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We study the ground-state properties of the quantum spin liquid (QSL) phases of the spin-1/2 antiferromag-
netic Heisenberg model on the triangular lattice with nearest- (J1), next-nearest- (J2), and third-neighbor (J3)
interactions by using the density-matrix renormalization group (DMRG) method. By combining parallel DMRG
with SU(2) spin rotational symmetry, we are able to obtain accurate results on large cylinders with length up to
Lx = 48 and circumference Ly = 6–12. Our results suggest that the QSL phase of the J1-J2 Heisenberg model is
gapped, which is characterized by the absence of a gapless mode and by short-range spin-spin and dimer-dimer
correlations. In the presence of J3 interaction, we find that a critical QSL with a single gapless mode emerges.
While both spin-spin and scalar chiral-chiral correlations are short ranged, dimer-dimer correlations are quasi
long ranged and decay as a power law at long distances.
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Introduction. Quantum spin liquids (QSLs) are highly en-
tangled phases of matter that exhibit novel features associated
with their topological character and support fractional ex-
citations, yet resist symmetry breaking even down to zero
temperature due to strong quantum fluctuations and geometric
frustrations [1–3]. Broad interest in QSLs was triggered by
their important role in understanding strongly correlated ma-
terials, especially high-temperature superconductors, as well
as their potential application in topological quantum computa-
tion [3–8]. One of the most promising systems to realize QSLs
is the spin-1/2 Heisenberg antiferromagnet on the triangular
lattice, which is defined by the model Hamiltonian

H =
∑

i j

Ji jSi · S j . (1)

A number of studies of the J1-J2 model with first- (J1) and
second-neighbor (J2) exchange couplings have led to a con-
sensus that there is an intermediate QSL phase (referred to as
a J1-J2 spin liquid) in the range 0.07 < J2/J1 < 0.15, which is
sandwiched by the 120◦ magnetic phase and a stripe magnetic
phase [9–28]. However, its precise nature remains still under
intense debate; distinct types of QSLs have been proposed
including the gapped spin liquid [13–18], the gapless U(1)
Dirac spin liquid [19,20], and the spin liquid with spinon
Fermi surface [28]. The gapped spin liquid is characterized by
a fully gapped excitation spectrum, and all the correlations,
including the spin-spin, dimer-dimer, and scalar chiral-chiral
correlations, are short ranged. While the spin-spin correlation
is quasi long ranged in both the Dirac and spinon Fermi sur-
face spin liquids, the former is gapless only at specific discrete
momenta in the reciprocal space, and the latter is gapless on
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the whole spinon Fermi surface. As a result, a further unbiased
study is required to identify the precise nature of the J1-J2 spin
liquid phase.

Aside from the J1 and J2 interactions, an additional third-
neighbor J3 interaction (referred to as the J1-J2-J3 model) has
also been considered in recent studies; it was proposed as an
important ingredient to understand various magnetic proper-
ties of the triangular lattice materials CeFeO2 and CuCrO2

[29–32]. Interestingly, a recent study [28] has provided nu-
merical evidence that a new type of chiral spin liquid (CSL)
state could be realized in the J1-J2-J3 model, which spon-
taneously breaks the time-reversal symmetry (TRS) and has
long-range scalar chiral order. Distinct with the Kalmeyer-
Laughlin state [33], this CSL has a spinon Fermi surface
with a gapless excitation spectrum. However, the spin-spin
correlations decay exponentially, which seems inconsistent
with the presence of the spinon Fermi surface. To resolve
the discrepancy and understand the QSL phase of the J1-J2-J3

model, further numerical simulation is required.
In this Research Letter, we address the above questions

by studying both the J1-J2 and J1-J2-J3 models on triangu-
lar cylinders with circumference Ly = 6–12 and length up
to Lx = 48 using the density-matrix renormalization group
(DMRG) encoded with SU(2) spin rotational symmetry
[34–36]. Specifically, we have developed an efficient parallel
DMRG scheme and performed both real- and complex-value
DMRG simulations. The parallel scheme [36], which is based
on equally distributing the Hamiltonian, has further improved
the numerical efficiency by O(Ly) times, so that we are able to
keep up to m = 9000 SU(2) states [equivalent to m = 36 000
U(1) states] in the complex-value DMRG simulation to obtain
accurate results.

