity of the critical temperature to the small
parameter g implies that the positive-definite factor fFL—if
noticeably smaller than unity—can dramatically suppress the
value of Tc.

The strength of Coulomb interaction is characterized by
the dimensionless parameter (the Wigner-Seitz radius) rs =
[(4π/3)a3

0n]−1/3, where n is the number density and a0 is
the Bohr radius. Typical experimental values of rs � 2 corre-
spond to a moderately strong interaction. A priori one expects
that Coulomb repulsion simply eliminates the possibility of
phonon-mediated pairing in materials, but experiment tells
us otherwise. The Coulomb pseudopotential framework, de-
veloped in the late 1950s [1,2], offers an empirical method
to account for Coulomb interactions in superconductors. It
has been successfully applied to estimate Tc in a large num-
ber of experiments by means of a semiphenomenological
fitting procedure based on McMillan’s formula [3–8]. The
framework, however, only provided a limited understanding
because it neglected (i) the dynamic nature of screening in
metals, (ii) renormalization of single-particle properties, and
(iii) changes in the frequency and momentum dependence of
the gap function when different mechanisms are combined.
These conceptual mistakes prevent the development of bet-
ter methods for material science calculations, and therefore
this framework needs to be replaced with controlled first-
principles treatments.

By accounting only for logarithmic suppression of the
frequency-independent repulsion near the FS, Refs. [1,2] ar-
gued that the net effect can be reduced to the so-called
repulsive Coulomb pseudopotential

μ∗ = μ

1 + μ ln(EF /ω0)
,
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FIG. 1. Fermi liquid factors fFL of the uniform electron gas com-
puted using data reported in Ref. [9].

with μ > 0 introduced in a rather uncontrolled fashion as a
coupling constant characterizing screened interaction (if μ is
computed from ρ04πe2/κ2, where ρ0 is the ideal gas FS den-
sity of states per spin component and κ is the Thomas-Fermi
momentum, then μ = 0.5). The main effect of μ∗ is to reduce
the magnitude of the phonon-mediated U as U → U − μ∗,
with most experiments suggesting that μ∗ ∈ (0.1 ÷ 0.15).
The small values of μ∗ are explained by the large EF -to-ω0

ratio, but neither its value nor its sign is derived from first
principles, not to mention that Coulomb repulsion cannot be
fully screened at finite frequency.

A recent breakthrough in the precise computation of the
Fermi liquid properties of a uniform electron gas [9] estab-
lishes that fFL is significantly smaller than unity at rs > 2
(see Fig. 1), in direct contradiction with the pseudopotential
description; see also Ref. [10] for the random-phase approx-
imation (RPA) results in the same context. To reconcile this
finding with the experimental fact that corrections to g are
small, one is forced to reconsider the effect of Coulomb po-
tential on U—it has to be far smaller than predicted by μ∗ and
possibly even opposite in sign, i.e., Coulomb interactions in
the s-wave channel might actually increase the amplitude of
attractive U !

In this Research Letter, we employ an implicit renor-
malization protocol and a generalized discrete Lehmann
representation for extracting the effective coupling constant
and critical temperature from the gap function equation [11]
to study the effect of Coulomb repulsion on U and Tc (see
Fig. 2). We account for both the single-particle properties
and the dynamic nature of screening with (i) dynamically
screened Coulomb vertex functions, the use of which guar-
antees quantitative accuracy at rs � 2; (ii) a fine, nonuniform
momentum grid that resolves sharp behaviors near the Fermi
surface and a frequency grid that covers a frequency range
much larger than EF ; and (iii) a consistently renormalized
Green’s function based on the self-energies emerging from
the same vertex function used in the gap equation. We reveal
that the suppression of U is maximal at rs ≈ 0.75, and the
effect diminishes for larger values of rs. Within the RPA,

FIG. 2. Effective couplings, Fermi liquid factors, and critical
temperatures for phonon-mediated superconductivity with and with-
out the Coulomb vertex function approximated by either the RPA or
Kukkonen-Overhauser (KO) interaction. Both approximations lead
to qualitatively similar results for U : As rs increases, the effective
coupling goes through a minimum and starts to increase. The critical
temperature follows a similar trend.

