
PHYSICAL REVIEW B 107, L121408 (2023)
Letter

Spontaneous fractional Josephson current in parafermion junctions
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We study a parafermion Josephson junction comprising a pair of counterpropagating edge modes of two
quantum Hall systems, proximitized by an s-wave superconductor. We show that the difference between the
lengths (which can be controlled by external gates) of the two counterpropagating chiral edges at the Josephson
junction, can act as a source of spontaneous phase bias. For the Laughlin filling fractions, ν = 1/m, m ∈ 2Z + 1,
this leads to an electrical control of either Majorana (m = 1) or parafermion (m �= 1) zero modes.
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Parafermions [1–8] are exotic generalizations of the Majo-
rana modes [9–18] which may give rise to topological qudits
with a better fault tolerance [19,20] than Majorana qubits. The
essential property of these excitations that make them relevant
for quantum computation is their behavior under exchange—
they transform as non-Abelian anyons. Non-Abelian anyons
are higher-dimensional representations of the braid group
where exchanges are represented by unitary matrices. So
exchanging parafermions or braiding them will rotate the
quantum state in the Hilbert space of the degenerate ground
state manifold. This nonlocal nature of operations generated
by non-Abelian braiding gives rise to fault tolerance, making
systems hosting non-Abelian anyons promising platforms for
quantum information processing.

Majorana modes are the simplest examples of excitations
with non-Abelian statistics. This has spearheaded the exper-
imental search for Majorana modes across several platforms
such as one-dimensional wires [21–32], fractional Josephson
effect experiments [33–40], etc. There is a growing consensus
in the community that there exists incontrovertible experimen-
tal evidence for Majoranas, despite some drawbacks of the
evidence [41].

Experimental searches for parafermions, on the other hand,
are still in their infancy. Even minimal proposals for the detec-
tion of parafermions involve a pair of fractional quantum Hall
(FQH) edge states, i.e., even the simplest proposals involve
strong electron interactions. There exist several proposals to
engineer parafermions involving multiple or multilayer FQH
states or fractional topological insulator states proximitized by
superconductors (and/or ferromagnets) [5–7,34,42–44]. On
the experimental side, there has been evidence of crossed
Andreev reflection of fractionally charged edge states in a
graphene FQH system [4,45] proximitized with a supercon-
ducting lead, and more recently in semiconductor integer
quantum Hall (IQH) systems [46], which are precursors to
being able to localize parafermions.

In this Letter, our main focus is to reexamine the frac-
tional Josephson effect that occurs when the edges of quantum
Hall states are sandwiched between two superconductors.
Crucially, we allow for the two edges to have independent

gate-tunable lengths L1 and L2. For the IQH system, where
the edge states can be described by free electrons, and the
spectrum of the Andreev bound states shows a 4π fractional
Josephson effect, we find that the finite independent lengths
give rise to a spontaneous Josephson current. Related results
have been discussed in Ref. [47] in the context of anomalous
quantum spin Hall systems. We further find that this conse-
quence persists for ν = 1/m FQH states, leading to a 4mπ

spontaneous fractional Josephson current as a function of the
difference in the lengths of the two edges.

The Majorana case. The junction between the two IQH
edge states described in Fig. 1 allows for the realization of
a helical edge state [48,49], which when proximitized by
the superconductors leads to a topological phase with effec-
tive p-wave superconducting correlations [16]. The ballistic
Josephson junction hence formed is expected to show a 4π

periodic Josephson effect, provided that fermion parity is
preserved [12]. Further, we will allow the counterpropagating
edges in the ballistic region to have different lengths (L1 and
L2), which may be realized by appropriate gating, as shown
schematically in Fig. 1(b).

