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Floquet Weyl semimetal phases in light-irradiated higher-order topological Dirac semimetals
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Floquet engineering, the concept of tailoring a system by a periodic drive, is increasingly exploited to design
and manipulate topological phases of matter. In this work we study periodically driven higher-order topological
Dirac semimetals associated with a k-dependent quantized quadrupole moment by applying circularly polarized
light. The undriven Dirac semimetals feature gapless higher-order hinge Fermi arc states which are the con-
sequence of the higher-order topology of the Dirac nodes. Floquet Weyl semimetal phases with hybrid-order
topology, characterized by both a k-dependent quantized quadrupole moment and a k-dependent Chern number,
emerge when illumining circularly polarized light. Such Floquet Weyl semimetals support both hinge Fermi arc
states and topological surface Fermi arc states. In addition, Floquet Weyl semimetals with tilted Weyl cones in
higher-order topological Dirac semimetals are also discussed. Considering numerous higher-order topological
Dirac semimetal materials were recently proposed, our findings can be testable soon.
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Introduction. Understanding Dirac-like fermions has be-
come an imperative in modern condensed-matter physics. All
across the research frontier, ranging from graphene to d-wave
high-temperature superconductors to topological insulators
and beyond, low-energy excitations in various electronic sys-
tems can be well described by the Dirac equation [1]. Of
particular interest are Dirac semimetals (DSMs), as they rep-
resent an unusual phase of quantum matter that hosts massless
Dirac fermions as quasiparticle excitations near bulk nodal
points. Graphene is a well-known two-dimensional (2D) DSM
protected by chiral (sublattice) symmetry [2], and stable three-
dimensional (3D) DSMs protected by crystalline symmetries
had been identified and realized in solid materials as well
[3]. Due to the lack of bulk-boundary correspondence, the
cornerstone of topological phases of matter, the designation of
DSMs as a semimetallic topological phase was controversial
[4,5], whereas DSMs do serve as a parent phase for realiz-
ing exotic topological states and topological phenomena. For
instance, breaking time-reversal symmetry (TRS) via mag-
netism in a DSM can result in the quantum anomalous Hall
state [6] or Weyl semimetal (WSM) states hosting massless
chiral fermions and surface Fermi arc states [7].

Floquet engineering is a versatile approach that uses
time-periodic driving of a quantum system to enable novel
out-of-equilibrium many-body quantum states [8–10]. Recent
years have witnessed intense efforts toward exploiting Floquet
engineering to create topological phases in quantum materials
[11–50]. It is important to stress that circularly polarized light
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(CPL) naturally breaks TRS, which provides an easy tuning
knob to induce dynamical topological phases such as Floquet
Chern insulators and Floquet WSMs in DSMs [16,17,19–
23,36,39,42,51–53]. Following the discovery of the concept of
higher-order topology that characterizes boundary states with
dimensions two or more lower than that of the bulk system
that accommodates them [54–60], there has been a surge of
interest in tailoring higher-order topological phases by using
Floquet engineering as well [61–78]. Meanwhile, numerous
higher-order topological DSMs, which obey the topological
bulk-hinge correspondence and thus display universal topo-
logical hinge Fermi arc states, have been proposed [79–84].
The signature of hinge Fermi arc states was recently observed
in supercurrent oscillation experiments on prototypical DSM
material Cd3As2 [85,86]. Cd3As2 provides a promising parent
material for the realization of the higher-order WSM [87–89]
that supports hinge Fermi arc states in addition to the usual
surface Fermi arc states by using Floquet engineering.