For more reliable results, we focus on typical sets of pa-
rameters deep inside the QSL phases of both models used
in previous studies [13–15,19,20,28]. Our results suggest that

2469-9950/2023/107(14)/L140411(5) L140411-1 ©2023 American Physical Society

https://orcid.org/0000-0002-1477-4731
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.L140411&domain=pdf&date_stamp=2023-04-27
https://doi.org/10.1103/PhysRevB.107.L140411


YI-FAN JIANG AND HONG-CHEN JIANG PHYSICAL REVIEW B 107, L140411 (2023)

FIG. 1. Entanglement entropy S and central charge c for the J1-J2

model. The extracted c with J2 = 0.11 on (a) Ly = 8 and (b) Ly = 10
cylinders using Eq. (2), where δB is the number of data points omitted
from the open boundaries. The shaded regions are guides for the eye.
(c) S(Lx/2) as a function of ln(Lx ) on Ly = 6, 8, 10 cylinders, where
solid lines denote the fitting S(Lx/2) ∼ c

6 ln(Lx ). (d) S(x) on Ly = 8
cylinder with length Lx = 48 with a 0 or π flux inserted through the
cylinder, where x′ = Lx

π
sin πx

Lx
.

the J1-J2 spin liquid is consistent with a gapped QSL [37,38],
where all correlations, including the spin-spin, dimer-dimer,
and scalar chiral-chiral correlations, are short ranged and
decay exponentially at long distances. In the presence of J3

interaction, we find that a new type of QSL, dubbed a critical
spin liquid [39,40], emerges in the J1-J2-J3 model. There is
a single gapless mode which is independent of the circum-
ference of the cylinders. While both spin-spin and scalar
chiral-chiral correlations are short ranged, the dimer-dimer
correlations are quasi long ranged.

Model and method. We employ DMRG [34–36] to study
the ground-state properties of the spin-1/2 antiferromagnetic
Heisenberg model on the triangular lattice defined in Eq. (1).
The lattice geometry used in our simulations is depicted in
the inset of Fig. 1(c), with open (periodic) boundary condi-
tions along the e1 (e2) direction, where e1 = (1, 0) and e2 =
(1/2,

√
3/2) are two basis vectors. We focus on cylinders

with circumference Ly and length Lx, where Ly and Lx are the
number of sites in the e2 and e1 directions, respectively. We
set J1 = 1 as an energy unit and focus on two typical sets of
parameters used in previous studies [28]. These correspond
to the J1-J2 model with J2 = 0.11, and the J1-J2-J3 model
with J2 = 0.3 and J3 = 0.15, respectively. In this Research
Letter, we report results on Ly = 6–12 cylinders of length up
to Lx = 48.

We perform both real- and complex-value DMRG simu-
lations and keep up to m = 9000 SU(2) states [equivalent
to m = 36 000 U(1) states] in each DMRG block, where
the complex-value simulation is employed to directly detect
potentially spontaneous time-reversal-symmetry breaking in

the system. To conquer the extensive numerical cost, espe-
cially on wide cylinders with a large number of states, we
have developed an efficient operator-level parallel DMRG
scheme with SU(2) spin rotational symmetry. The operator-
level parallelism is realized by dynamically distributing the
decomposed Hamiltonian to computing nodes in each step
of the DMRG simulation. For both models, most parts of
the SU(2) DMRG simulation can be accelerated by n ∼ 2Ly

times. For the U(1) DMRG simulation, n ∼ 6Ly. An obvi-
ous advantage of the operator-level parallelization over the
real-space parallelization [41] is that it does not introduce
any additional approximation compared with the single-node
DMRG simulation. Meanwhile, parallel DMRG simulation
can also be achieved by distributing matrix-vector contraction
or blocks with different quantum numbers to the nodes or gen-
eralizing the two-site DMRG algorithm to the N-site version
[42–45]. Further details of the operator-level parallel DMRG
scheme are provided in the Supplemental Material [46].

J1-J2 model. The central debate regarding the J1-J2 spin
liquid is whether it is gapped or gapless. A key diagnostic
to distinguish distinct types of QSLs proposed in previous
studies is the number of gapless spin modes, i.e., the central
charge c. The gapped QSL has no gapless spin mode with
c = 0 [13–15]. For the U(1) Dirac spin liquid, c � 3, which
depends on the momentum cut across the Dirac points [19,20].
In contrast, for the spin liquid with spinon Fermi surface, the
value of c increases with the width Ly of the systems [28].

