
PHYSICAL REVIEW B 107, L140101 (2023)
Letter

High-precision measurements and first-principles explanation
of the temperature-dependent 13C and 14N hyperfine interactions

of single NV− centers in diamond at room temperature

Shaoyi Xu,1,2,* Mingzhe Liu,1,2,* Tianyu Xie ,1,2,† Zhiyuan Zhao,1,2 Qian Shi,1,2 Pei Yu,1,2 Chang-Kui Duan ,1,2,3,‡

Fazhan Shi ,1,2,3,4 and Jiangfeng Du 1,2,3,§

1CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science
and Technology of China, Hefei 230026, China

2CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science
and Technology of China, Hefei 230026, China

3Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
4School of Biomedical Engineering and Suzhou Institute for Advanced Research, University of Science

and Technology of China, Suzhou 215123, China

(Received 14 September 2022; accepted 21 March 2023; published 5 April 2023)

Revealing the properties of single spin defects in solids is essential for quantum applications based on
solid-state systems. However, it is intractable to investigate the temperature-dependent properties of single
defects, due to the low precision for single-defect measurements in contrast to defect ensembles. Here we report
that the temperature dependence of the Hamiltonian parameters for single negatively charged nitrogen-vacancy
centers in diamond at room temperature is precisely measured and the results are in reasonable agreement
with first-principles calculations. In particular, the hyperfine interactions with randomly distributed 13C nuclear
spins are clearly observed to vary with temperature and the relevant coefficients are measured with hertz-level
precision. The temperature-dependent behaviors are attributed to both thermal expansion and lattice vibrations
by first-principles calculations. Our results pave the way for taking nuclear spins as more stable thermometers
at nanoscale. The methods developed here for high-precision measurements and first-principles calculations can
be further extended to other solid-state spin defects.
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I. INTRODUCTION

Accurate knowledge of the properties of spin defects in
solids [1] is the basis for finding their applications in quan-
tum sensing [2] and quantum computation and networks [3].
Measuring the susceptibilities of the target defect to ex-
ternal perturbations such as magnetic field, electric fields,
strains, and temperature enables the detection of these quan-
tities and the analysis of the decoherence resulting from
their fluctuations. As one of the most prominent systems, the
nitrogen-vacancy (NV) center in diamond, with its various
properties carefully investigated [4], has acquired several re-
markable achievements, including single-molecule magnetic
resonance [5–7], nanoscale magnetic [8–10] and temperature
[11,12] imaging, and multinode quantum networks [13,14].

With regard to the temperature dependence of the NV
properties, in early works, the zero-field splitting (ZFS) is
found to be temperature dependent [15–18], which enables
the NV center to work as a nanoscale thermometer [11,12,19].
Recently, the temperature dependence of the hyperfine
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interactions with the surrounding 14N and 13C nuclear spins
was also explored based on NV ensembles [20–23], which can
provide more information on the temperature dependence of
the spin-density distribution of the single negatively charged
nitrogen-vacancy (NV−) ground state. However, it is almost
impossible to observe the temperature-dependent behaviors of
the 13C hyperfine interactions for these NV-ensemble-based
works, since the 13C atoms are randomly distributed in the
proximity of the NV center.

In this work we utilize single NV centers to investigate
the temperature dependence of the parameters involved in
the ground-state Hamiltonian of the NV− center at room
temperature. By performing Ramsey interferometry, the tem-
perature dependence of the nearby 13C spins with the coupling
strengths 13.7, 12.8, −8.9, and −6.5 MHz is clearly observed
and the temperature coefficients are measured with hertz-level
precision. Furthermore, first-principles calculations are per-
formed based on density-functional theory (DFT) [24–29] and
the calculation results explain the experimental values fairly
well. The temperature dependence of the hyperfine interac-
tions is identified as the effects of both thermal expansion
and lattice vibrations. Our methods combining high-precision
measurements and first-principles calculations are generally
applicable for other defects in solids such as phosphorus
dopants in silicon [30], silicon vacancies in silicon carbide
[31], cerium ions in yttrium aluminium garnet [32], and
ytterbium ions in yttrium orthovanadate [33].