Coulomb interactions start to enhance attractive coupling at
rs > 2, but this result is sensitive to inclusion of vertex correc-
tions. We discuss our findings in the context of earlier work
suggesting or pointing to a possibility of pairing instability
in the absence of electron-phonon coupling, i.e., exclusively
on the basis of dynamically screened Coulomb repulsion
[1,12–14]. Our results demonstrate an unambiguous separa-
tion of different effects of Coulomb interaction, disproving
the idea of absorbing all of them into a single effective
parameter—the pseudopotential.

Model. The Hamiltonian of the uniform electron gas
(UEG) on a neutralizing background is defined as

H =
∑
	kσ

ε	ka†
	kσ

a	kσ
+ 1

2

∑
	q 
=0

∑
	kσ

∑
	k′σ ′

Vqa†
	k+	qσ

a†
	k′−	qσ ′a 	k′σ ′a	kσ

.

(4)
Here, a†

	kσ
is the creation operator of an electron with momen-

tum 	k and spin σ = ↑,↓, εk = k2

2m0
− μ, and Vq = 4πe2

q2 is the
bare Coulomb interaction.
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The gap function equation in the singlet channel reads

λ 	ωn,k = −T
∑

m

∫
dp

(2π )d

ωn,k

ωm,pGωm,pG−ωm,−p	ωm,p. (5)

Here, 
 is the particle-particle irreducible four-point vertex, G
is the single-particle Green’s function, 	 is the gap function,
and λ ≡ λ(T ) is its eigenvalue. The critical temperature Tc

corresponds to the point where λmax(T ) = 1.
We consider two approximations for 
 based on the

the screened Coulomb interaction, both depending only on
the momentum and energy transfer, 
ωn,k

ωm,p = 
(ωm − ωn, p −
k). The RPA form is standard: 
RPA = [V −1

q + �0(ω, q)]−1,
where �0 is the polarization function computed from the con-
volution of the bare Green’s function. For simplicity we take
the functional form of �0 to be that at T = 0, which is jus-
tified by the smallness of the critical temperature. To account
for vertex corrections and estimate their role as a function of
rs, we employ the Kukkonen-Overhauser ansatz [15] when


KO = Vq + V+(q)2Q+(ω, q) − 3V−(q)2Q−(ω, q), (6)

with Q±(ω, q) = −[�−1
0 (ω, q) + V±(ω, q)]−1 and V+ =

(1 − G+)Vq, V− = −G−Vq. Here, 
KO is already projected
on the spin-singlet state as required by the fermionic parity.
The higher-order vertex corrections neglected in the RPA are
encoded in the local field factors G±(q), for which we adopt
the ansatz proposed by Takada [16].

Finally, we introduce phonon-mediated interactions taken
to have the same functional form as considered by Richardson
and Ashcroft to study the very same problem of superconduc-
tivity in the UEG with electron-phonon coupling [14].


ph(ω, q) = − aρ0

1 + (q/2kF )2

ω2
q

ω2 + ω2
q

, (7)

with the phonon dispersion ω2
q = ωph

2(q/kF )2

1+(q/kF )2 and dimensionless
coupling strength a. For every choice of the vertex function
considered in this Research Letter the single-particle self-
energy was computed self-consistently from the convolution
of G and 
.

