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Nonlocal drag thermoelectricity generated by ferroelectric van der Waals heterostructures
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The “ferron” excitations of the electric-dipolar order carry energy as well as electric dipoles. Here, we predict
a nonlocal ferron-drag effect in a ferroelectric on top of a metallic film: An electric current in the conductor
generates a heat current in the ferroelectric by long-range charge-dipole interactions. The nonlocal Peltier and
its reciprocal Seebeck effect can be controlled by electric gates and detected thermographically. We predict large
effects for van der Waals ferroelectric films on graphene.
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The electron-electron interaction between closely spaced
two-dimensional electron gases (2DEGs) gives rise to non-
local Coulomb drag effects [1–3], in which a current in an
active layer induces a voltage over the passive one. The con-
cept of Coulomb drag has been extended to other systems
and interactions. A local drag effect by the electron-phonon
interaction contributes to the thermopower in bulk conduc-
tors [4–7] and also a nonlocal drag effect can be mediated
by phonons in the spacer between the 2DEGs [8–10]. In
ferromagnetic metals, magnons, the quasiparticle excitations
of local magnetization, transfer their momenta to conduction
electrons by the exchange interaction. This local magnon drag
effect enhances the Seebeck and Peltier coefficients [11–16].
The voltage in one layer induced by a current in the other in
a heavy metal/ferromagnetic insulator/heavy metal stack is
a nonlocal drag effect caused by the spin Hall effect [17–19].
Theory predicts that magnons in magnetic films separated by a
vacuum barrier experience a nonlocal drag effect by the mag-
netodipolar interaction [20]. The magnetodipolar interaction
can also mediate an energy transfer through an air gap [21],
but a nonlocal magnon drag effect has not yet been observed.

Ferroelectrics exhibit an electrically switchable sponta-
neous polarization that orders below a Curie temperature.
Recently, we introduced “ferrons,” the bosonic excitations of
ferroelectric order that carry elementary electric dipoles in
the presence of transverse [22,23] or longitudinal fluctuations
[24]. Ferrons are the anharmonic symmetry-restoring fluctu-
ations on top of the symmetry-broken ground state. So while
in displacive ferroelectrics [25,26] ferrons are also phonons,
the phonons in normal dielectrics are not ferrons. A direct
experimental observation of the predicted polarization and
heat transport phenomena, e.g., by the transient Peltier effect
[22] and associated stray fields [23], may not be so simple,
however.

Here, we pursue ideas to simplify the detection of ferronic
effects via nonlocal thermoelectric drag effects in bilayers of a
ferroelectric and a metal, which opens unconventional strate-

gies for heat-to-electricity conversion. We consider a film of
a perpendicularly polarized ferroelectric insulator on top of
an extended metallic sheet that experiences a “ferron drag” in
the form of a nonlocal Peltier effect, i.e., a heat current in the
ferroelectric generated by an electric current in the metal film
(see Fig. 1). We assume that the electric dipoles are all located
in a common plane and that the electrons in the metal move
in a parallel plane. This two-dimensional (2D) assumption is
valid when the two films are separated by a distance d much
larger than their thickness, but certainly appropriate when the
conductor is, e.g., graphene and the ferroelectric a van der
Waals mono- or bilayer [27–34].

The linear response relations of transport or Ohm’s law in
our bilayer (in the x direction) connect four driving forces,
i.e., an in-plane electric field EM in the metal, a gradient of
an out-of-plane electric field ∂EFE in the ferroelectric, and
independent temperature gradients in the two films, with the
charge current jc in the metal, polarization current jp in the
ferroelectric. and the heat currents j (M)

q and j (FE)
q ,
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(1)

where we already inserted the Onsager-Kelvin relation Li j =
Lji between the off-diagonal transport coefficients. We focus
here on the steady state with finite EM that induces polariza-
tion and heat currents in the ferroelectric. In the following,
we disregard small thermoelectric effects in the metal and
thermal leakage between the films. This assumption holds
for efficient interlayer thermal isolation and a metallic sheet
with high thermal conductivity. The task then reduces to the
calculation of the polarization drag ϑD ≡ L13/L11 as well as
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FIG. 1. A schematic of the nonlocal ferron-drag Peltier effect be-
tween an extended metallic (M) and a perpendicularly polarized and
electrically insulating ferroelectric (FE) film. A charge current ( jc) in
the active M sheet transfers its linear momentum to the ferrons in the
FE by the electrostatic interaction, leading to heat accumulations at
the FE edges. The orange balls represent the ferrons, while the small
black arrows are the ferron dipoles that oppose the ferroelectric order
and can couple with an out-of-plane electric field (EFE).

the thermoelectric effects summarized by( − jc
j (FE)
q

)
=

(
L11 L14

L14 L44

)( −EM

−∂ ln TFE

)
, (2)

in which we identify the nonlocal Peltier coefficient πD =
L14/L11 and thermopower sD = πD/TFE. The electrical con-
ductivity σ = L11 is also affected by the equilibrium fluctua-
tions of the nearby ferroelectric.

