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Phase diagram detection via Gaussian fitting of number probability distribution
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We investigate the number probability density function that characterizes subportions of a quantum many-body
system with globally conserved number of particles. We put forward a linear fitting protocol capable of mapping
out the ground-state phase diagram of the rich one-dimensional extended Bose-Hubbard model: The results
are quantitatively comparable with more sophisticated traditional and machine learning techniques. We argue
that the studied quantity should be considered among the most informative bipartite properties, being moreover
readily accessible in atomic gases experiments.
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I. INTRODUCTION

In recent years, quantum information and condensed mat-
ter theory have considerably cross fertilized, and a wealth
of properties (mainly) of bipartite systems have emerged as
powerful indicators of the many-body wave-function proper-
ties. With their help, quantum phases of matter and transitions
between them have been characterized, and put in relation
with the underlying quantum field theories. When dealing
with the reduced density matrix of a subsystem, concepts
like the entropy of the associated probability distribution, as
well as its spectrum (technically the Schmidt singular values),
are indeed unveiling the entanglement properties of the state
of the system. A first prominent example is the logarithm
scaling of the von Neumann (and, more generally, of any
Rényi) entanglement entropy with the bipartition size for one-
dimensional critical systems with local Hamiltonians [1–3]:
Fitting the coefficient in front of such law is arguably one of
the best ways to estimate the so-called central charge c of the
associated conformal field theory (CFT). As a counterpart, the
entanglement spectrum (ES) itself has been proven to exhibit
peculiar properties both in gapless and gapped phases [4–6],
and its degeneracy pattern is often used to tell different kinds
of topological phases apart [7,8]. Its structures embed infor-
mation about nonlocal quantum correlations, as formalized
within the bulk-boundary correspondence framework [9–11].
Both ad hoc defined order parameters [12,13] and machine
learning driven approaches [14–16] have been employed for
the detection of phase transitions. Last, but certainly not least,
the evolution of entanglement properties under the system
dynamics has recently unveiled the existence of new kinds
of nonequilibrium phase transitions for quantum many-body
systems under random projective measurements or unitary
gates [17–19].

*daniele.contessi@unitn.it
†alessio.recati@unitn.it
‡m.rizzi@fz-juelich.de

As a consequence of the above, considerable efforts have
been spent towards making such entanglement features mea-
surable in the laboratory [20–24]. Among the many, the
so-called number entanglement entropy is gaining a promi-
nent role: Its operational definition refers to the probability
density function (PDF) of a U(1) globally conserved charge
in an extensive subportion of the system, also for mixed states
[25]. Evidences of its distinctive dynamical behavior as a hall-
mark for many-body localization have been recently obtained
numerically and experimentally [26–28].

A specific property of the PDF has been explored in the
past, namely, its second momentum or, in other words, the
amount of charge fluctuations F across subsystems. As very
extensively explained in [29], a lot of properties of the fluctu-
ations are shared with the entanglement entropy: for a gapped
phase, they exhibit a strict area-law behavior, F ∝ Ld−1, with
L the linear size of the partition and d the dimension of the
system, whereas for a gapless phase there appears a loga-
rithmic correction: F ∝ Ld−1 ln L [30]. In particular, for a
Luttinger liquid, the scaling coefficient is related to the K pa-
rameter, thus yielding yet another piece of information about
the underlying field theory.

In this Letter, we propose an approach to map out the phase
diagram of quantum many-body systems by considering the
full PDF. We are able to detect all the phase transitions of
the one-dimensional extended Bose-Hubbard (EBH) model at
zero temperature by performing a simple and yet very general
procedure consisting of some educated fits of the PDF only,
therefore without resorting to any phase-specific quantity such
as order parameter or correlation. We show how the PDF,
being intimately related with the ES, preserves its intrinsic
wealth of information about the nature of the phases. This can
be exploited for an agnostic and automatic detection, as done
with the machine learning solutions to the problem involving
the ES. The huge advantage of the full PDF is its availability
in experiments, e.g., with quantum gas microscopes, and not
only in numerical simulations like the ones we perform here
via matrix-product-states (MPS) simulations with embedded
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quantum numbers. We also show that a finite-size scaling
analysis of the PDF leads to a pretty precise determination
of the phase boundaries, and that some previously found
functional forms of the PDF for limiting scenarios [3,31–35]
can be connected to each other.