Implicit renormalization approach. For the simplest case
when 
 = 
ph, the eigenvalue λ(T ) is a linear function of ln T
at low temperature T � ωph that can be written as

λ(T ) = −g ln(T/ω0). (8)

As expected, the condition λmax(Tc) = 1 leads to Eq. (1), and
Tc can be determined accurately by fitting the data even if
calculations need to be stopped at T � Tc. When Coulomb in-
teractions are included, screening and renormalization effects
taking place in a broad frequency range above the phonon
frequency ensure that λmax(T ) is an unknown nonlinear func-
tion of ln T that can be used neither for reliable extrapolation
towards lower temperature nor for evaluation of the effective
low-energy coupling U . The implicit renormalization (IR)
approach of Ref. [11] provides a solution to both problems by
formulating an alternative eigenvalue problem. The gap func-
tion is decomposed into two complementary (low-frequency
and high-frequency) parts, 	 = 	(1) + 	(2), with 	(1)

n = 0
for |ωn| > �c and 	(2)

n = 0 for |ωn| < �c, and the eigenvalue

FIG. 3. Temperature dependence of the largest eigenvalue λ̄ for

 = 
ph + 
RPA at rs = 2. The emergent BCS linear flow with effec-
tive coupling constant g and energy scale ω0 is represented by the
dotted line.

problem is solved for 	(1)
n only. The condition λ̄(Tc) = 1 for

the largest eigenvalue of the new problem remains exact.
As shown in Fig. 3, the IR formulation brings back a nearly

perfect linear dependence of λ̄ on ln T for a properly chosen
frequency scale separation �c. The slope of the curve is the
emergent low-frequency coupling strength g, while the verti-
cal axis intercept determines the characteristic low-frequency
scale ω0. Linear dependence is also crucial for accurate deter-
mination of Tc from simulations performed at T � Tc when
Tc is extremely low and the number of Matsubara frequency
points required to solve the gap equation is large (this is done
efficiently by the generalized discrete Lehmann representation
[17,18]; see Supplemental Material [19]).

Results. In Fig. 2 we show the breakdown of the coupling
constant into U and fFL and the resulting values of Tc for
three different choices of 
. We first consider the case when
the Coulomb repulsion is omitted and 
 is based on the
electron-phonon interaction with a = 0.8 and ωph = 0.01EF

in (7). According to Migdal’s theorem [20], the phonon-
mediated vertex correction is proportional to aωph/EF and can
be safely neglected. This calculation serves as a “baseline”
for examining effects induced by the Coulomb repulsion. For

 = 
ph + 
RPA, the pseudopotential U is first reduced to a
minimum value at rs ≈ 0.75 but then starts to increase and
eventually surpasses the electron-phonon interaction value
at rs ≈ 2 (cf. Ref. [13]). However, the Fermi liquid fac-
tor fFL is getting progressively smaller with increasing rs.
The net effect on the critical temperature is also nonmono-
tonic, but the behavior of Tc(rs) is not as dramatic because
the increase in U at rs > 1 is partially compensated by the
suppression of fFL.

When vertex corrections are accounted for Coulomb in-
teraction and 
 = 
ph + 
KO, the Fermi liquid factor fFL

remains essentially the same for all values of rs. However,
changes in U are relatively small (less than 20%) only for rs <

1. The most significant difference is the shift in the point of
onset of the Coulomb enhancement of U : from rs ≈ 2 to rs ≈
3. This result underlines the importance of approximation-
free high-order diagrammatic calculations. Nevertheless, the
nonmonotonic behavior of Tc and U is a robust effect based on
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FIG. 4. Gap function dependence on frequency at k = kF (left panel) and momentum at ωn = πT (right panel) when 
 is equal to either

ph, 
RPA, or 
ph + 
RPA at rs = 3 [with 	(kF , πT ) normalized to unity].

the dynamic screening mechanism that tends to make effective
Coulomb interactions attractive at large rs. It is completely
overlooked in the Coulomb pseudopotential treatment. If we
take our value of Tc at rs = 2 and try to reproduce it with the
help of McMillan’s formula, the phenomenological parameter
μ∗ ends up being close to 0.08.

There exists yet another fundamental reason for nonad-
ditive effects when two pairing mechanisms are combined
(even if fFL factors are accounted for exactly). If λi=1,2 and
	i are the largest eigenvalue and its eigenvector for matrix

i and 	1 
= 	2, then the largest eigenvalue of 
 = 
1 + 
2

is always smaller than λ1 + λ2. In Fig. 4 we show gap func-
tion solutions for 
1 = 
ph, 
2 = 
RPA, and 
 = 
1 + 
2 at
rs = 3. One can see that the eigenvector “mismatch” between
these solutions is significant: While 	ph is sign-positive and
monotonic, 	RPA changes sign both in the momentum domain
and in the frequency domain and features a pronounced sin-
gularity at k = kF .