The conduction electrons in the metallic layer interact with
the electric polarization P(r) = P(r‖)δ(z − d )ẑ of the ferro-
electric at z = d by the electrostatic energy

Hint = −
∫

Eel(r) · P(r)dr, (3)

where

Eel(r) = − e

4πεrε0

∫
dr′ n(r′)

|r − r′|3 (r − r′) (4)

is the Hartree field of the electrons, −e the electron charge,
n(r) = n(r‖)δ(z) the electron density in the metal at z = 0,
and εr the relative permittivity of the separating barrier. Sub-
stituting Eq. (4) leads to

Hint = ed

4πεrε0

∫∫
dr‖dr′

‖
P(r‖)n(r′

‖)

[(r‖ − r′
‖)2 + d2]3/2

, (5)

where P(r‖) and n(r‖) represent the 2D polarization and elec-
tron density in units of C/m and m−2, respectively.

We model the ferroelectric by the Landau-Ginzburg-
Devonshire free energy [35,36]

F =
(

g

2
(∇P)2 + α

2
P2 + β

4
P4 + λ

6
P6 − EFEP

)
, (6)

where α = α0(T − Tc), β and λ > 0 are the Landau coeffi-
cients, Tc the Curie-Weiss temperature, g > 0 the Ginzburg
parameter accounting for the energy cost of an inhomoge-
neous polarization, and EFE is an out-of-plane electric field
acting on the ferroelectric order. The phase transition for β <

0 (β > 0) is first (second) order. A uniform spontaneous po-
larization P0 minimizes F by αP0 + βP3

0 + λP5
0 = EFE, which

gives P2
0 = [−β + (β2 − 4αλ)1/2]/(2λ) when EFE = 0. The

nonlinear static dielectric susceptibility with the field reads

χ (EFE) = ∂P0(EFE)

∂EFE
= 1

α + 3βP2
0 (EFE) + 5λP4

0 (EFE)
. (7)

Small fluctuations δP(r‖, t ) = P(r‖, t ) − P0 can be quantized
as [24]

δP(r‖, t ) =
√

h̄

2mpA

∑
q

âqeiq·r‖

√
ωq

+ H.c., (8)

where mp is the polarization inertia that depends on the ionic
masses Mi and Born effective charges Qi in the unit cell
of area A0 as mp = A0(

∑
i Q2

i /Mi )−1 [37], A the area of the
ferroelectric sheet (assumed to be the same as the metal), and
âq (â†

q) the annihilation (creation) operator of ferrons with the
dispersion relation

ωq =
(

gq2 + χ (EFE)−1

mp

)1/2

. (9)

The electric dipole carried by a single ferron is then identified
as [24]

δpq = −∂ h̄ωq

∂EFE
= h̄

2mpωq

∂ ln χ

∂P0
< 0, (10)

where the negative sign indicates its opposite direction to the
ferroelectric order.

In 2D momentum space Eq. (5) now reads

Hint = e

2εrε0A

∑
q

e−dqn(q)
∫

dr‖δP(r‖)eiq·r‖ , (11)

where we dropped a constant energy shift related to P0 and
n(q) = ∑

kνν ′ F †
kνF(k+q)ν ′ ĉ†

kν ĉ(k+q)ν ′ is the Fourier component
of the 2D electron density in terms of the field operators ĉ†

kν

and ĉkν with momentum k, band index ν, and the correspond-
ing spinor wave functions Fkν . F †

k′ν ′Fkν = (ei(θk′ −θk ) + νν ′)/2
(=δν,ν ′ ) for graphene (normal metals), where tan θk = ky/kx

and ν = +1 and ν = −1 indicate the conduction and valence
bands, respectively [38,39]. Substituting Eq. (8) yields

Hint =
∑
kqνν ′

Vkq(ν ′, ν)ĉ†
(k+q)ν ′ ĉkν âq + H.c., (12)

where

Vkq(ν ′, ν) = e

2εrε0

√
h̄

2mpA

e−dq

√
ωq

F †
(k+q)ν ′Fkν (13)

is the bare inelastic scattering amplitude of the electrons.
The screening by the conduction electrons and electric

dipoles is a many-body problem in which Vkq(ν ′, ν) →
Vkq(ν ′, ν)/ε(q, ω) and ε(q, ω) is the dielectric function. At
sufficiently high conduction electron densities, the ferron en-
ergies are small compared to the Fermi energy and we may
adopt static screening ω → 0. For q < 1/(2d ) � 2kF , where
kF is the Fermi wave vector, it is sufficient to adopt the
Thomas-Fermi screening approximation [38–43], i.e.,