To better identify the nature of the J1-J2 spin liquid, we
focus on J2 = 0.11, which is deep inside the spin liquid
phase of the J1-J2 model. We first calculate the von Neumann
entanglement entropy S(x) = −Tr[ρx ln ρx] on numerous
cylinders where ρx is the reduced density matrix of the sub-
system with length x. For a critical system of length Lx with
open boundaries, it has been established that c can be obtained
using [47,48]

S(x) = c

6
ln

[
Lx

π
sin

πx

Lx

]
+ const, (2)

where examples are shown in Fig. 1. It should be noted that
notable finite-size and boundary effects have been observed
associated with Eq. (2), from which c could be dramatically
overestimated. To extract c more reliably, we have systemat-
ically analyzed both the boundary and finite-size effects. For
instance, for a given cylinder of length Lx, we extract c using
Eq. (2) with data points x ∈ [1 + δB, Lx − δB] by removing δB

data points from both open ends. As shown in Figs. 1(a) and
1(b), the extracted c decreases monotonically and rapidly with
the increase in both Lx and δB. It is worth mentioning that
for a given cylinder of length Lx, the reduced boundary effect
brought about by removing several data points from the open
ends can provide more reliable results that are much closer
to those in the long-cylinder limit. In the long-cylinder limit
Lx → ∞, i.e., 1/Lx → 0, we find that c ∼ 0 for Ly = 6–10
cylinders. Alternatively, we can reduce the boundary effect by
using a modified formula involving only two data points in
the middle of the cylinders [49] to extract the central charge,
which gives us similar results, as shown in the Supplemen-
tal Material [46]. This suggests that the J1-J2 spin liquid is
gapped without a gapless spin mode.
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FIG. 2. Spin-spin F (r) and dimer-dimer DA(r) correlations of
the J1-J2 model. (a) F (r) with J2 = 0.11 on Ly = 6, 8, 10 cylinders,
where solid lines denote the exponential fitting F (r) ∼ e−r/ξs using
filled data points. Inset: Correlation length ξs on Ly = 6, 8, 10 cylin-
ders as a function of 1/Lx . (b) DA(r) on Ly = 8 and Ly = 10 cylinders
with length Lx = 20, 32, 40, where solid lines denote the exponential
fitting DA(r) ∼ e−r/ξA using the envelope of the data points (filled
symbols). A, B, and C denote the three different bonds.

As a further test, we have also studied the effect of twisted
boundary conditions, for instance, antiperiodic boundary con-
ditions, by inserting a π flux through the cylinder, which
changes the transverse part of the spin interaction, S+

i S−
j +

H.c. → eiθ S+
i S−

j + H.c. with θ = π , on the bonds crossing
the periodic boundary around the cylinder. This is simulated
by the parallel DMRG with U(1) symmetry due to the bro-
ken spin SU(2) symmetry. Figure 1(d) shows an example of
S(x) on an Ly = 8 cylinder of length Lx = 48 with periodic
(0-flux) and antiperiodic (π -flux) boundary conditions. The
extracted central charge with a π flux is c ∼ 0.1, which is
much closer to c = 0 than the value found for the normal
cylinder is. Alternatively, c can be obtained using S(Lx/2) =
c
6 ln(Lx ) + const as shown in Fig. 1(c), which is c = 0.10(1)
and c = 0.09(5) for Ly = 8 and Ly = 10 cylinders, respec-
tively. Similar behavior has also been observed on Ly = 12
cylinders (see Supplemental Material [46] for details). All of
these are consistent with a gapped state without a gapless spin
mode.

The absence of a gapless mode suggests that all corre-
lations are short ranged. To see this, we first calculate the
spin-spin correlation function defined as

F (r) = ∣∣〈S(x0,y0 ) · S(x0+r,y0 )
〉∣∣. (3)

Here, S(x0,y0 ) is the spin operator on the reference point
(x0, y0) = (Lx/4, Ly/2), and r is the distance between two
sites in the e1 direction. Figure 2(a) shows examples of
F (r) for Ly = 6, 8, 10 cylinders. For all cases, F (r) decays
exponentially at long distances and can be well fitted by an ex-
ponential function F (r) ∼ e−r/ξs with finite correlation length
ξs shown in the inset of Fig. 2(a). The fact that ξs decreases
with the increase in Ly when Ly � 8 (see Supplemental Mate-
rial [46] for details) suggests a finite ξs in two dimensions.