We can write the Hamiltonian for the IQH edges proximi-
tized by superconductors and ferromagnets as H = H0 + HI ,
where

H0 = −ih̄vF

∫
dx[ψ†

R(x)∂xψR(x) + ψR(x)∂xψ
†
R(x)]

+ ih̄vF

∫
dx[ψ†

L (x)∂xψL(x) + ψL(x)∂xψ
†
L (x)],

HI =
∫

dx[�(x)ψRψL + M(x)ψ†
RψL + H.c.], (1)

where ψR/L are right/left-moving chiral fermionic fields and
vF is the Fermi velocity of the electrons in these edges.
The pairing amplitude �(x) and the backscattering strength
M(x) have a spatial profile, determined by the setup. The
presence of superconducting correlations on a finite patch
of the fermionic edges can be reduced to Andreev boundary
conditions on the edges of the fermionic fields in the free
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FIG. 1. (a) shows two concentric FQH liquids at filling fractions
ν↑/↓ = 1/m (m ∈ odd integer), colored red/blue, respectively, with
counterpropagating edge modes and opposite spins. The edge modes
are proximitized by two superconductors, SC1 and SC2, colored
green, and a ferromagnet FM2 colored gray. The encircled (yellow)
region comprises the free edges and is magnified in (b). Vg1/2 are
gate potentials that can individually alter the length of the edges in
the free region. L1/2 are the lengths of the right-moving and left-
moving edge modes, respectively. �0 and φi are the superconducting
gaps and the superconducting phases corresponding to SCi. The two
superconducting segments are considered to be the part of the same
bulk superconductor. The blue stars at the interface between SCi and
FM2 represent localized parafermion zero modes.

region of the setup [50–56] as shown below,

ψR,↑(x = 0) = e−i�eiφ1ψ
†
L,↓ (x = 0),

ψR,↑(x = L1) = e−i�eiφ2ψ
†
L,↓ (x = L2), (2)

where � = cos−1( E
�0

), E is the Andreev bound state (ABS)
energy, and φ1 and φ2 are the phases of the two supercon-
ducting regions. The boundary condition assumes that the
superconductors are wide enough so that the Majorana modes
localized at the interface between SC1/2 and FM2 do not
influence it. The ABS spectrum can then be easily calculated
to be [56,57]

E = ±�0 cos

[
E

�0

〈L〉
LSC

±
(

μδL

h̄vF
− φ

2

)]
, (3)

where μ denotes the Fermi energy, 〈L〉 = L1+L2
2 , δL = L1−L2

2 ,
φ = φ1 − φ2 is the difference of the two superconducting
phases, and LSC = h̄vF /�0 is the superconducting coherence
length. The lengths L1 and L2 influence the ABS energy via
the two independent linear combinations 〈L〉 and δL. Im-
portantly, the term μδL/h̄vF is additive with φ and hence
has exactly the same effect as φ, i.e., δL �= 0 leads to a
spontaneous Josephson effect, even when φ = 0. In the long
junction limit, the ballistic region hosts multiple ABS, of
which only one pair is topological, crossing E = 0 at θ =
2μδL/h̄vF − φ = ±π . This can be confirmed by placing an
impurity asymmetrically inside the junction [57]. Unlike the
short junction limit [12,55,56,58] (L1/2/LSC −→ 0), where a
single pair of topological ABS oscillates between the energy
window −�0 to �0, in the long junction limit, the energy

window of the oscillation of topological ABS is shortened by
the factor LSC/〈L〉.

Z2m parafermions. Now we consider a setup where the
two quantum Hall liquids at filling fractions ν = 1 are re-
placed by ν = 1/m and this results in a 4mπ Josephson
effect [33–38,59]. As shown by Clarke et al. [7], this is one
of the simplest theoretical proposals for realizing parafermion
zero modes.

At the interface of the two quantum Hall liquids (shown
in Fig. 1) the Hamiltonian for the gapless counterpropagating
edge modes is given in bosonized form as

H0 = mvF

4π

∫
dx[(∂xφR)2 + (∂xφL )2]. (4)

Here, vF is the Fermi velocity and m = 1/ν is the inverse of
the filling fraction and the chiral fields φR,L satisfy

[φR/L(x), φR/L(x′)] = ±i
π

m
sgn(x − x′),

[φL(x), φR(x′)] = i
π

m
. (5)

These properties are sufficient to ensure the proper anticom-
mutation relations for the fermion operators defined as ψR/L ∼
eimφR/L [60–65].