2469-9950/2023/107(14)/L140101(7) L140101-1 ©2023 American Physical Society

https://orcid.org/0000-0002-2563-2974
https://orcid.org/0000-0003-1016-4976
https://orcid.org/0000-0003-3312-5566
https://orcid.org/0000-0001-8085-8012
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.L140101&domain=pdf&date_stamp=2023-04-05
https://doi.org/10.1103/PhysRevB.107.L140101


SHAOYI XU et al. PHYSICAL REVIEW B 107, L140101 (2023)

FIG. 1. Atomic structure of the NV center in a diamond lattice
and the calculated spin-density distribution. The dark yellow sphere
denotes the nitrogen atom, while the white one represents the va-
cancy. The other spheres except the dark ones denote the carbon
atoms studied in this work with the coupling strengths displayed in
the legend. The spin density of the NV center spreads across multiple
lattice sites and interacts with the nearby 14N and 13C nuclear spins
through magnetic dipolar moments. The distribution of the spin
density is calculated based on DFT.

II. SYSTEM AND METHODS

The NV center in diamond lattice consists of a substi-
tutional 14N atom and an adjacent vacancy, as shown in
Fig. 1(a). The electronic state studied here is the ground
state of the NV− spin triplet [4]. Two temperature-dependent
phenomena in solids, i.e., thermal expansion and lattice vibra-
tions, both have significant perturbations on the distribution
of the ground-state waveform that determines the coupling
parameters involved in the Hamiltonian concerning the NV
electron spin and the nuclear spins. Thus, the nuclear spins, es-
pecially the 13C spins on multiple lattice sites (Fig. 1(a)), can
serve as atomic-scale sensors to probe the electron waveform
and its variation with external perturbations, e.g., the tem-
perature in this work. By constructing an optically detected
magnetic resonance (ODMR) setup with temperature control
[34] (see the Supplemental Material [35]), the temperature de-
pendence of the coupling parameters for single NV− centers
can be investigated.

The bulk diamonds used here are all ultrapure with 13C
natural abundance (see the Supplemental Material [35]). Con-
sidering the hyperfine interactions with the 14N nuclear spin
[46] and various 13C nuclear spins [47,48], the ground-state
Hamiltonian under a bias field B with taking the NV axis as
the z direction can be formulated as

Hg = He + HN + HC, (1)

He = D(T )S2
z + γeB · S, (2)

HN = P(T )
(
IN
z

)2 − γ N
n B · IN + S · AN(T ) · IN, (3)

HC = −γ C
n

∑
i

B · IC
i + S ·

∑
i

AC
i (T ) · IC

i , (4)

where the temperature-dependent parameters include the ZFS
of the NV spin D(T ), the quadrupole coupling P(T ) of the
14N spin, the hyperfine interaction AN(T ) of the 14N spin, and
AC

i (T ) of the 13C(i) spin; S, IN, and IC
i are the operators of the

NV spin, the 14N spin, and the 13C(i) spin, respectively; and
γe, γ N

n , and γ C
n are the gyromagnetic ratios of three kinds of

spins. The coupling tensor AN(T ) only has two independent
parameters due to the C3v symmetry, while the AC

i (T ) has six.
In this work the temperature-dependent parameters de-

scribed above can all be precisely determined by measuring
the transition frequencies of the electron spin and the nuclear
spins. First, the ZFS of the electron spin D(T ) in Eq. (2) can be
easily obtained with kilohertz-level precision by performing
pulsed ODMR spectra. Second, by using the method in [46],
the quadrupole coupling P(T ) and the hyperfine interaction
AN(T ) in Eq. (3) can both be solved by measuring six nuclear
transition frequencies with hertz-level precision under a field
of approximately 510 G. As for the 13C hyperfine interactions,
although the tensor AC

i (T ) in Eq. (4) cannot be fully solved
due to its complexity, the temperature dependence can still
be obtained by averaging two nuclear transition frequencies
under a small bias field of 10–30 G with

A = 1
2 (ω+1 + ω−1) =

√
A2

zx + A2
zy + A2

zz + R, (5)

where ω+1 and ω−1 are the transition frequencies of the 13C
spin in both mS = +1 and −1 subspaces of the NV spin.
The remainder term R (see the Supplemental Material [35])
is constant with the temperature if the bias field is stable
enough, and thus measuring the mean A under different tem-
peratures gives the temperature coefficient of the coupling

term
√

A2
zx + A2

zy + A2
zz.