Vkq(ν ′, ν) → Ukq(ν ′ν) = Vkq(ν ′ν)

1 + qTF/q
, (14)
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where qTF = e2DF /(2εrε0) is the 2D Thomas-Fermi wave
vector in terms of the density of state DF at Fermi level.
The screening by the ferroelectric dipoles is negligibly small
compared to that of the free electrons when the ferroelectric
sheet is sufficiently thin. The screening then does not depend
on d .

We consider now the effect of a charge current jc driven
by an electric field (EM) along the x direction in the metallic
sheet that deforms the electron distribution function fkν from
the Fermi-Dirac form f (0)

kν = {exp[(εkν − εF )/kBT ] + 1}−1 in
momentum space, where εkν is the electronic band structure,
εF the Fermi energy, T the temperature, and kB Boltzmann’s
constant. Within relaxation time approximation the linearized
Boltzmann equation in the metal reads

fkν = f (0)
kν

+ eτev
(x)
kν

EM
∂ f (0)

kν

∂εkν

, (15)

where τe is the relaxation time and v
(x)
kν

= ∂εkν/∂ h̄kx the group
velocities in the transport (x) direction, with v

(x)
kν → h̄kx/me

(νvF kx/|k|) for a free-electron gas with effective mass me

(or a Dirac cone of graphene with Fermi velocity vF ). The
associated electric current density reads jc = σEM , where

σ = e2τeδ

A

∑
k

(
v

(x)
kν

)2
(

−∂ fkν

∂εkν

)
(16)

is the electrical conductivity and δ includes the spin and valley
degeneracies.

In the Supplemental Material A [44] we derive a ferron-
electron scattering contribution that drastically reduces the τe

at the Curie temperature of the ferroelectric. The observation
of the predicted critical enhancement of the scattering rate
would provide a proof of ferron excitations independent of
the thermoelectric effects discussed in the following.

The bosonic ferron distribution function Nq in the ferro-
electric is governed by another linearized Boltzmann equation
[24,45]. Far from the edges and in the absence of temperature
or effective field gradients, the steady state distribution reads

Nq = N (0)
q + τ f

∂Nq

∂t

∣∣∣∣
int

, (17)

where N (0)
q = [exp(h̄ωq/kBT ) − 1]−1 is the equilibrium

Planck distribution, and τ f the ferron relaxation time. The
new ingredient is the collision integral ∂Nq/∂t |int, which by
the current in the metal and via the interlayer interaction Uq
renders Nq �= N−q. The electrons scatter from occupied to
empty states, creating and annihilating a ferron in the process.
According to Fermi’s golden rule,

∂Nq

∂t

∣∣∣∣
int

= 2πδ

h̄

∑
k

∣∣Ukq
∣∣2

[(1 + Nq) f(k+q)ν (1 − fkν )

− Nq fkν (1 − f(k+q)ν )]δ(εkν − ε(k+q)ν + h̄ωq),
(18)

while energy and momentum are conserved. Here, insignif-
icant interband processes (ν �= ν ′) have been discarded. To
leading order, we may replace Nq on the right-hand side of
Eq. (18) with N (0)

q and substitute the distribution function of

the field-biased conductor Eq. (15):

Nq = N (0)
q + 2πδτ f

h̄

∂N (0)
q

∂ h̄ωq

∑
k

∣∣Ukq
∣∣2(

f (0)
(k+q)ν − f (0)

kν

)
× eτeEM

(
v

(x)
k+q − v

(x)
k

)
δ(εkν − ε(k+q)ν + h̄ωq). (19)

We can now derive the nonlocal Peltier πD = − j (FE)
q / jc

and polarization drag ϑD = jp/ jc coefficients by evaluating
the heat and polarization currents for the deformed ferron
distribution functions by j (FE)

q = A−1 ∑
q u(x)

q Nq h̄ωq and jp =
A−1 ∑

q u(x)
q Nqδpq, respectively, where u(x)

q = ∂ωq/∂qx is the
ferron group velocity along the x direction:

πD = 2πeτ f τeδ

σ h̄A

∑
kq

h̄ωqu(x)
q

(
v

(x)
k+q − v

(x)
k

)∂N (0)
q

∂ h̄ωq
|Ukq|2

× (
f (0)
k+qν

− f (0)
kν

)
δ(εkν − ε(k+q)ν + h̄ωq), (20)

