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Preparing finite-temperature states in quantum simulators of spin systems, such as trapped ions or Rydberg
atoms in optical tweezers, is challenging due to their almost perfect isolation from the environment. Here,
we show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski
equality and equivalent to the one in Lu et al., PRX Quantum 2, 020321 (2021). It consists of classical
importance sampling of initial states and a measurement of the Loschmidt echo with a quantum simulator.
We use the method as a quantum-inspired classical algorithm and simulate the protocol with matrix product
states to analyze the requirements on a quantum simulator. This way, we show that a finite-temperature phase
transition in the long-range transverse-field Ising model can be characterized in trapped ion quantum simulators.
We propose a concrete measurement protocol for the Loschmidt echo and discuss the influence of measurement
noise, dephasing, as well as state preparation and measurement errors. We argue that the algorithm is robust
against those imperfections under realistic conditions.
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The excellent tunability of quantum simulators has enabled
new insights into entire classes of many-body models. Re-
cently, tremendous progress has been achieved in simulating
unconventional nonequilibrium dynamics of quantum spin
models with a large number of controlled degrees of freedom
on different experimental platforms, including ultracold atoms
in optical lattices [1–5], Rydberg atoms [6–8], and trapped
ions [9–11]. A key question motivated from condensed matter
physics is to study finite-temperature states of quantum spin
models, which can host phases with symmetry breaking or
even topological order, thermal phase transitions, and quan-
tum criticality [12]. Preparing states at finite and, in particular,
low temperatures, required to study these phenomena, is how-
ever a formidable challenge for quantum simulators because
of their almost perfect isolation from the environment.

Here, we discuss a concrete approach to measure finite-
temperature observables in quantum simulation experiments
based on an algorithm recently derived by Lu et al. [13].
We motivate this algorithm from a different vantage point
based on the Jaryznski equality [14], which provides a link
between the nonequilibrium dynamics of a quantum system
and its thermal properties. The key result of this algorithm
is to obtain thermal observables from quantum simulators
without preparing a thermal state directly, but to use a short
real-time evolution instead. While this algorithm can be im-
mediately applied to current quantum technology, even for
large systems, other algorithms proposed for preparing finite-
temperature states, including sampling methods [15–19],
imaginary time evolution [20,21], variational methods [22],

kernel based methods [23], and direct state preparation using
fluctuation theorems [24] are challenging to implement on
devices without fault tolerance due to significant resource
overheads. Contrarily, the algorithm from Ref. [13] can be
implemented on current devices due to its low requirement
on evolution time and its error resilience.

We apply this algorithm to the detection of the thermal
phase transition in the one-dimensional long-range transverse-
field Ising model (LTFIM)

Ĥ = −J
∑
i< j

1

|i − j|α σ̂ z
i σ̂ z

j − g
∑

i

σ̂ x
i , (1)

where g is the strength of the transverse field, J > 0 is the
ferromagnetic coupling with long-range exponent α, and σ̂ a

i
is the ath Pauli matrix on site i. This model can be imple-
mented with trapped ions [25] [see Figs. 1(a) and 1(c)]. For
α � 2, the system exhibits a finite-temperature transition from
a ferromagnet at low temperatures to a paramagnet at high
temperatures, provided the transverse field is sufficiently weak
[26,27] (cf. also Ref. [28] for an experiment with adiabatic
state preparation).