III. EXPERIMENTS

In the following, the temperature dependence of the rel-
evant parameters is measured experimentally based on the
discussion above. At first, by performing pulsed ODMR spec-
tra under different temperatures, the variation of the ZFS
with the temperature is obtained as −71.9(0.3) kHz/K for
single NV centers at room temperature (see the Supplemental
Material [35]). The deviation from the ensemble NV result
−74.2(0.7) kHz/K [15] may originate from the vast strain
difference between the diamond samples used in two works
or the systematic error for temperature measurements. Then,
by applying the method [46] for measuring the quadrupole
coupling P(T ) and the hyperfine interaction AN(T ) of the
14N nuclear spin, the temperature coefficients are given by
35.0(0.3) and 194.9(1.0) Hz/K (see the Supplemental Mate-
rial [35]), in good agreement with the previous ensemble NV
results [21–23].

The main challenge in the experiments is to measure the
temperature dependence of the hyperfine interactions AC(T )
for the 13C nuclear spins in the proximity of single NV centers.
Before the measurement, a small bias field of 10–30 G is
applied and aligned to the NV axis by adopting the method
of three-level quantum beat [49]. Figure 2 shows the measure-
ment process by taking a 13C(2) spin [Fig. 1(a)] as an example.
Based on the level structure of the NV-13C(2) coupled system
shown in Fig. 2(a), the Ramsey sequence together with that
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FIG. 2. Measurement for the temperature dependence of the hyperfine interaction of a 13C(2) nuclear spin. (a) Level diagram for the
NV center strongly coupled to a 13C(2) nuclear spin. The 532-nm laser pulse is used to initialize the NV electron spin into the state |mS = 0〉
and read out the spin state by collecting fluorescence photons with the (637–800)-nm phonon sideband. The orange arrows indicate the two
nuclear transitions with the frequencies ω+1 and ω−1 in Eq. (5) to be measured, which are driven by radio-frequency (rf) pulses. The transitions
for the NV electron spin, as indicated by the blue arrows, are driven by microwave (MW) pulses. The rf, MW1, and MW2 pulses are used
in the pulse sequence in (b). (b) Pulse sequence of the laser, MW, and rf for Ramsey interference between the state |mS = +1, mI = + 1

2 〉
and the state |mS = +1, mI = − 1

2 〉. The sequence enclosed by the brackets is repeated n times to polarize the 13C(2) spin into the state
|mI = + 1

2 〉. (c) Resultant interference pattern after applying the sequence in (b). The black line is plotted by fitting the data with the function
{a sin[2π (δ f )t + φ0] + b} exp[−(t/T ∗

2 )p] + c, giving the detuning δ f = 1203.5(2.8) Hz. (d) Mean A of the two nuclear transition frequencies
ω+1 and ω−1 measured under different temperatures. The temperature coefficient of the 13C(2) nuclear spin at room temperature is given by
110.9(1.1) Hz/K with a linear fit.

for polarizing the 13C(2) spin, as displayed in Fig. 2(b), is
applied for measuring the 13C(2) transition frequency ω+1 in
the mS = +1 subspace of the NV spin. The resulting interfer-
ence pattern is plotted in Fig. 2(c) with the fitting curve. The
value of 13 684 603.5(2.8) Hz for ω+1 is obtained by adding
the detuning δ f to the radio frequency used in the Ramsey
sequence. By repeating the process above to acquire the tran-
sition frequencies ω+1 and ω−1 under different temperatures,
the temperature coefficient for the 13C(2) spin is given by
110.9(1.1) Hz/K, as shown in Fig. 2(d).

There are some other effects induced by varying the
temperature inside the box, e.g., the drift of the bias
field, and these effects may disturb the measurement re-
sults above. Therefore, in order to ensure that the measured
temperature-dependent behaviors are indeed originated from
the temperature dependence of the 13C hyperfine interac-
tions, the same experiments in Fig. 2 are implemented under
three bias fields for two NV centers that are coupled to
13C(3) nuclear spins. The results shown in Fig. 3 are iden-
tical within the error bars, which verifies the validity and
robustness of the measurement method adopted in this work.
The final temperature coefficients for four kinds of 13C spins
and the 14N spin are given by averaging the results of 15
NV centers in four diamond samples (see the Supplemental
Material [35]) and summarized in Fig. 4(d).