In this work we explore tunable higher-order WSMs in
time-symmetric and PT -symmetric higher-order topological
DSMs under off-resonant CPL illumination. Without driving,
both types of higher-order topological DSMs have two bulk
Dirac nodes locating at the kz axis and support gapless hinge
Fermi arc states. Meanwhile, the time-symmetric one has
additional closed-surface Fermi rings. CPL drives each Dirac
node to split into a pair of Weyl nodes by symmetry breaking,
resulting in Floquet higher-order WSMs accommodating rich
topological boundary states. The coexistence of surface Fermi
arc and hinge Fermi arc states signals a hybrid-order topology
which can be captured by k-dependent quantized quadrupole
moment and Chern number. In addition, the surface Fermi
rings in the time-symmetric DSM are inherited in the Floquet
WSM. Moreover, we can achieve a type-II higher-order WSM
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with overtilted Weyl cones by adjusting the incident direction
of CPL. Our proposal can be realized in DSM materials like
Cd3As2 with current ultrafast experimental techniques.

DSM model and the Floquet theory. Undriven higher-order
topological DSMs are constructed based on a generic band
inversion DSM model on the cubic lattice. In reciprocal space,
the Hamiltonian matrix is

H(k) = ε0(k) + λ sin kx�1 + λ sin ky�2

+ M(k)�3 + G(k)�4, (1)

where the � matrices are �1 = s3σ1, �2 = s0σ2, �3 = s0σ3,
�4 = s1σ1, and �5 = s2σ1, with s j=1,2,3 and σ j=1,2,3 the
Pauli matrices labeling the spin and orbital degrees of
freedom, respectively, and s0, σ0 are 2 × 2 identity ma-
trices. ε0(k) = t1(cos kz − cos K0

z ) + t2(cos kx + cos ky − 2),
and M(k) = t (cos kx + cos ky − 2) + tz(cos kz − cos K0

z ). t1,2,
t , tz, and λ are the amplitudes of hoppings. The DSM has two
Dirac points locating at k0 = (0, 0,±K0

z ). G(k) is the coeffi-
cient of the �4 term that gives birth to higher-order topology in
the present DSMs. Without the �4 term, this model describes
an ordinary band-inversion DSM supporting helical surface
Fermi arc states which are not topologically stable [4]. Equa-
tion (1) can describe the recently identified higher-order DSM
materials, including but not limited to Cd3As2 and KMgBi
[80].

Treating kz as a parameter, then H(k) reduces to a 2D
Hamiltonian Hkz (kx, ky). The reduced Hamiltonian possesses
higher-order topology, which can be well characterized by the
quantized quadrupole moment. Furthermore, we can use a kz-
dependent quantized quadrupole moment Qxy(kz ) to capture
the higher-order topology of the DSMs. Qxy in real space
[90,91] is

Qxy = 1

2π
Im[log 〈Ûxy〉], Ûxy = ei2π

∑
ri

q̂xy (ri ), (2)

where q̂xy(ri ) = xy
LxLy

n̂(ri ) is the quadrupole moment density
per unit cell at site ri, and Lx and Ly are the length of the
system in the x and y directions, respectively.

CPL is described by a time-periodic gauge field
A(τ ) = A(τ + T ) with period T = 2π

ω
and the fre-

quency of light ω. Specifically, the gauge field A =
A(0, η sin ωτ, cos ωτ ), A(cos ωτ, 0, η sin ωτ ), and A(η sin ω

τ, cos ωτ, 0), with η = ±1 labeling the handedness, describe
CPL propagating along the x, y, and z directions, respectively.
In the main text we mainly focus on the case of CPL
propagating along the z direction; the case of CPL propagating
along the x direction is also studied in the Supplemental
Material [103]. Electrons move on a lattice couple to the
electromagnetic gauge field via the Peierls substitution:
t̃ → t̃ exp[−i

∫ rk

r j
A(τ ) · dr], where r j is the coordinate of

lattice site j. Thereby, in the presence of CPL, the DSM
Hamiltonian becomes periodic in time H (τ ) = H (τ + T ). In
the following we use the natural units e = h̄ = c = 1. Thanks
to Floquet’s theorem, we can transfer the time-dependent
Hamiltonian problem to a time-independent one [92,93].
Specifically, the time-dependent Schrödinger equation has a
set of solution |
(τ )〉 = e−iετ |�(τ )〉, where ε denotes the
Floquet quasienergy, and |�(τ )〉 = |�(τ + T )〉 is dubbed the
Floquet state. Expanding the Floquet state in a Fourier series