The Jarzynski-inspired algorithm uses Monte Carlo (MC)
importance sampling of product states, where the state prob-
abilities are classically calculated from the Loschmidt echo
Gψ (t ) = 〈ψ |e−iĤt |ψ〉 that is measured on a quantum simu-
lator [Fig. 1(b)]. We develop a scheme for measuring Gψ (t )
based on Ramsey spectroscopy that involves a shelving state
[Fig. 1(a)]. The Loschmidt echo Gψ (t ) only needs to be
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FIG. 1. Setup and phase diagram. (a) Trapped ions in internal
states |0〉 , |1〉 interact with power-law couplings with exponent α.
Ions in the shelving state |s〉 do not interact. (b) Thermal observables
are obtained from Monte Carlo importance sampling of product
states (see Ref. [13]). The probability of proposed states is classi-
cally evaluated from the Loschmidt echos Gψ (t ) measured on the
quantum simulator (blue shading), in which the shelving state |s〉
is used for obtaining the phase of Gψ (t ) with Ramsey experiments.
The Loschmidt echo only needs to be measured to short times
Jt = O(1) [13]. (c) The one-dimensional long-range transverse-field
Ising model exhibits a finite-temperature phase transition from a
ferromagnet to a paramagnet for α � 2 (and transverse field g < gc;
here g = J). At α = 2, the transition is in the Berenzinskii-Kosterlitz-
Thouless universality class. In this work, we focus on α = 1.5 (gray
dashed line).

evaluated to short times, as proven in Ref. [13]. To benchmark
the algorithm, we interpret it as a quantum-inspired classical
algorithm by evaluating the Loschmidt echoes Gψ (t ) with ma-
trix product states (MPS). We find that the finite-temperature
phase transition of the LTFIM can be efficiently characterized
with this algorithm even for large systems. To assess the
feasibility of the algorithm in a realistic quantum simulator,
we study its robustness to a finite number of measurements
and discuss dephasing noise as well as state preparation
and measurement (SPAM) errors, demonstrating the imme-
diate applicability of the algorithm in current experimental
technology.

Thermal properties from the Jarzynski equality. The al-
gorithm of Ref. [13] can be motivated from the Jarzynski
equality [14], which is based on the following thought
experiment [29,30]: A system is prepared in thermal equi-
librium at temperature T with respect to a Hamiltonian Ĥ0.
A measurement of Ĥ0 is then performed, which projects
the system with probability 1

Z0
e−E0

n /T into the energy eigen-
state |n0〉 with energy E0

n , where Z0 is the partition sum of
Ĥ0. Then, a second measurement in the eigenbasis of Ĥ
is performed, which yields the result Em with probability
| 〈n0|m〉 |2. In this process, the energy of the system changed
and therefore work ω = Em − E0

n has been performed. Re-
peating this experiment many times, we can measure the
probability distribution of work ω. It is given by p(ω) =
1
Z0

∑
n e−E0

n /T
∑

m | 〈n0|m〉 |2δ[ω − (Em − E0
n )]. By multiply-

ing the work distribution with e−ω/T and integrating, we find

the Jarzynski equality

Z = Z0

∫
dω e−ω/T p(ω), (2)

which relates an equilibrium quantity—the thermal parti-
tion sum Z = Tr(e−Ĥ/T )—to a nonequilibrium quantity—the
work distribution. While in principle, all properties of a sys-
tem can be obtained from Z , in practice it is hard to evaluate.
Here we focus on the evaluation of finite-temperature ob-
servables 〈Ô〉T = 1

Z Tr(Ôe−Ĥ/T ). In particular, by formally
choosing Ĥ0 ∝ 1, we can use the Jarzynski equality even
without preparing a thermal state of Ĥ0, since for this choice,
the dependence on Ĥ0 becomes trivial.

In order to relate the work distribution function to
the Loschmidt echo, we interpret work as the Fourier
conjugate to time by writing the delta function as
δ(ω) = ∫

dt
2π

eiωt . Then, the Jarzynski equality becomes

Z = ∫
dω e−ω/T

∫
dt
2π

eiωt Tr(e−iĤt ). We expand the trace in
a basis of product states 1 = ∑

ψ |ψ〉 〈ψ | to write Z =∑
ψ

∫
dω e−ω/T pψ (ω) with

pψ (ω) =
∫

dt

2π
eiωt 〈ψ | e−iĤt |ψ〉 . (3)

This way, we have reduced the evaluation of Z via the
Jarzynski equality to a measurement of the Loschmidt echo
Gψ (t ) = 〈ψ | e−iĤt |ψ〉 with respect to product states |ψ〉
without requiring one to prepare a thermal state in the quan-
tum simulator.