Discussion and conclusion. It is instructive to put our find-
ings in the context of historic developments. That Coulomb
interaction can induce Cooper instability through dynamic
screening mechanism has been known for decades. Early
work [1] demonstrated that even if the Cooper channel cou-
pling is repulsive at all frequencies, after its high-frequency
part is renormalized to a smaller value the effective low-
frequency potential might end up being attractive. Later,
Takada and others calculated critical temperatures of the UEG
numerically using various approximate forms of the screened
potential [13,16,21] featuring singular frequency or momen-
tum dependence (ignored without justification by introducing
parameter μ). These results raise an obvious question: Why
are phenomenological values of μ∗ used in material science
always repulsive if Coulomb interaction alone can be the
pairing glue?

Several studies attempted to account for Coulomb effects
on superconductivity beyond the Coulomb pseudopotential
[14,22,23]. Most relevant to our study is the work by Richard-
son and Ashcroft [14], who calculated Tc for several metals
by treating the electron-phonon [Eq. (7)] and Coulomb in-
teractions on an equal footing. They reported that in lithium
(with rs = 3.25) the inclusion of Coulomb interaction leads
to smaller Tc. Our results explain that for large values of rs

the suppression of fFL is significant and cannot be dismissed
as prescribed by McMillan’s formula. However, this fact was
not well established at the time, and Richardson and Ashcroft
tried to accommodate all effects into the framework of the
existing phenomenological treatment.

By separating the Coulomb suppression of the Fermi liquid
factor fFL from its contribution to the low-frequency pseu-
dopotential U , we shed light on the origin of the small critical
temperatures observed experimentally when compared with
predictions of the Migdal-Eliashberg theory. We reveal that
the Coulomb contribution to U changes from repulsive to
attractive and conclude that the original interpretation of μ∗
is incorrect and misleading in two ways: (i) The scenario of
enhancement of attractive U due to the dynamic nature of
screening is ignored, leading to the false impression that μ∗
is always positive; and (ii) strong renormalization of Fermi
liquid properties is ignored, while it can easily reduce the ef-
fective coupling by a factor of 2. These two mistakes partially
compensate each other in the phenomenological treatment,
yielding reasonable effective coupling constants g within the
freedom of choosing μ∗. However, the actual microscopic
picture behind the procedure is missed.

The failure to appreciate the nonadditivity of the phonon
and Coulomb contributions to the effective coupling constant
g—implied by the structure of Eq. (2) and also by the eigen-
vector mismatch (Fig. 4)—can lead to qualitatively wrong
conclusions. For example, Ref. [13] stated that the RPA is
a deficient approximation at rs > 2 because it predicts an
attractive pseudopotential in contradiction with the “experi-
mentally established” μ∗ > 0. Taking proper account of all
the aspects of the interplay between dynamically screened
Coulomb repulsion and (alternative) pairing mechanisms may
bring insights in the search for new superconducting ma-
terials, especially in cases when McMillan’s equation fails
qualitatively.

Acknowledgments. N.V.P., B.V.S., and T.W. acknowledge
support by the National Science Foundation under Grant No.
DMR-2032077. X.C. and K.C. acknowledge support from the
Simons Collaboration on the Many Electron Problem. This
work relies on the NUMERICALEFT package [24], which is nu-
merical toolbox dedicated for numerical effective field theory
applications.

L140507-4



ORIGIN OF THE COULOMB PSEUDOPOTENTIAL PHYSICAL REVIEW B 107, L140507 (2023)

[1] N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirkov, A New
Method in the Theory of Superconductivity (Consultants Bureau,
New York, 1959); V. V. Tolmachev, Dokl. Akad. Nauk SSSR
140, 563 (1961).