FIG. 1. Electronic structures and bulk topology of the time-
symmetric DSM. (a) Bulk band structure along high-symmetry
points in the 3D Brillouin zone. The red dots mark the bulk Dirac
points. (b) The surface band dispersion vs kz direction for ky = 0. The
open boundary condition (OBC) is imposed along the x direction.
The solid blue lines show the gapless surface Dirac states. (c) The
surface spectral function on the ky − kz plane with the semi-infinite
boundary along the x direction when E = 0. The red dots at ±π/2
are the projection of Dirac points, and the red circle marks the surface
Fermi rings from the surface Dirac states shown in (b). (d) The en-
ergy spectrum vs kz with the OBC along both the x and y directions.
The solid red lines represent the topologically protected hinge Fermi
arc states. The Dirac points at kz = ±π/2 are gapped due to the size
effect. (e) The local density of states (LDOS) of the hinge Fermi
arc states at kz = 0.1π . (f) The kz-dependent quantized quadrupole
moment Qxy. The two quantized plateaus of Qxy correspond to two
segments of degenerate hinge Fermi arc states. The parameters are
chosen as t1 = 0.3, t2 = 0.2, λ = 0.5, t = 1, tz = 0.8, K0

z = π/2, and
g = −0.4.

|�(τ )〉 = ∑
n e−inωτ |�n〉, we arrive at an infinite dimensional

eigenvalue equation in the extended Hilbert (or Sambe) space,

∑

m

(Hn−m − mωδmn)
∣∣�m

α

〉 = εα

∣∣�m
α

〉
, (3)

where Hn−m = 1
T

∫ T
0 dτei(n−m)ωτ H (τ ). Throughout, we focus

on the case in the high-frequency limit, where the resonant
interband transitions are very unlikely. This case yields an
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effective static Floquet Hamiltonian [94,95]:

Heff = H0 +
∑

l �=0

[H−l , Hl ]

lω
+ O(ω−2). (4)

In our calculations, the maximum value of l is determined by
checking whether the results converge.

Light-irradiated time-symmetric higher-order topologi-
cal DSM. First, we specify G(k) = g(cos kx − cos ky) sin kz,
which breaks the fourfold rotation symmetry C4z but pre-
serves TRS T and inversion symmetry P , where P = �3

and T = is2K, with K the complex conjugation. With the
present form of G(k), the Dirac points shown in Fig. 1(a)
stay at the same position as the case without G(k). Yet, the
surface states behave quite differently. A closed Fermi ring,

instead of helical Fermi arc states [Fig. 1(c)], emerges in the
surface Brillouin zone [4] when the Fermi energy cuts through
the surface Dirac cone [see the band crossing around kz = 0
marked in blue in Fig. 1(b)]. More importantly, the DSM
is endowed with the higher-order topology characterized by
Qxy(kz ) shown in Fig. 1(f). Note that G(kx, ky, kz = 0) = 0
due to explicit dependence of sin kz, which results in a vanish-
ing Qxy within a small window around kz = 0 for a finite-size
system. Quantized Qxy leads to topological hinge Fermi arcs
terminated by the projection of the Dirac points, as shown in
Figs. 1(d) and 1(e). Recently, the evidence of hinge Fermi arc
states was experimentally reported in DSM Cd3As2 [85,86],
which might be attributed to the existence of this type of G(k).