In order to obtain observables Ô from Z , we shift Ĥ →
Ĥ + hÔ and evaluate

〈Ô〉T = −T

Z

dZ

dh

∣∣∣∣
h=0

. (4)

While in principle any observable can be evaluated this way
(see Supplemental Material [31]), the simplest algorithm can
be derived for observables satisfying Ô |ψ〉 = Oψ |ψ〉. Insert-
ing the Jarzynski equality, Eq. (2), we find in this case

〈Ô〉T =
∑

ψ pψ (T )Oψ∑
ψ pψ (T )

, (5)

where

pψ (T ) =
∫

pψ (ω)e−ω/T dω. (6)

Due to the exponential size of the Hilbert space,
we cannot evaluate Eq. (5) exactly. However, because
pψ (T )/

∑
ψ pψ (T ) is a probability distribution (even for frus-

trated and fermionic models), we can use a classical Monte
Carlo importance sampling algorithm to select product initial
states:

(1) Start with some product state |ψ〉.
(2) Repeat NMC times for a given temperature T :

(a) Propose a new state |ψ ′〉.
(b) Measure Gψ ′ (t ) on a quantum simulator.
(c) Evaluate pψ ′ (ω) from Eq. (3).
(d) Evaluate pψ ′ (T ) from Eq. (6).
(e) Accept |ψ ′〉 with probability pψ ′ (T )/pψ (T ).
(f) Evaluate Oψ .

(3) Obtain thermal expectation value by averaging Oψ .
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FIG. 2. Data processing with classical resources. (a) Loschmidt
echo shown for two different initial states: a completely polarized
state and a state with vanishing magnetization. This data can be
measured directly on a quantum simulator or can be obtained from
numerical simulations for the quantum-inspired classical algorithm.
(b) The corresponding work distributions pψ (ω) are centered around
the energies of the initial states, with the width given by the energy
fluctuations. (c) Magnetization evaluated from Monte Carlo impor-
tance sampling. (d) The absolute error of the squared magnetization
〈(Sz )2〉 at temperature T/J = 7 calculated by a jackknife estimate.
Parameters: L = 16, δ/J = 4, Jtmax = 1, �t = 0.1.

This algorithm is the same as the one introduced in
Ref. [13] based on energy filtering. Here, we provide an in-
terpretation of this algorithm based on the Jarzynski equality.

In the following, we discuss each step in more detail and
apply it to the LTFIM. For step (1), a basis needs to be chosen.
We use z-product states for which σ̂ z

i |ψ〉 = σ z
i |ψ〉. As a state

proposal in step (2a) we flip a single, randomly chosen spin,
which fulfills ergodicity and, together with the acceptance step
(2e), detailed balance [32].

In step (2b), we measure Gψ (t ) on the quantum simulator
in a time interval [0, tmax] with equal time steps �t [Fig. 2(a)].
The evaluation of Gψ (t ) is the only step performed on the
quantum simulator; all other steps use classical resources and
take negligible computation time. We will discuss below how
to measure this quantity in trapped ion simulators.

From Gψ (t ), we then evaluate pψ (ω) from Eq. (3) by a
discrete Fourier transform in step (2c),

pψ (ω) = �t

2π

n=N∑
n=−N

eiωn�t Gψ (t )e−(tδ)2/2, (7)

where ω = 2πn/[�t (2N + 1)], N = tmax/�t . Above, we
have introduced a Gaussian filter with standard deviation 1/δ

in order to suppress artifacts due to the finite tmax [Fig. 2(b)].
Because pψ (ω) in Eq. (3) is the density of states weighted by
the overlap of |ψ〉 with the eigenstates, its width is given by
the energy fluctuations g

√
L (see Supplemental Material [31]).