[2] P. Morel and P. W. Anderson, Phys. Rev. 125, 1263 (1962).
[3] W. L. McMillan, Phys. Rev. 167, 331 (1968).
[4] M. Calandra and F. Mauri, Phys. Rev. Lett. 95, 237002 (2005).
[5] H. T. Hirose, T. Terashima, D. Hirai, Y. Matsubayashi, N.

Kikugawa, D. Graf, K. Sugii, S. Sugiura, Z. Hiroi, and S. Uji,
Phys. Rev. B 105, 035116 (2022).

[6] B. Lian, Z. Wang, and B. A. Bernevig, Phys. Rev. Lett. 122,
257002 (2019).

[7] M. Naskar, S. Ash, D. P. Panda, C. K. Vishwakarma, B. K.
Mani, A. Sundaresan, and A. K. Ganguli, Phys. Rev. B 105,
014513 (2022).

[8] H. Tan, Y. Liu, Z. Wang, and B. Yan, Phys. Rev. Lett. 127,
046401 (2021).

[9] K. Haule and K. Chen, Sci. Rep. 12, 2294 (2022).
[10] R. Akashi, Phys. Rev. B 105, 104510 (2022).
[11] A. Chubukov, N. V. Prokof’ev, and B. V. Svistunov, Phys. Rev.

B 100, 064513 (2019).

[12] Y. Takada, J. Phys. Soc. Jpn. 45, 786 (1978).
[13] H. Rietschel and L. J. Sham, Phys. Rev. B 28, 5100 (1983).
[14] C. F. Richardson and N. W. Ashcroft, Phys. Rev. B 55, 15130

(1997).
[15] C. A. Kukkonen and A. W. Overhauser, Phys. Rev. B 20, 550

(1979).
[16] Y. Takada, Phys. Rev. B 39, 11575 (1989).
[17] J. Kaye, K. Chen, and O. Parcollet, Phys. Rev. B 105, 235115

(2022).
[18] T. Wang, X. Cai, and K. Chen (unpublished).
[19] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.107.L140507 for details of the discrete
Lehmann representation and its generalized version, which
includes Refs. [17,18].

[20] A. B. Migdal, Sov. Phys. JETP 34, 996 (1958).
[21] Y. Takada, Phys. Rev. B 47, 5202 (1993).
[22] M. Lüders, M. A. L. Marques, N. N. Lathiotakis, A. Floris,

G. Profeta, L. Fast, A. Continenza, S. Massidda, and E. K. U.
Gross, Phys. Rev. B 72, 024545 (2005).

[23] T. Wei and Z. Zhang, Phys. Rev. B 104, 184503 (2021).
[24] https://github.com/numericalEFT.

L140507-5

https://doi.org/10.1103/PhysRev.125.1263
https://doi.org/10.1103/PhysRev.167.331
https://doi.org/10.1103/PhysRevLett.95.237002
https://doi.org/10.1103/PhysRevB.105.035116
https://doi.org/10.1103/PhysRevLett.122.257002
https://doi.org/10.1103/PhysRevB.105.014513
https://doi.org/10.1103/PhysRevLett.127.046401
https://doi.org/10.1038/s41598-022-06188-6
https://doi.org/10.1103/PhysRevB.105.104510
https://doi.org/10.1103/PhysRevB.100.064513
https://doi.org/10.1143/JPSJ.45.786
https://doi.org/10.1103/PhysRevB.28.5100
https://doi.org/10.1103/PhysRevB.55.15130
https://doi.org/10.1103/PhysRevB.20.550
https://doi.org/10.1103/PhysRevB.39.11575
https://doi.org/10.1103/PhysRevB.105.235115
http://link.aps.org/supplemental/10.1103/PhysRevB.107.L140507
https://doi.org/10.1103/PhysRevB.47.5202
https://doi.org/10.1103/PhysRevB.72.024545
https://doi.org/10.1103/PhysRevB.104.184503
https://github.com/numericalEFT