IV. FIRST-PRINCIPLES CALCULATIONS

Here we perform first-principles calculations to find rea-
sonable explanations for the experimental results above. The
coupling tensor A for a nuclear spin can be calculated at a
given geometric structure by averaging the magnetic dipo-
lar interaction [50] over the spin-density distribution of the
NV− ground state, which includes the isotropic Fermi contact
term and the anisotropic dipolar term. In our first-principles

FIG. 3. Experiments performed under different bias fields. The
temperature coefficient of the hyperfine interaction for 13C(3) nuclear
spins is measured under three bias fields for two NV centers.
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FIG. 4. Calculation of the temperature-dependent coupling A(T ). (a) Coupling strength A =
√

A2
zx + A2

zy + A2
zz for the 13C(2) spin under

the thermal expansion a(T )/a(0) − 1 with the corresponding temperature given by the upper abscissa axis, where the tiny tick near 0 K is
250 K. It clearly shows that the static contribution δAstc is proportional to the change of the lattice constant. (b) Average phonon number
n̄(T ) = [exp(h̄ω/kBT ) − 1]−1 at T = 300 K and the dynamical contribution per phonon ci for the 13C(2) spin as a function of the phonon
energy h̄ω. Note that the ci’s from nearly degenerate modes (within 1 meV) are merged for display. (c) Total thermal correction δA(T ) and
its composition for the 13C(2) spin. Both static, i.e., thermal expansion, and dynamic, i.e., lattice vibrations, contributions are significant.
(d) Comparison between the calculations and the experimental results at room temperature on the temperature dependence of the parameters
regarding the nearby nuclear spins. The last two columns represent the contributions from thermal expansion (stc) and lattice vibrations (dyn).
All errors in parentheses stand for one standard deviation.

calculations, 4 × 4 × 4 supercells are adopted to represent
the NV− centers. The vibration modes at the � point and
the electron-spin densities under different geometric struc-
tures are calculated with the Perdew-Burke-Ernzerhof density
functional [51] and an energy cutoff of 400 eV. Here we
are focusing on the calculation of the coupling term A =√

A2
zx + A2

zy + A2
zz for directly comparing with the experimen-

tal results.
The temperature dependence of A(T ) contains two contri-

butions, the part δAstc(T ) due to thermal expansion and the
part δAdyn(T ) due to lattice vibrations, i.e.,

A(T ) = A(0) + δAstc(T ) + δAdyn(T ). (6)

The static part δAstc(T ) is obtained by considering the impact
of the temperature-related lattice expansion, with all atoms in
the supercell residing at their static equilibrium positions. Our
calculations show that δAstc(T ), as plotted in Fig. 4(a) for the
13C(2) spin as an example, is proportional to the expansion of
the lattice constant a(T )/a(0) − 1, i.e.,

δAstc(T ) = cstc

(
a(T )

a(0)
− 1

)
. (7)

In obtaining δAstc(T ), the temperature-dependent relative
variation of lattice constant a(T )/a(0) − 1 is required and
has been determined by fitting experimental data in Ref. [52]
(replotted in Fig. S4 in [35]). As shown by the upper abscissa
of Fig. 4(a), below 1000 K, a(T )/a(0) − 1 is very small but

increases rapidly. The coefficient cstc is determined by linearly
fitting the calculated δAstc at a series of lattice expansion
configurations. In order to reduce the impact of numerical
errors in the first-principles calculations, a much larger range
of a(T )/a(0) − 1 is adopted in the linear fitting.

To obtain δAdyn(T ), we calculated Astc(Xi ) as a function of
the canonical coordinate Xi for the vibration mode i = 1–1530
of the supercell. The function Astc(Xi ) can be well fitted by a
rank-2 polynomial as

Astc(Xi ) − Astc(0) = biXi + ci
ωi

h̄
X 2

i , (8)

where bi and ci are the fitting parameters, ωi is the phonon
frequency, and h̄ is the reduced Planck constant. Evaluating
the thermodynamic expectation value of Astc(Xi ) − Astc(0) at
temperature T and then summing over all the vibration modes,
we obtain the expressions of δAdyn(T ) and A(0) in Eq. (6) as

δAdyn(T ) =
∑

i

cin̄i(T ), (9)

A(0) = Astc(0) +
∑

i

ci

2
, (10)

where n̄i(T ) = [exp(h̄ωi/kBT ) − 1]−1 is the average phonon
number of the vibration mode i, with kB the Boltzmann con-
stant, and the fitting parameter ci [defined in Eq. (8)] gives the
contribution per phonon to δAdyn.

The contributions of different vibration modes and the
temperature-dependent part of A(T ) for the 13C(2) spin are
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displayed in Figs. 4(b) and 4(c) (see the Supplemental Ma-
terial [35] for more details in determining Astc and Adyn).
The calculation has been done for 14N and 13C(1–5) spins in
exactly the same way.