Hence, in order for the frequency range of the discrete Fourier
transform to cover p(ω), the time step needs to be scaled as

�t ∝ 1/
√

L. The width of the Gaussian filter δ can be cho-
sen independently of L and, hence, tmax ∼ 1/δ. In fact, even
a scaling δ ∝ √

L leads to convergence (with tmax ∼ 1/
√

L)
leaving the number of time-step evaluations constant [13,33].

From pψ (ω), we classically evaluate pψ (T ) according to
Eq. (6) in step (2e). In this evaluation, small errors intro-
duced by experimental errors or numerical imprecision are
exponentially amplified at low temperatures for large negative
ω and low T . To mitigate this problem, we set pψ (ω) =
0 when pψ (ω) < pcut. Moreover, pψ (T ) is centered around
Eψ = 〈ψ |Ĥ |ψ〉, which can be problematic as Eψ ∝ L if ψ

has a large overlap with states on the edges of the spectrum.
This is, for example, the case for the totally polarized state
in Fig. 2(a). In order to resolve the fast oscillation, �t ∝ 1/L
would have to be chosen. However, we can circumvent this
problem by shifting the zero of the frequency by Eψ when
evaluating Eqs. (7) and (6). This guarantees that �t ∝ 1/

√
L.

Having evaluated pψ (T ), we can now accept the state
with probability pψ ′ (T )/pψ (T ) (step 2e) and store the value
of Oψ of the state after the acceptance step [Fig. 2(c)].
After repeating the importance sampling iteration for NMC

times, we evaluate thermal observables by averaging the Oψ

[step (3)]. For the LTFIM, we evaluate the squared mag-
netization (Ŝz/L)2 as well as the Binder cumulant (3/2) −
〈(Ŝz )4〉 /(2 〈(Ŝz )2〉2

) by calculating a power of the magneti-
zation Ŝz = ∑

i σ̂
z
i in the importance sampling. The Binder

cumulant is a standard observable for the detection of Ising
phase transitions as the Binder cumulant approaches 1 (0) in
the ferromagnetic (paramagnetic) phase [34]. Because impor-
tance sampling creates correlated samples, we use a jackknife
binning analysis to determine error bars. In Fig. 2(d) we show
that these errors scale as 1/

√
NMC as expected from the central

limit theorem.
Quantum-inspired classical algorithm. The algorithm de-

scribed above can also be used as a purely classical method,
requiring an exact method for calculating the Loschmidt
echoes Gψ (t ) up to short times. We use the time-dependent
variational principle (TDVP) for MPS [35,36], which can be
readily applied to systems with long-range interactions. In
order to reach the required times, a relatively small bond
dimension χ = 15 is sufficient (see Supplemental Material for
convergence [31]).

In Fig. 3 we show the observables obtained from the
algorithm for system sizes L = 8–64 and compare them to
exact results from matrix-product operator based imaginary
time evolution [37] of a purified MPS [38]. We find excellent
agreement even in the vicinity of the phase transition. To
simulate the algorithm, we used a time step J�t = 0.1–0.05,
approximately following the scaling �t ∝ 1/

√
L noted above.

The maximum time Jtmax = 2 (1) for L = 8–32 (64) is small.
We chose a filter width δ/J = 2 (4) for L = 8–32 (64), a
cutoff pcut = 10−6, and averaged over 10–19 independent MC
runs with NMC = 6000, 10 000, 2000, 4000 iterations each for
L = 8, 16, 32, 64, where the first 1000 iterations were dis-
carded as burn-in of the Markov chain.