ϑD = 2πeτ f τeδ

σ h̄A

∑
kq

δpqu(x)
q

(
v

(x)
k+q − v

(x)
k

)∂N (0)
q

∂ h̄ωq
|Ukq|2

× (
f (0)
k+qν

− f (0)
kν

)
δ(εkν − ε(k+q)ν + h̄ωq). (21)

We proceed by adopting the quasielastic approxima-
tion, i.e., δ(εkν − ε(k+q)ν + h̄ωq) ≈ δ(εkν − ε(k+q)ν ), assum-
ing that the Fermi energy is much larger than that of the
ferrons (�10 meV) [24]. This is the case in graphene with
homogeneous electron densities n0 > 1012 cm−2 and Fermi
energies εF > 0.11 eV [43]. At kBT 	 εF , fkν − f(k+q)ν 

h̄ωqδ(εkν − εF ), and we find

πD 
 eτ f gh̄3D2
F

32δm2
pε

2
0 n0kF kBT

∫ 2kF

0

cos2(θ/2)q2dq√
1 − (q/2kF )2

× e−2dq

(1 + qTF/q)2
csch2

(
h̄ωq

2kBT

)
. (22)

In contrast to the free-electron gas there is a factor cos2(θ/2)
that arises from the overlap |F †

(k+q)νFkν |2, where θ is the
scattering angle determined by q = 2kF sin(θ/2). A similar
expression can be derived for ϑD by replacing h̄ωq with δpq.

The spatial separation limits the momentum transfer expo-
nentially via the factor exp(−2dq) to q < 1/(2d ). At large
distances with kF d � 1, qTFd � 1, and d � l ≡ √

gχ , only
the ferrons located near the center of Brillouin zone contribute
and

πD ≈ 3π

8δ2

τ f ω0

(kF d )3

(
l

d

)2
(

h̄2

e3mp

)
ξ0 csch2

(
ξ0

2

)


 3π

2δ2

τ f ω0

(kF d )3

(
l

d

)2
(

h̄2

e3mp

){
ξ0e−ξ0 for ξ0 � 1,

ξ−1
0 for ξ0 	 1,

ϑD ≈ πD

2

∂χ

∂P0
, (23)

where ξ0 = h̄ω0/kBT and ω0 = (χmp)−1/2 the ferron gap.
l ≡ √

gχ is the coherence length of the ferroelectric order, a
measure of the ferroelectric domain wall width [46,47]. Since
magnetic domain wall widths that scale as ∼√

J/K , where J is
the exchange interaction and K is the anisotropy that governs
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FIG. 2. The nonlocal ferron-drag Peltier coefficient (πD) as a
function of the electron concentration (n0) in graphene for various
interlayer distances (d). The πD exhibit an asymmetric dependence
on the relative direction of an external field (EFE) to the ferroelectric
order.

the magnon gap, and χ−1 plays the role of the anisotropy by
stiffening the ferroelectric order.

The T/d5 scaling relation at large distances and elevated
temperatures for the drag efficiency differs from that of the
Coulomb drag effect between two metallic sheets (∼T 2/d4)
[1,2]. We can trace the difference to the faster decay of
electron-dipole interactions (∼r−2) compared to those be-
tween charges (∼r−1) as a function of distance while the
Planck distribution of the ferrons compared to the Fermi dis-
tribution of electrons leads to an increased phase space for
scatterings at low temperatures (kBT 	 εF ).

For a numerical estimate, we consider here a bilayer
composed of graphene and a van der Waals ferroelectric
monolayer and separated by an inert hexagonal boron nitride
(hBN) layer with (out-of-plane) εr = 3.76 [48]. In graphene
εkν = ν h̄vF |k| with vF = 108 cm/s, DF = 2εF /(π h̄2v2

F ),
δ = 4, and kF = (4πn0/δ)1/2 [43]. Since we could not find
the model parameters of a 2D ferroelectric with out-of-plane
polarization in the literature, we adopt numbers close to the
well-documented in-plane ferroelectric monolayer SnSe [49]:
τ f = 1 ps, Tc = 326 K, α0 = 1.54 × 103 V K−1/pC, β =
1.48 × 105 V cm2/pC3, λ = 2.75 × 104 V cm4/pC5, g =
0.33 V m2/C, and mp = 10−8 V s2/C. Figure 2 shows the
ferron-drag Peltier coefficient as a function of graphene
excess electron density (n0) for various interlayer distances
d at room temperature. πD has a maximum at an optimal
n0 that decreases with d because a larger n0 increases the
electron-ferron scattering for small n0 while the increased
screening wins at larger densities, which is easier for larger d .
πD depends not only on the strength, but also on the direction
of an external electric field (below the coercive field), i.e., πD

is reduced (enhanced) by the positive (negative) field along
the ferroelectric order, because of the fact that the ferrons
carry nonzero electric dipoles.