Next, we briefly review the results of Lindner et al. [6]
within our context. We imagine that the edge modes are
fully gapped out by two alternating superconductors and fer-
romagnets [i.e., we imagine gapping out the free region in
Fig. 1(a) by a ferromagnet FM1]. The pairing due to the two
superconductors and the insulating gap induced by electron
backscattering are modeled by adding the appropriate cosine
terms to the Hamiltonian, and the total Hamiltonian reads
H = H0 + HI , where

HI =
∑
i=1,2

(
�i

∫
SCi

dx cos {m[φR(x) + φL(x)]}

+Mi

∫
FMi

dx cos {m[φR(x) − φL(x)]}
)

. (6)

The SC/FM proximitized regions are characterized by
integer-valued charge/spin operators, called Q̂ j and Ŝ j , re-
spectively. More precisely, since the charge is defined modulo
2e in the SC regions and the spin always changes in steps
of 2 (due to backscattering) in the FM regions, the correct
operators to describe the charge/spin in the SC/FM regions
are eiπQ̂ j and eiπ Ŝ j . These operators are related to the bosonic
fields as

Q̂ j =
∫

SC j

dx
1

2π
∂x(φR − φL ),

Ŝ j =
∫

FM j

dx
1

2π
∂x(φR + φL ). (7)

In the limit where � j,M j −→ ∞, the φR ± φL fields in
Eq. (6) are pinned to one of the 2m possible minima of
the cosine, respectively. These minima are characterized by
integer-valued operators n̂SC

j in SC j , and n̂FM
j in FM j . In the

same limit, we can relate the operators Q̂ j, Ŝ j with n̂SC
j , n̂FM

j
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using Eq. (7) giving us

Q̂ j/Ŝ j = 1

m

(
n̂FM/SC

j+1 − n̂FM/SC
j

)
, (8)

where the index j is defined modulo 2. Note that the SC/FM
regions can exchange 1/m charges/spins with the bulk of
the FQH systems. This means that the operators eiπQ̂ j and
eiπ Ŝ j can have eigenvalues eiπq j/m and eiπs j/m, respectively,
where q j, s j ∈ {0, 1, . . . , 2m − 1}. We now define the total
charge and spin operators, Q̂tot, Ŝtot, which satisfy the global
constraint eiπQ̂tot/Ŝtot = ∏

j eiπQ̂ j/Ŝ j = eiπ (n↑±n↓ )/m, where n↑/↓
are the number of quasiparticles in the spin up/down bulk
FQH regions. For a general m, the number of distinct values of
{n↑, n↓} consistent with the global constraints is (2m)2/2 [6].
Since the two superconducting (ferromagnetic) segments are
considered to be parts of the same bulk superconductor (fer-
romagnet) (and the bulk SC is not assumed to be grounded),
the total charge qtot = q1 + q2 and the total spin stot = s1 + s2

of the system are conserved.
We hence label the ground state manifold by the eigen-

values of a complete set of mutually commuting operators.
The commutation relations detailed in the Supplemental
Material [57] show that our system hosts two such sets:
(eiπQ̂1 , eiπQ̂2 , Ŝtot, H ) and (eiπ Ŝ1 , eiπ Ŝ2 , Q̂tot, H ). The eigenval-
ues of both sets of operators provide an equivalent description
of the ground state manifold of the system as long as the
system is fully gapped by alternating superconductors and
ferromagnets. The degeneracy can then be counted by the
distinct set of eigenvalues of the operators in a particular basis
subjected to global constraints. Note that for a fixed {n↑, n↓}
sector, s1 and s2 are not independent. The commutation re-
lations outlined in the Supplemental Material show that if
|s1, s2, qtot〉 is the eigenstate of the spin-parity operator eiπ Ŝi ,
then so is (eiπQ̂1 )k|s1, s2, qtot〉 = |s1 + k, s2 − k, qtot〉, where
k ∈ {0, . . . , 2m − 1}. Hence, the ground state manifold is 2m-
fold degenerate for a fixed {n↑, n↓}. Counting all possible
values of {n↑, n↓} gives the dimension of the ground state
Hilbert space to be (2m)3/2. The same set of arguments above
can be repeated for the states labeled by |q1, q2, stot〉 to obtain
the same results.