Measurement of Loschmidt echo with trapped ions. While
we have now shown that the algorithm can detect the phase
transition in the LTFIM once the Loschmidt echoes Gψ (t ) are
known, we have yet to show how Gψ (t ) can be measured
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FIG. 3. Detecting the phase transition in the LTFIM. Data points
for (a) the squared magnetization and (b) the Binder cumulant are
obtained by the quantum-inspired classical algorithm discussed in
the main text. In this algorithm the Loschmidt echoes Gψ (t ) are
numerically simulated and could alternatively be obtained from a
quantum simulator [cf. blue box in Fig. 1(c)]. Error bars are esti-
mated from a jackknife binning analysis.

in a trapped ion quantum simulator [step (2b) in the algo-
rithm above]. To this end, consider the polar decomposition of
Gψ (t ) = reiϕ . The absolute value r is given by the probability
of measuring |ψ〉 after time evolving |ψ〉 for a time t , i.e.,
r2 = | 〈ψ |e−iĤt |ψ〉 |2, which has previously been measured
in trapped ions [39]. The phase ϕ can be obtained from a
Ramsey-type experiment by interfering a state which evolves
under Ĥ with one that does not. To engineer such a state,
we introduce a shelving state |s〉 which does not couple to
the qubit levels under Ĥ , such as one of the D5/2 Zeeman
sublevels in 40Ca+ [40] or the 2D5/2 state in 171Yb+ [41]. This
allows us to obtain the phase ϕ by rotating into a superposition
between |ψ〉 and |s · · · s〉, evolving it in time, rotating back
and measuring the return probability to |ψ〉 (see Supplemental
Material [31] and Ref. [13]). However, this superposition is a
Greenberger-Horne-Zeilinger (GHZ) type state, which is in
general difficult to prepare.

To avoid the creation of a GHZ state, we can instead use
a sequence of Ramsey experiments, akin to the sequential
protocol proposed in Ref. [13]: For each j ∈ [0, L − 1], we
consider the state |ψ j〉, in which the j leftmost ions are in
the qubit state corresponding to |ψ〉 and the rest are in the
shelving state |s〉 (cf. Fig. 4). The phase difference �ϕ j+1 =
ϕ j+1 − ϕ j of the Loschmidt echoes of two states is then ob-
tained through the following Ramsey experiments:

(1) For a set of phases θ :
(a) Prepare the state |ψ j〉.
(b) Act with a single ion operation V̂j+1(θ ) on ion j + 1:

V̂j+1(θ ) |ψ j〉 = 1√
2
(|ψ j〉 + eiθ |ψ j+1〉).

(c) Evolve with Ĥ for time t .
(d) Act with V̂ †

j+1(0) on ion j + 1.

FIG. 4. Ramsey protocol and robustness. (a) Pseudocircuit dia-
gram of the Ramsey protocol for measuring the phase. For j = 0,
j = 1, etc., there are L − 1, L − 2, etc., additional ions in the |s〉
state which we do not display for simplicity as the time evolution
acts trivially as an identity on these states. (b) Results of a full
simulation of the Ramsey protocol for a finite number of measure-
ment repetitions. Inset: work distribution of a totally polarized state,
showing the influence of the noise. Gray dashed line illustrates pcut.
We used 104 MC iterations, δ = 1, L = 10, Jtmax = 4, J�t = 0.1,
cut pcut = 5×10−2 (100 shots), 8×10−4 (100 000 shots).

(e) Measure the return probability M(θ ) to state |ψ j〉:
M(θ ) = 1

4

(
r2

j + r2
j+1 + 2r j+1r j cos(θ + �ϕ j+1)

)
. (8)

(2) Fit the measured M(θ ) to Eq. (8), to obtain the phase
difference �ϕ j+1. We found this fit to perform best if r j and
r j+1 are also measured, such that �ϕ j+1 is the only unknown.

(3) Add up all L phase differences to find ϕ. To see this, we
use that ϕ0 = 0 because G|s···s〉 = 1, which gives

ϕ =
L−1∑
j=0

�ϕ j+1. (9)

We have therefore found an algorithm which determines
the phase of Gψ (t ) using O(L) single-ion Ramsey ex-
periments, that can be implemented directly on current
experiments.