Figure 4(d) lists the calculated and measured tempera-
ture derivatives of A(T ) at 300 K for the 14N and 13C(1–5)
spins. The calculated temperature derivatives of hyperfine
coupling match the magnitude of the experimental results
and reflect the trend of derivatives for different nuclei, which
indicates our first-principles calculations are capable of de-
scribing such a delicate variation of hyperfine coupling with
a straightforward model disregarding the higher-order terms
in the temperature-dependent hyperfine coupling. At 300 K,
the dynamical part dominates for the 14N spin, while both the
static and dynamical terms contribute significantly to various
13C spins. In addition, the temperature-dependent terms are
always much smaller than their corresponding A(0) in mag-
nitude (approximately 1% for the 14N spin and the scale of
0.01%–0.1% for the 13C spins at 300 K), which confirms
the weak coupling between the lattice deformation and the
hyperfine interaction.

V. CONCLUSION

The temperature coefficients of the temperature-dependent
parameters contained in the ground-state Hamiltonian of
single NV− centers were precisely measured at room tem-
perature and first-principles calculations explained the ex-
perimental results fairly well. In particular, the temperature
coefficients of the quadrupole coupling of the 14N nuclear spin
and the hyperfine interactions of the 14C and 13C spins were
measured with hertz-level precision by performing Ramsey
interferometry on the nuclear spins. Among these parame-
ters, the hyperfine coupling of the 14N spin has the largest
susceptibility to the temperature. Thus, it may work as a
nanoscale thermometer like the ZFS [11,12,19], considering
that millisecond-scale coherence times can nearly remedy the
gap in the temperature coefficient compared to the ZFS.

In the future, it would be worthwhile to perform the
measurements with varying strains or a wider range of tem-
peratures for allowing a more detailed test of the calculation
results. The calculations can be further improved by adopting
a more accurate description of the NV− such as a larger
supercell and a more accurate density functional, a higher-
precision response of the variation of the spin-density function
to tiny structure changes, and a more thorough description
of the anharmonic effect. The methods for high-precision
measurements and first-principles calculations in this work
are universal and can help deepen our understanding of NV
centers as well as other solid-state defects [30–33].

Source data for all figures in the text and Supplemental
Material are available from the corresponding authors upon
reasonable request.
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[30] M. T. Mądzik, S. Asaad, A. Youssry, B. Joecker, K. M.
Rudinger, E. Nielsen, K. C. Young, T. J. Proctor, A. D.
Baczewski, A. Laucht et al., Precision tomography of a three-
qubit donor quantum processor in silicon, Nature (London) 601,
348 (2022).

[31] M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S.
Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker et al., Coherent
control of single spins in silicon carbide at room temperature,
Nat. Mater. 14, 164 (2015).

[32] P. Siyushev, K. Xia, R. Reuter, M. Jamali, N. Zhao, N. Yang,
C. Duan, N. Kukharchyk, A. D. Wieck, R. Kolesov et al.,
Coherent properties of single rare-earth spin qubits, Nat.
Commun. 5, 3895 (2014).

[33] A. Ruskuc, C.-J. Wu, J. Rochman, J. Choi, and A. Faraon, Nu-
clear spin-wave quantum register for a solid-state qubit, Nature
(London) 602, 408 (2022).

[34] T. Xie, Z. Zhao, X. Kong, W. Ma, M. Wang, X. Ye, P. Yu, Z.
Yang, S. Xu, P. Wang et al., Beating the standard quantum limit
under ambient conditions with solid-state spins, Sci. Adv. 7,
eabg9204 (2021).

[35] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.107.L140101 for additional details on ex-
perimental methods, experimental results, and first-principles
calculations, which include additional Refs. [36–45].

[36] L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov,
F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin,
Coherent dynamics of coupled electron and nuclear spin qubits
in diamond, Science 314, 281 (2006).

[37] V. Jacques, P. Neumann, J. Beck, M. Markham, D. Twitchen,
J. Meijer, F. Kaiser, G. Balasubramanian, F. Jelezko, and J.
Wrachtrup, Dynamic Polarization of Single Nuclear Spins by
Optical Pumping of Nitrogen-Vacancy Color Centers in Di-
amond at Room Temperature, Phys. Rev. Lett. 102, 057403
(2009).

[38] M. Steiner, P. Neumann, J. Beck, F. Jelezko, and J. Wrachtrup,
Universal enhancement of the optical readout fidelity of single
electron spins at nitrogen-vacancy centers in diamond, Phys.
Rev. B 81, 035205 (2010).

[39] P. E. Blöchl, First-principles calculations of defects in oxygen-
deficient silica exposed to hydrogen, Phys. Rev. B 62, 6158
(2000).