Now, let us remove one of the insulating gaps by taking
M1 → 0. This leads to the realization of the ballistic Joseph-
son junction setup as given in Fig. 1(a). For fixed {n↑, n↓}, the
2m states, which were degenerate ground states in the large
M1 limit, now move away from zero energy and are no longer
degenerate. The actual splitting of the energy depends on the
various parameters φ, δL, and 〈L〉. Furthermore, as M1 → 0,
the charge parity operators eiπQ̂i no longer commute with the
Hamiltonian, that is, [eiπQ̂i , H] �= 0. However, the other set of
operators, Ŝ1, Ŝ2, and Q̂tot, still commutes with the Hamilto-
nian. This means that rather than the basis, |q1, q2, stot〉, we
should use the eigenvalues of the set of mutually commuting
operators Ŝ1, Ŝ2, Q̂tot to label the states as |s̄1, s̄2, qtot 〉. Note
that we now label the eigenstates with the eigenvalues s̄ j of
the operator Ŝ j rather than those of the spin-parity eiπ Ŝ j since
removing FM1 precludes backscattering between the edges.
We will show later that the energy eigenvalue depends only
on the spin in the ballistic Josephson junction region and
is given by H |s̄1, s̄2, qtot〉 = E (s̄1)|s̄1, s̄2, qtot〉 [see Eq. (14)].

Thus, the 2m ground states, which were degenerate at E = 0
in the M1 → ∞ limit, are now at different energies E (s̄1) for
the 2m possible values of s̄1. As we change the phase factor
θ = 2μδL/h̄vF − φ, the eigenvalues oscillate and cross each
other.

As was shown earlier, the effective theory of the Joseph-
son junction between SC1 and SC2, when L1 = L2, exhibits
the Josephson effect with a periodicity 4πm [7]. For differ-
ent lengths, we first note that the ABS spectrum derived in
Ref. [57] essentially used the fact that particles and holes
transform back into themselves after two consecutive Andreev
reflections, having traversed a path of length L1 + L2. Thus,
the spectrum includes the effect of the Andreev reflections as
well as the dynamical phases. In terms of twisted boundary
conditions, this translates to

ψR(x + L1 + L2) = e−2i�ei(keL1−khL2+φ2−φ1 )ψR(x)

≡ eiσ ψR(x), (9)

where σ/2 = − cos−1( E
�0

) + E〈L〉
h̄vF

± ( μδL
h̄vF

− φ

2 ) represents all
the phases accumulated by an electron when it traverses the
loop defined by Andreev reflections between the two ends
of the junction, and φ ≡ φ2 − φ1. In terms of the bosonized
Hamiltonian, this translates into the superconducting coupling
between the two counterpropagating edge states of the follow-
ing form,

HSC = −�0

(∫ 0

−lSC

dx cos {m[φR(x) + φL(x)]}

+
∫ L1+lSC

L1

dx cos {m[φR(x) + φL(x − 2δL)] + σ }
)

,

(10)

where lSC is the length of the superconducting regions. Note
also that all the phases (σ ) accumulated in traversing the
loop between the two superconductors have been plugged into
the second superconductor using gauge freedom. �0 is the
magnitude of the superconducting pairing.

Thus, the total Hamiltonian is given by H = H0 + HSC.
In the �0 −→ ∞ limit, the field φR + φL is confined to
the minima of the cosine potential and E  �0, giving us
σ = 2π ± ( 2μδL

h̄vF
− φ), resulting in the following boundary

conditions for the finite-length chiral Luttinger liquids in the
junction between the two superconductors,

φR(0) + φL(0) = 0,

φR(L1) + φL(L2) = 2
(

mod
[π

m

(
n̂SC

2 − σ

2π

)
, 2π

]
− π

)
≡ 2η̂, (11)

where n̂SC
2 is an integer-valued operator corresponding to the

pinned minimum of the fields at the right superconductor
such that it can assume 2m values, nSC

2 ∈ {0, 2m − 1}. n̂SC
1

can be taken as zero without loss of generality. The modulus
is necessary to ensure the compactness of the finite-length
bosonic fields. It is interesting to note from Eq. (7) that η̂/π is
nothing but the spin Ŝ1 of the junction.
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The effective Hamiltonian for the ballistic junction be-
tween the two superconductors is given by

Heff = mvF

4π

∫ L1

−L2

dx(∂xφR(x))2, (12)

where φR(x, t ) is given by [8,57]