Robustness. In order to demonstrate the robustness of
the algorithm, we consider several sources of error in the
measurement of Gψ (t ) in the following. In an experiment,
M(θ ) and r can only be determined up to a precision
∼1/

√
Ns due to quantum projection noise [42] introduced

by measuring Ns times. In order to show that this algorithm
works even for a finite Ns, we simulated the above Ramsey
protocol and show the results in Fig. 4(b). We used Ns rep-
etitions for r j as well as Ns/4 repetitions for M(θ ) for four
equally spaced values of θ ∈ [0, π ], such that 2NsL measure-
ments are performed per time point. The algorithm therefore

L140410-4



PROBING FINITE-TEMPERATURE OBSERVABLES IN … PHYSICAL REVIEW B 107, L140410 (2023)

requires NMC(tmax/�t )2LNs measurements, which reduces to
NMC(tmax/�t )Ns when using the GHZ protocol. The noise
leads to errors when pψ (ω) is small, which we remove by
using a cut pcut ∝ 1/

√
Ns [cf. Fig. 4(b) inset]. We find good

results even for a small number of measurements. At low
temperatures, more measurements are needed as small values
of pψ (ω) for large negative ω become more important due to
the factor e−ω/T in Eq. (6).

Another source of imprecision is errors in SPAM. The lead-
ing contribution is given by uncorrelated single-qubit state
assignment errors with probability p. The return probability
|Gψ (t )|2 then has an error of 1 − (1 − p)L. Current trapped-
ion devices have p ≈ 10−3 (see, e.g., Ref. [11]), such that the
error on |Gψ (t )|2 is 5% for L = 50. Uncorrelated SPAM er-
rors can be corrected by multiplying the measured probability
distribution with the tensor product of the inverse single-qubit
measurement error matrices (see, e.g., [43,44]).

The effect of dephasing noise may be modeled by an
exponential decay of the Loschmidt amplitude Gψ (t ) →
Gψ (t ) exp(−γ Lt ). The resulting 1/ω2 tails in the work distri-
bution lead to errors at large positive or negative frequencies.
Similar to measurement noise, this error can in principle be
mitigated by using a suitably small cutoff. If γ is known, mul-
tiplying the measured signal with exp(γ Lt ) might lead to an
even more efficient removal of decoherence effects. However,
we expect decoherence effects not to be very strong as the
timescales Jt ∼ 1–2 are small compared to those routinely
employed in trapped-ion quantum simulators.

Discussion and outlook. To summarize, we have applied
a protocol to probe finite-temperature observables in ana-
log quantum simulators of spin systems. We benchmarked
the protocol by studying a thermal phase transition in the
transverse-field Ising mode with long-range interactions as
realized with trapped ions. This algorithm is well suited to
current noisy devices as only short times are needed, indepen-
dent of system size. Due to the importance sampling, the main
bottleneck is the number of measurements. Current trapped-
ion simulators employing 40Ca+ (171Yb+) have a short time on
the order of 100 ms (10 ms), such that NMC = 1000 samples
seem to be realistically achievable.

The algorithm can be directly employed in other platforms.
Rydberg atoms in tweezers have access to efficient GHZ state
preparation [45], shelving states as well as a high measure-
ment repetition rate. They could probe two-dimensional or
three-dimensional interacting Ising models in frustrated lat-

tices, for which classical algorithms are plagued by the sign
problem, thus providing a route to obtain quantum advantage
[46]. In these cases, finding more efficient update rules for
the importance sampling, e.g., by using the quantum simulator
for the proposal step [47], might be advantageous. Moreover,
the free energy of the system can in principle be evaluated
via F = −T ln Z using, for example, multicanonical sampling
strategies [48]. The range of models accessible in analog sim-
ulators can be extended by applying prethermalization (e.g.,
the XY model in trapped ions [49]), or Floquet engineering
(e.g., Heisenberg models [50,51]).

While our primary motivation was the application to quan-
tum simulators, this algorithm can also be used to study
previously inaccessible regimes with MPS methods due to
the low requirement on the maximum time and hence the
entanglement.

Note added. During the completion of this manuscript,
a work appeared proposing this algorithm as a quantum-
inspired classical algorithm for MPS [33].

Data analysis and simulation codes are available on Zen-
odo upon reasonable request [52].
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