The drag effect results in heat and polarization accumu-
lations in the ferroelectric (see Fig. 1). Assuming that both
films are thermally isolated, a temperature gradient TFE(x) =
T0 + ∂TFE(x − L/2) emerges in a ferroelectric with length L,
where T0 is the ambient temperature. The open circuit condi-
tion for the heat current, i.e., j (FE)

q = −πD jc − κFE∂TFE = 0,
leads to ∂TFE = (−πD/κFE) jc, where κFE is the 2D thermal
conductivity of the ferroelectric sheet (in units of W/K).
The polarization accumulation �P(x) vanishes except for the
neighborhood of the edges on the scale of the polarization
relaxation length [22].

With d = 1 nm, n0 = 1013 cm−2, we have πD = 367 µV
at the room temperature. The maximum current density in
graphene is limited by self-heating to ∼30 A/cm [50], but
even for jc = 3.4 × 10−2 A/cm (or a bulk current density
j (b)
c = 106 A/cm2) this modest Peltier coefficient generates

a large temperature gradient ∂TFE = 5 K/µm for κFE =
2.5 × 10−10 W/K (or bulk κ

(b)
FE = 0.5 W/Km for a mono-

layer thickness of 5 Å [51]) because of the simultaneous low
thermal conductivity of the ferroelectric and high available
current density in graphene. This should be easily observ-
able close to the edges, even when some heat current leaks
from the ferroelectric into the graphene. Inversely, a temper-
ature gradient in the ferroelectric generates a charge current
in graphene, i.e., a nonlocal ferron-drag thermopower. sD =
πD/T0 = 1.23 µV/K at T0 = 298 K. However, this number is
at least an order of magnitude smaller than that of a single
graphene [52,53].

For sufficient thermal isolation between the ferroelectric
and graphene layers the figure of merit of the ferron-
drag thermoelectric device can be defined and estimated
as

(ZT )D = σ s2
DT0

κFE
= 2.6 × 10−3, (24)

where σ = 1.38 × 10−3 S is the electrical conductivity with
the nearby ferroelectric at n0 = 1013 cm−2 [44]. This (ZT )D is
comparable to that of graphene [54] but it may be engineered
to become larger by, e.g., optimizing the electron density
of graphene as shown in Fig. 2 or stacking m ferroelectric
monolayers with (ZT )D ∝ m as long as all of them stay in
the range of the dipolar interaction and the ferroelectric main-
tains its two-dimensional properties. The predicted substantial
figure of merit (FOM) in spite of the small sD relies on
beating the Wiedemann-Franz law that hinders conventional
thermoelectric devices: The small heat conductivity in the fer-
roelectric does not depend on the electric conductivity in the
conductor, which is large in graphene in spite of the additional
ferron scattering [44].

According to Supplemental Material B [44] the current
drag is not specific for ferrons: The expressions are identi-
cal for in-plane longitudinal and out-of-plane polarized polar
optical phonons, except for the difference in the frequency
dispersions and other relevant parameters. We therefore en-
courage the search for thermoelectric effects in any highly
polarizable insulator. The attraction of using ferroelectrics is
strong dependence and control of larger effects by temperature
and applied electric field as well as nonvolatile switching
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of the ferroelectric order. The critical enhancement of the
electrical resistance at the Curie temperature is also unique
for ferroelectrics.

Conclusion. We predict significant nonlocal ferron-drag
thermoelectric effects in bilayers of ferroelectric insulators
and conductors that are separated by a small distance d . A
remote gate-field-controlled Peltier effect can be detected by
standard thermography and would prove the existence of the
ferron quasiparticles in ferroelectrics. The results can be read-
ily extended to the limit d = 0 corresponding to van der Waals
conducting ferroelectrics, known as ferroelectric metals, in
which electric polarization and mobile electrons coexist [55],
and the ferroelectrics with in-plane spontaneous polarization.
In the dipole approximation of the ferroelectric charge dy-

namics, the mobile electrons cannot screen the perpendicular
ferroelectric order nor couple to the longitudinal ferrons. We
may expect a strong coupling to the transverse ferrons, how-
ever, with associated interesting thermoelectric phenomena
presently under investigation. Our work opens strategies for
the design of thermoelectric devices that are not bound by the
Wiedemann-Franz law.
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