II. MODEL AND METHOD

The Hamiltonian of the one-dimensional EBH model can
be written as

H =
L∑

j=1

(
− t (b†

j+1b j + H.c.) + U

2
n j (n j − 1) + V njn j+1

)
,

(1)
where b(†)

j is the annihilation (creation) bosonic opera-

tor and n j = b†
jb j the number operator on site j along a

one-dimensional chain with periodic boundary conditions
(PBCs). The hopping coefficient is denoted by t , while
U and V are the on-site and nearest-neighbor interaction
strengths. The zero-temperature phase diagram of the uni-
tary integer filled lattice, ν = N/L = 1, presents a number
of prototypical quantum phase transitions [36,37]: (i) a
Berezinskii-Kosterlitz-Thouless (BKT) transition between a
gapless superfluid (SF) and a gapped Mott insulator (MI)
phase, (ii) a c = 1 transition between the MI and a topo-
logical Haldane insulator (HI), and (iii) an Ising c = 1/2
transition between the HI and a charge density-wave (CDW)
state. Moreover, it has been recently pointed out that a
phase-separated regime between SF and supersolid (SF + SS)
[15,38] is present in the bottom right corner of the phase
diagram. We set the energy scale by taking t = 1, and focus on
the region U ∈ [0, 6] and V ∈ [0, 5] in order to have a direct
comparison with the works in [15,36].

We determine the ground state |ψg〉 of the EBH model
for various parameters by means of a MPS ansatz with U(1)
symmetric tensors. Indeed the EBH model is nonintegrable
and our numerical treatment is an almost unbiased approach
to it. We set the maximum occupation to nmax = 4 bosons per
site. We deal with PBCs by employing a loop-free geometry
of the tensor network and shifting the topology of the lattice
into the matrix product operator (MPO) representation of the
Hamiltonian (see the Supplemental Material of [39] for a
detailed description). In this way, we can reliably compute
relevant quantities for systems up to L = 256 sites, with a
discarded probability not exceeding 10−9.

We consider the system as divided into two equal portions
A and Ā: While the total number of particles is conserved, the
number in the single region can fluctuate. The measurement
of a deviation δn = m from the average density happens with
a probability

p(δn = m) = Tr(ρA�N/2+m) =
∑

α

λ(m)
α , (2)

where ρA := TrĀ|ψg〉〈ψg| is the reduced density matrix of
subsystem A, and �N/2+m is the projector on the sector with
N/2 + m occupancy. In the last equality we introduced the
eigenvalues λ(m)

α of ρA in the NA = N/2 + m particles sector:
They are also related to so-called ES eigenvalues ξ (m)

α , via the
relation λ(m)

α = e−ξ (m)
α [7,8]. Being the λ(m)

α ’s the natural metric

FIG. 1. Phase diagram of the EBH model traced with the resid-
uals of the PDF’s quadratic fit p(m) ∝ e−βm2

for a L = 64 system.
Details about the phase transitions along the dashed and dotted cuts
are shown in Fig. 2. The PDFs correspondent to the configurations
marked with the colored shapes are displayed below in Fig. 3.

on which truncations of the tensor network representation are
performed, the PDF is automatically at disposal without extra
computational costs. We notice here that, in an experimental
setup with access to site-resolved populations, the PDF is
obtained by bin counting the occupation numbers in half of
the system [26].

III. GAUSSIAN FIT OF THE DENSITY PDF

For gapless one-dimensional phases described by a CFT,
the PDF is a Gaussian, p(m) ∝ exp(−βm2), due to the pres-
ence of a single bosonic generator in the theory [29,32,40].
More precisely, the ES has been shown to be organized in
equally spaced parabolas ξ

(m)
α≡(k,γ ) = ξ0 + kξ1 + βm2, where

the index α = (k, γ ) denotes the order of the parabola and
the degeneracy of the eigenvalue, respectively, ξ0 is the lowest
eigenvalue of the ES, and ξ1 the difference between the lowest
and the second eigenvalue in the m = 0 particle sector [5]. As
we will detail below, we expect instead the PDF of gapped
phases to exhibit sensible deviations from this picture [6].