[40] O. V. Yazyev, I. Tavernelli, L. Helm, and U. Röthlisberger,
Core spin-polarization correction in pseudopotential-based
electronic structure calculations, Phys. Rev. B 71, 115110
(2005).

L140101-6

https://doi.org/10.1038/nature12373
https://doi.org/10.1021/nl401216y
https://doi.org/10.1126/science.abg1919
https://doi.org/10.1038/s41586-022-04697-y
https://doi.org/10.1103/PhysRevLett.104.070801
https://doi.org/10.1063/1.3652910
https://doi.org/10.1103/PhysRevX.2.031001
https://doi.org/10.1103/PhysRevB.90.041201
https://doi.org/10.1073/pnas.1306825110
https://doi.org/10.1103/PhysRevB.99.094101
https://doi.org/10.1103/PhysRevB.102.125133
https://doi.org/10.1103/PhysRevResearch.2.023094
http://arxiv.org/abs/arXiv:2205.02790
https://doi.org/10.1103/PhysRevB.77.155206
https://doi.org/10.1103/PhysRevB.84.165212
https://doi.org/10.1088/1367-2630/13/2/025025
https://doi.org/10.1103/PhysRevB.85.205203
https://doi.org/10.1515/nanoph-2019-0154
http://arxiv.org/abs/arXiv:2205.02791
https://doi.org/10.1038/s41586-021-04292-7
https://doi.org/10.1038/nmat4145
https://doi.org/10.1038/ncomms4895
https://doi.org/10.1038/s41586-021-04293-6
https://doi.org/10.1126/sciadv.abg9204
http://link.aps.org/supplemental/10.1103/PhysRevB.107.L140101
https://doi.org/10.1126/science.1131871
https://doi.org/10.1103/PhysRevLett.102.057403
https://doi.org/10.1103/PhysRevB.81.035205
https://doi.org/10.1103/PhysRevB.62.6158
https://doi.org/10.1103/PhysRevB.71.115110


HIGH-PRECISION MEASUREMENTS AND … PHYSICAL REVIEW B 107, L140101 (2023)

[41] P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B
50, 17953 (1994).

[42] G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid
metals, Phys. Rev. B 47, 558 (1993).

[43] G. Kresse and J. Hafner, Ab initio molecular-dynamics simula-
tion of the liquid-metal–amorphous-semiconductor transition in
germanium, Phys. Rev. B 49, 14251 (1994).

[44] http://nmrwiki.org/wiki/index.php?title=Gyromagnetic_ratio.
[45] T. Sato, K. Ohashi, T. Sudoh, K. Haruna, and H. Maeta, Thermal

expansion of a high purity synthetic diamond single crystal at
low temperatures, Phys. Rev. B 65, 092102 (2002).

[46] T. Xie, Z. Zhao, M. Guo, M. Wang, F. Shi, and J. Du, Identity
Test of Single NV− Centers in Diamond at Hz-Precision Level,
Phys. Rev. Lett. 127, 053601 (2021).

[47] A. Gali, Identification of individual 13C isotopes of nitrogen-
vacancy center in diamond by combining the polarization

studies of nuclear spins and first-principles calculations, Phys.
Rev. B 80, 241204(R) (2009).

[48] B. Smeltzer, L. Childress, and A. Gali, 13C hyperfine interac-
tions in the nitrogen-vacancy centre in diamond, New J. Phys.
13, 025021 (2011).

[49] J. H. Shim, B. Nowak, I. Niemeyer, J. Zhang, F. D. Brandao,
and D. Suter, Characterization of hyperfine interaction between
single electron and single nuclear spins in diamond assisted by
quantum beat from the nuclear spin, arXiv:1307.0257.

[50] J. D. Jackson, Classical Electrodynamics (Wiley, New York,
1998), Chap. 5, Sec. VI, p. 188.

[51] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient
Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).

[52] P. Jacobson and S. Stoupin, Thermal expansion coefficient of
diamond in a wide temperature range, Diamond Relat. Mater.
97, 107469 (2019).

L140101-7

https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.49.14251
http://nmrwiki.org/wiki/index.php?title=Gyromagnetic_ratio
https://doi.org/10.1103/PhysRevB.65.092102
https://doi.org/10.1103/PhysRevLett.127.053601
https://doi.org/10.1103/PhysRevB.80.241204
https://doi.org/10.1088/1367-2630/13/2/025021
http://arxiv.org/abs/arXiv:1307.0257
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1016/j.diamond.2019.107469