In the presence of CPL propagating along the z direc-
tion, we obtain an effective Floquet Hamiltonian according
to Eq. (4):

H I
eff(k) = [

t1
(

cos kz − cos K0
z

) + t2J0(A)(cos kx + cos ky) − 2t2
] + λJ0(A)(sin kx�1 + sin ky�2) + J0(A)G(k)�4

+ [
tz
(

cos kz−cos K0
z

)+tJ0(A)(cos kx +cos ky) − 2t
]
�3 +

∑

l>0,l∈odd

4ηJ 2
l (A)

l h̄ω
{λ2 cos kx cos ky�12

− λt[cos kx sin ky�13 − sin kx cos ky�23] + λg sin kz[cos kx sin ky�14 − sin kx cos ky�24]

+ 2tg sin kx sin ky sin kz�34}, (5)

where Jl (A) is the Bessel function of lth order and of the
first kind, � jk = [� j, �k]/2i. Equation (5) indicates that CPL
not only renormalizes electron hopping perpendicular to the
propagation direction but also induces TRS breaking hopping
terms. Notably, each Dirac point is separated into a pair of
Weyl points, resulting in a Floquet WSM with two pairs
of Weyl nodes. The Floquet WSM hosts surface Fermi arc
states around the original Dirac points, which connect the
projection of each single pair of Weyl nodes as depicted in
Figs. 2(a)–2(d). Note that electron pockets are formed around
the projection of two of the four Weyl points, because each
pair of Weyl nodes is separated in energy [see the zoom-in
plots in Figs. 2(b) and 2(d)]. As depicted in Figs. 2(a) and
2(c), the WSM also supports the closed-surface Fermi ring
generated by surface Dirac states, as does the undriven DSM.
Coexistence of Fermi arcs and Fermi rings on the surface of
time-reversal invariant WSM had been revealed in Ref. [96].
In our case, TRS is broken in the Floquet WSM; however,
the coexisting Fermi arcs and Fermi ring are still present.
Moreover, the Floquet WSM also features the hinge Fermi arc
states terminated by the projection of two adjacent Weyl nodes
from two different pairs [Fig. 2(e)]. To capture the topology
of the Floquet WSM, in Fig. 2(f) we show the quantized
quadrupole moment and the Chern number as functions of
kz. We can see that the quadrupole moment takes a quantized
value of Qxy = 1/2 in between the two middle Weyl points,
and the Chern number displays Cn = 1 between the same pairs
of Weyl nodes.

The Dirac points in Cd3As2 come from the band cross-
ing induced by band inversion. The characteristic low-energy
scale describing the band inversion is about 50 meV [97,98].

We notice the pump photon energy in a recent experiment on
Floquet band engineering can reach 440 meV [99]. Therefore
the implementation of CPL at high frequency is feasible in
such a Dirac semimetal material.

Light-irradiated PT -symmetric higher-order topological
DSM. We consider G(k) is independent of kz, i.e., G(k) =
g(cos kx − cos ky), it also generates higher-order topology in
the DSM. The previously defined TRS is broken; however,
the system still has two fourfold degenerate Dirac points
[Fig. 3(a)], which is called PT -symmetric DSM as the com-
bination of TRS and inversion symmetry P ⊗ T = is2σ2K is
preserved. It is still of interest to ask whether CPL induces
intriguing Floquet topological states as it does in the time-
symmetric DSM. Before going into the Floquet states, it’s
better to take a look at the electronic structure of the DSM.
From Fig. 3 we can see that, in contrast to the time-symmetric
type DSM, the surface states in PT -symmetric DSM are
separated and no surface Dirac cones exist [Figs. 3(b) and
3(c)]. Still, it supports gapless hinge Fermi arc states ter-
minated on the projection of two Dirac points, as shown
in Figs. 3(d) and 3(e). Moreover, in Fig. 3(f) we calculate
Qxy(kz ) to capture the higher-order topology of this type of
DSM. Such a type of higher-order topological DSM can be
realized in antiferromagnetic systems, as the present �4 term
may represent an orbital-dependent spin-density wave. Under
the high-frequency CPL along the z direction, we also ob-
tain an effective Floquet Hamiltonian for the PT -symmetric
higher-order topological DSM, which can be considered as
a special case of Eq. (5) where sin kz = 1. Similarly, CPL
renormalizes the original hoppings and also induces the next-
nearest-neighbor hoppings on the x − y plane, which breaks