φR(x) = 2η̂

L1 + L2
(x − L1) + χ̂

+ 1√
m

∑
k>0

1√
k

(
âke

2π ik
L1+L2

(x−L1 ) + â†
ke− 2π ik

L1+L2
(x−L1 ))

,

(13)

with φL(x) = −φR(−x) and [nSC
2 , χ̂ ] = i, such that Eqs. (5)

and (11) are satisfied. This diagonalizes the effective Hamil-
tonian, giving us

Heff = mvF

π (L1 + L2)
η̂2 +

∑
k>0

2πkvF

L1 + L2

(
a†

kak + 1

2

)
. (14)

In Eq. (14), the first term carries the dependence of energy
on the SC phase difference φ and on the additional phase
arising due to the length difference of the two chiral edges.
Importantly, we note [Heff, n̂SC

2 ] = 0, making n̂SC
2 a conserved

quantity. For a fixed eigenvalue of the n̂SC
2 operator, the energy

is 4mπ periodic in θ = 2μδL/h̄vF − φ. The Josephson cur-
rent across the ballistic region, Iθ ∝ d〈Heff〉/dθ , also shows
4mπ periodicity in θ and the characteristic sawtooth behav-
ior. For m = 1 (Majorana modes), n̂SC

2 can be either 0 or 1,
corresponding to even and odd fermion parity of the Joseph-
son junction. Note that 〈Heff〉 is a parity resolved expectation
value. This specific case has been studied in detail earlier [66].

Discussion and conclusion. We show that allowing the
length of the chiral edges of two quantum Hall systems
(forming a Josephson junction) to be different leads to a
spontaneous fractional Josephson effect. This introduces an
experimental knob, on equal footing with the SC phase bias,
that is far more amenable. We first demonstrated the feasibility
in an IQH setup where the Andreev modes can be computed
exactly.

Extending the bosonization scheme to address junctions
of chiral Luttinger liquids with unequal lengths, we then
study a ν = 1/m setup with Z2m parafermions between the
superconductors. This leads to a spontaneous 4πm Josephson
effect tunable by the length difference of the chiral edges
(δL). Such a finding may be of importance because it pro-
vides an extra handle on the Josephson current, controllable
by electrical means, to probe parafermions. Our results are
also valid for fractional topological insulators, where earlier
work has already shown the existence of a 4mπ Josephson ef-
fect [34]. Note that in changing δL, one also changes the area
of the Josephson junction. The magnetic field required to host
the quantum Hall effect changes the Aharanov-Bohm phase

FIG. 2. A proposed setup to realize the fractional Josephson ef-
fect in a bilayer FQH system, with the top layer at ν = 1/m and
the bottom layer at ν = 1 + 1/m. The Landau levels are manipulated
using appropriate gating such that two counterpropagating chiral
states with opposite spins are brought together. The chiral states
at the middle of the sample (shown in red and blue solid lines)
are of importance to realize Josephson junction geometry. These
chiral states are proximitized by two superconductors, SC1 and SC2,
and a ferromagnet (FM) at the back. The length of the individual
counterpropagating chiral states, in the ballistic region, can be altered
using the external gates, which can drive the fractional Josephson
current and show 4πm periodicity. Inconsequential chiral edge states
are shown with dashed lines (red and blue) in the two layers.

experienced by the quasiparticles, adding to the Josephson
phase. This phase can be calculated precisely in any geometry
and excluded to isolate the effects of varying δL. For vF ∼
104 m/s and μ ∼ 10 meV [67,68], the change in δL required
to access the 4πm Josephson effect turns out to be a few µm in
conventional two-dimensional electron gas (2DEG) systems,
making it experimentally accessible by current standards.

To this end, we propose a setup to realize the spontaneous
fractional Josephson current in a 2DEG embedded in a double
quantum well tuned to two different FQH states (see Fig. 2).
This setup is inspired by the experiment in Ref. [49]. We get
two counterpropagating chiral edge states at the center of two
FQH system with opposite spins, which can be proximitized
by SC and FM as shown in Fig. 2. The external gates used to
manipulate the Landau levels can also be used to displace the
edges at the center of the sample and hence change the length
of the chiral edges in the free region. This external control on
the length of the chiral edges gives an experimental handle to
realize the spontaneous fractional Josephson effect.
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