We have also measured the dimer-dimer correlation func-
tion defined as

Da(r) = 〈(B̂a(x, y) − 〈B̂a(x, y)〉)

× (B̂a(x + r, y) − 〈B̂a(x + r, y)〉)〉. (4)

Here, B̂a(x, y) = S(x, y) · S(xa, ya) is the dimer operator on
bond type a = A, B, or C shown in Fig. 2(b). We find that

FIG. 3. Entanglement entropy S and central charge c for the
J1-J2-J3 model. (a) The extracted c with J2 = 0.3 and J3 = 0.15 on
(a) Ly = 8 and (b) Ly = 10 cylinders, where δB is the number of data
points omitted from the open boundaries. The shaded regions are
guides for the eye. (c) S(Lx/2) as a function of ln(Lx ), where solid
lines denote the fitting S(Lx/2) ∼ c

6 ln(Lx ). (d) S(x) on an Ly = 8
cylinder of length Lx = 48 with a 0 or π flux inserted through the
cylinder. The solid lines denote the fitting S(x) ∼ c

6 ln(x′), where
x′ = Lx

π
sin( πx

Lx
).

while the strength of Ba = 〈B̂a(x, y)〉 depends on a due to the
broken C3 rotational symmetry of the cylindrical geometry,
it has no any spatial oscillation in the bulk of the systems,
suggesting the absence of static long-range dimer order. This
is further evidenced by the fact that Da(r) decays exponen-
tially as Da(r) ∼ e−r/ξa with finite correlation length ξa. As
shown in Fig. 2(b), the correlation length ξA on long cylinders
with fixed width Ly does not notably depend on system length
Lx. When the cylinder becomes wider, we find a decrease in
the correlation length from ξa ∼ 6.5 on Ly = 8 cylinders to
ξa ∼ 2.8 on Ly = 10 cylinders.

J1-J2-J3 model. In the presence of J3 interaction, a recent
study [28] suggests that a distinct QSL state, i.e., a gapless
CSL with spinon Fermi surface, can be realized in the J1-J2-J3

model. To rule out the possible finite-size effect, we follow
the same procedure with the J1-J2 model. For simplicity, we
focus on the same set of parameters as were used in Ref. [28],
i.e., J2 = 0.3 and J3 = 0.15, which is deep inside the QSL
phase. We first benchmark our calculations using the same
parameters and have observed consistency for both Ly = 6
cylinders and an N = 16×8 cylinder [28]. (See Supplemen-
tal Material [46] for details.) However, similar to the J1-J2

model, we find that the extracted c on Ly = 8 cylinders suffers
from notable finite-size and boundary effects, which decreases
monotonically with the increase in Lx as shown in Fig. 3(a). In
the long-cylinder limit Lx → ∞, it approaches a much smaller
value, c ∼ 1, suggesting that there is only one gapless mode
on an Ly = 8 cylinder. This is also true on Ly = 10 cylinders,
where we also find c ∼ 1 as shown in Fig. 3(b). Similar results
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FIG. 4. Correlation functions for the J1-J2-J3 model. (a) Spin-
spin correlation F (r) with J2 = 0.3 and J3 = 0.15 on Ly = 6, 8, 10
cylinders. Solid lines denote the exponential fitting F (r) ∼ e−r/ξs .
Inset: correlation length ξs as a function of 1/Lx . (b) Dimer-dimer
correlation DA(r) on Ly = 8 and Ly = 10 cylinders, where solid lines
denote the power-law fitting DA(r) ∼ r−KA using the envelope of
the data points (filled symbols). (c) Scalar chiral-chiral correlation
C(r) on Ly = 10 cylinders. Inset: Finite-size scaling of C(Lx/4) on
Ly = 6, 8, 10 cylinders as a function of 1/Lx using the second-order
polynomial function. (d) Finite-size scaling of C(Lx/4) as a function
of 1/Ly on lattices with fixed ratio Lx/Ly = 3 using the second-order
polynomial function.

showing a central charge c ∼ 1 are also obtained by using the
alternative approach in Ref. [49]. It is worth noting that in the
limit Lx = ∞, our results show that c ∼ 1 on all Ly = 6–12
cylinders (see Supplemental Material [46] for details) with-
out notable dependence on Ly, suggesting that there is one
gapless mode in the bulk of the system in two dimensions.
It is hence reasonable to expect that the single gapless mode
may carry momentum k2 = 0 which is shared by all cylinders.
To support this, we have further calculated S(x), e.g., on an
N = 48×8 cylinder, by inserting a π flux through the cylinder
where the momentum k2 = 0 is unavailable. As expected, we
find that c ∼ 0.1 [see Fig. 3(d)], which is consistent with the
absence of gapless mode.