L121407-3



WANG, WANG, SUN, CHEN, AND XU PHYSICAL REVIEW B 107, L121407 (2023)

FIG. 2. The electronic structure and bulk topology of the Floquet
WSM in the light-irradiated time-symmetric DSM. (a) The surface
band structure vs kz for ky = 0. (b) The zoom-in view of the area
around the pair of Weyl points within the black dashed square in (a).
The red dots show the Weyl points, and the red solid lines represent
the surface Fermi arc states. (c) The surface spectral function on the
ky − kz plane with the semi-infinite boundary along the x direction
at EF marked in red dashed line in (b). The red solid lines around
the original Dirac points mark the surface Fermi arcs, which connect
the same pair of Weyl points. The red closed circle shows the surface
Fermi rings. (d) The zoom-in view of the surface Fermi arc within the
black dashed square in (c). The shaded area connecting the right end
of the Fermi arc marks the electron pocket. (e) The energy spectrum
as a function of kz for the OBC along the x and y directions. The
hinge states are marked by the solid red lines. (f) Qxy and the Chern
number Cn marked in orange and blue, respectively, as functions of
kz. The parameters are the same as those in Fig. 1, except A = 0.7
and ω = 3.

P ⊗ T . Accordingly, each Dirac point splits into a pair of
Weyl points along the kz direction in reciprocal space. Interest-
ingly, the two middle Weyl points from two different pairs are
connected by two separable surface-state bands [see the solid
blue lines in Fig. 4(a)], while the two Weyl points within the
same pair evolved from the same Dirac point are connected by
surface Fermi arc states, as displayed in Figs. 4(b), 4(c), and
4(d). Just like in the light-irradiated time-symmetric DSM, the
surface Fermi arc states are also terminated by the projection
of a Weyl node and an electron pocket. The emergence of the
Fermi arc states is attributed to a k-dependent Cn plotted in
Fig. 4(f). In addition, as shown in Fig. 4(e), gapless hinge
Fermi arc states exist between the two middle Weyl points,

FIG. 3. The energy spectrum and bulk topology of the PT -
symmetric DSM. (a) Band structure along high-symmetry points in
the 3D Brillouin zone. (b) The surface band structure vs kz direction
for ky = 0. The blue solid lines show the separable surface state
between two Dirac points marked in red dots. (c) The surface spectral
function on the ky − kz plane with the semi-infinite boundary along
the x axis when E = 0. The red dots are the projection of two Dirac
points. (d) The energy spectrum vs kz for the OBC along both the
x and y directions. The solid red lines represent the topologically
protected hinge Fermi arc states. (e) The LDOS of the hinge Fermi
arc states at kz = 0.1π . (f) The kz-dependent quantized quadrupole
moment Qxy. Qxy shows a quantized plateau where the hinge Fermi
arc marked in (d) exists. The parameters are chosen as t1 = 0.3,
t2 = 0.2, λ = 0.5, t = 1, tz = 0.8, K0

z = π/2, and g = −0.4.

whose higher-order topology can also be characterized by
Qxy(kz ) demonstrated in Fig. 4(f).