We have also calculated the spin-spin correlation F (r) as
shown in Fig. 4(a) for Ly = 6, 8, 10 cylinders. For all cases,
we find that F (r) is short ranged and decays exponentially at
long distances as F (r) ∼ e−r/ξs . Similar to the J1-J2 model,
the correlation length is finite ξs = 1.5–3 as shown in the
inset of Fig. 4(a). We have also calculated the spin triplet gap
� = E0(Stot = 1) − E0(Stot = 0) on Ly = 8 cylinders [50],
where E0(Stot ) is the ground-state energy of the system with
total spin Stot. Our results show that � is finite in the bulk,
which is consistent with short-range spin-spin correlation (see
Supplemental Material [46] for more details). Contrary to the
spin-spin correlation, we find that the dimer-dimer correlation
decays as a power law at long distances as Da(r) ∼ r−Ka

with a finite exponent Ka. In Fig. 4(b), we show that the
exponent changes from Ka ∼ 1.8 to Ka ∼ 1.2 when the width

of the cylinder increases from Ly = 8 to Ly = 10. It is hence
reasonable to conclude that the quasi-long-range dimer-dimer
correlation is responsible for the single gapless mode.

To test the possibility of TRS breaking, we have measured
the scalar chiral-chiral correlation function defined as

C(r) = 〈χ̂i0 χ̂i0+r〉. (5)

Here, χ̂i = Si · (S j×Sk ) is the scalar chiral operator de-
fined on a small triangle, i0 = (x0, y) is the reference point
with x0 = Lx/4, and r is the distance between two triangles
in the e1 direction. Consistent with a previous study [28], we
find that C(r) remains finite on all cylinders and we even keep
up to m = 9000 SU(2) states [equivalent to m = 36 000 U(1)
states]. Surprisingly, our results show that C(r) decreases
notably with the increase in Lx, which vanishes in the long-
cylinder limit Lx = ∞ on all Ly = 6, 8, 10 cylinders after the
finite-size scaling as shown in Fig. 4(c). To test the possibility
of TRS breaking in two dimensions, we have also performed
the finite-size scaling of C(r) as a function of 1/Ly by fixing
the lattice ratio Lx/Ly = 3. As an example, shown in Fig. 4(d),
we find that C(Lx/4) decreases rapidly with the increase in
Ly and vanishes when Ly is large enough. This indicates a
possibly vanishing chiral order in the two-dimensional limit.
Therefore our results are consistent with the absence of long-
range spin scalar chiral order, and the QSL phase of the
J1-J2-J3 model preserves the TRS.

Our results suggest that the ground state of the J1-J2-J3

model is consistent with a critical spin liquid with a single
gapless mode. To rule out the possibility that such critical be-
havior could be special to the point of J2 = 0.3 and J3 = 0.15,
we have further considered a relatively distant parameter point
in the J1-J2-J3 spin liquid phase with J2 = 0.36 and J3 = 0.24
[28]. Following the same procedure, we have observed similar
critical behavior with one gapless mode at this new point;
detailed results are provided in the Supplemental Material
[46]. Therefore our results suggest that the J1-J2-J3 spin liquid
is a critical phase [40] instead of a critical point.

Summary and discussion. We have studied the ground-
state properties of the spin liquid phases in both the spin-1/2
J1-J2 and spin-1/2 J1-J2-J3 models on the triangular lattice.
Using large-scale parallel DMRG encoded with SU(2) spin
rotational symmetry, we are able to obtain accurate results
on notably longer systems by keeping a significantly large
number of states in the DMRG simulation. Our results sug-
gest that the QSL phase of the J1-J2 Heisenberg model is
consistent with a gapped spin liquid which is characterized by
the absence of a gapless spin mode and by short-range spin-
spin and dimer-dimer correlations. In the presence of finite J3

interaction, a critical spin liquid phase emerges which has one
gapless mode and a quasi-long-range dimer-dimer correlation
but an exponentially decaying spin-spin correlation.

A striking behavior of the central charge that is prominent
on cylinder geometry is that its value can be notably affected
by both the boundary and finite-size effects. While long cylin-
ders are always necessary, we find that the reduced boundary
effect brought about by removing a few data points close
to the open ends of the cylinders can provide more reliable
results that are much closer to those in the long-cylinder limit.
However, it should be noted that some of the small-system be-
haviors presented here, including both the central charge and
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various correlation functions,apply not only to studies of the
triangular lattice Heisenberg antiferromagnet, but also to var-
ious other systems as shown in previous DMRG calculations
[51–53]. Our study emphasizes the perceptible finite-size and
boundary effects, which need to be taken into account in the
numerical simulations.
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