Tilting effect on the Floquet WSM. KMgBi was identified
as a critically tilted DSM [100] with higher-order topol-
ogy [80] that is believed to be caused by G(k) = g(cos kx −
cos ky) sin kz. Strain or chemical doping can change the tilt of
Dirac cones and drive the DSM into a phase with type-II (i.e.,
overtilted) [101,102] Dirac cones. The transition between
type-I and type-II Dirac cones is determined by the ratio of
|t1/tz| in Eq. (1). For overtitled Dirac cones with |t1/tz| > 1,
shining CPL can also create Floquet WSM states. Figure 5
shows the Floquet WSM in the CPL-illuminated time-
symmetric DSM with tilted Dirac cones. When |t1/tz| = 1,
the DSM is at the critical point between the type-I and
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FIG. 4. The electronic structure and bulk topology of the Floquet
WSM in the light-irradiated PT -symmetric DSM. (a) The surface
band structure along kz direction when ky = 0. The blue solid lines
show the separable surface state between the two middle of Weyl
points marked in red dots. (b) The zoom-in view of the area around
the pair of Weyl points within the black dashed square in (a). The
red solid lines represent the surface Fermi arc states. (c) The surface
spectral function on the ky − kz plane with the semi-infinite boundary
along the x direction at EF marked by red dashed line in (b). The red
lines around the original Dirac points show the surface Fermi arc
states, which connect the same pair of Weyl points. The zoom-in
view of the surface Fermi arc within the black dashed square in (c).
The shaded area attached to the right end of the Fermi arc marks the
electron pocket. (e) The energy spectrum as a function of kz for the
OBC along the x and y directions. (f) Qxy and Cn marked in orange
and blue, respectively, as functions of kz. The parameters are the
same as those in Fig. 2.

type-II DSMs. Accordingly, a critical type of Floquet WSM
is obtained as shown in Fig. 5(a). When |t1/tz| > 1, a type-II
Floquet WSM appears by applying CPL. In this case, electron
and hole pockets meet at the Weyl points [Fig. 5(b)]. From
Figs. 5(c)–5(f) we can see that the type-II WSM also hosts
surface Dirac states, surface Fermi arc states, as well as hinge
Fermi arc states; however, these boundary states are deeply
buried in the bulk states.

At last, we would like to briefly discuss how the Floquet
WSM responds to change in propagation orientation of CPL.
Applied CPL propagating along the x direction can also in-
duce Floquet WSM states in higher-order topological DSMs.
In the Supplemental Material [103], we show that starting

FIG. 5. The energy spectrum of tilted Floquet WSMs. (a) Bulk
band structure of the critical type of WSM along the high-symmetry
points in the 3D Brillouin zone. The four red dots mark the Weyl
nodes. The inset is a zoom of a pair of Weyl nodes. The green
and purple triangles in the inset represent the conduction band and
valence band, respectively. (b) The bulk band of the type-II WSM
with t1 = 1.3 and |t1/tz| > 1. (c) The surface band structure along
kz direction when ky = 0. The solid blue lines show the gapless
surface Dirac states, and red lines are the surface Fermi arc states
between pairs of Weyl nodes. (d) The surface spectral function on
the ky − kz plane with the OBC along the x axis when E = 0.29.
The electron and hole pockets are marked by yellow shaded re-
gions. The red curves are the surface Fermi arcs. (e) The energy
spectrum vs kz for the OBC along the x and y directions. The red
solid lines represent the hinge Fermi arc state. (f) The LDOS of the
hinge Fermi arc state at kz = 0.1π . The parameters are chosen to
be t2 = 0.2, λ = 0.5, t = 1, tz = 0.8, K0

z = π/2, g = −0.4, A = 0.7,
and ω = 3.

with a time-symmetric higher-order topological DSM with
type-I Dirac cone, the CPL along the x direction can induce a
Floquet WSM with overtilted type-II Weyl cones. This implies
that the type of Floquet WSMs can be tuned by adjusting the
propagation direction of incident light.

Conclusions. In this work we have investigated the CPL-
induced Floquet WSM states in both time-symmetric and
PT -symmetric higher-order topological DSMs. The emer-
gent Floquet WSM states exhibit higher-order topological
hinge Fermi arc states characterized by a k-dependent
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quadrupole moment. Moreover, the Floquet WSMs show
gapless Fermi arc states whose topologies are characterized
by a k-dependent Chern number. Our work not only reveals
exotic hybrid-order topological WSM states but also suggests
an approach to realizing such WSMs in solids rather than
acoustic systems [104,105].
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