From the operational perspective, the differences between
Gaussian and other PDF profiles can be captured via the
average residuals of a two-parameter linear fit, namely,
1/Nm

∑
m[lnp(m) + βm2 + β ′]2 with Nm the number of fitted

points and β ′ a normalization-related parameter. In Fig. 1
we plot (the logarithm of) such quantity over the span m ∈
[−4, 4] for a fit performed upon the distribution values for
m ∈ [−2, 2]. This simple procedure turns out to be very ef-
fective to map out the entire phase diagram even without prior
knowledge of the phases and the PDF shapes to be expected.
We find perfect agreement with previous studies [15,36], with-
out resorting to any study of the correlation functions or gap
nor to the use of machine learning techniques and, even more
importantly, by using an experimentally very accessible quan-
tity. For the interested reader, we also provide in [41] the same
Fig. 1 computed from data of the simulated state-of-the-art
experiments in which we reconstruct the PDF and we fit it
from snapshots of the system for the particle counting. The
results show that with a feasible number of snapshots, it is in
principle possible to achieve a resolution comparable to the
numerical study.
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FIG. 2. Residuals of a Gaussian fit of the PDF p(m) ∝ e−βm2
for different system’s sizes L = 16, 32, 64, 128, 256 from light to dark

color in the proximity of (a) the gapped-to-gapped phase transitions MI-HI-CDW along the cut U = 5 and (d) the gapless-to-gapped phase
transitions SF-MI (BKT) for V = 0. In the insets, the location of the residuals’ minimum is fitted against the inverse of the system’s size in
order to extrapolate the critical VC for the MI-HI phase transition (b) and the HI-CDW transition (c).

It is worth noticing that our method properly identifies
even the recently postulated SF + SS phase, which appears
as a very noisy region in Fig. 1. This is a consequence of
the alternation of uniform density regions and density-wave
ordered ones [38]: The PDF is peaked on a value which is not
necessarily the average density but depends on the location of
the supersolid domains [41]. Since the PBC let this domain
emerge in random positions along the ring, this gives rise to
the above-mentioned noise.

Moreover, the nature of the phase transitions is reflected
in the evolution of the residuals in their vicinity: In Fig. 2
we show the trend of the average residuals for two cuts
of the phase diagram and different system’s sizes (L =
16, 32, 64, 128, 256 from light to dark color). The first cut of
Fig. 2(a) contains two gapped-to-gapped phase transitions for
fixed U = 5, from MI to HI and from HI to CDW as indicated
with a dotted line in Fig. 1. The location of the critical points
is easily determined by the abrupt decrease of the residuals
which becomes sharper and sharper as the length of the ring
increases: In the two insets Figs. 2(b) and 2(c) a detail on the
scaling of the critical VC against the inverse of the system
size is shown together with a linear fit. The extrapolation of
the critical values is in perfect agreement with the previous
studies, i.e., V = 2.95 ± 0.05 for the transition MI-HI and
V = 3.525 ± 0.05 for HI-CDW [36].

The second cut Fig. 2(d) encompasses the gapless-to-
gapped BKT phase transition from the SF to the MI at V =
0, indicated as a vertical dashed line in Fig. 1. It would
be interesting to find a scaling procedure for the residuals,
similarly to what is performed for the superfluid stiffness
and/or the K-Luttinger parameter in standard approaches: At
the moment, this remains, however, an open problem. We
stress, however, that the β parameter of the linear fit offers a
direct experimental access to the K-Luttinger parameter [29].
For completeness, we perform such an analysis in [41] (see,
also, Refs. [42,43] therein) and we obtain a critical value
Uc � 3.36 ± 0.01 in perfect agreement with previous studies
as reported in [44]. The location of the transition corresponds
to the uprising of the residuals.

IV. SHIFTED GAUSSIAN PDF FOR GAPPED PHASES

A more detailed look at the PDF unveils actually more
information than the simple residuals to Gaussian fitting
discussed above. In Fig. 3 we present some prototypical
configurations in the different phases, corresponding to the
colored symbols in the phase diagram of Fig. 1: e.g., panel
(a) shows the perfect parabola for the SF phase. The striking
feature is that all PDF profiles can be captured by proper shifts
and combination of Gaussian envelopes, as we explain here
below.

The shape of the PDF deep in the gapped phases
can be computed resorting to boundary-linked perturbation
theory [6]. For example, the ES levels for the MI are ob-
tained by consecutive applications of the kinetic term H ′ =∑L

j=1 −t (b†
j+1b j + H.c.) on the zero-order ground state, i.e.,

| . . . 111 . . .〉. We are then interested primarily in achieving a
given unbalance m with the minimal number of moves (i.e.,
perturbative orders of H ′). In the case of a single bound-
ary, it is rather easy to see that the leading order amounts
to (t/U )|m|(|m|+1)/2, up to a global weight depending on the
ratio between the accumulated bosonic factors and the exci-
tation energies along all possible sequences of moves [41].
When dealing with two boundaries, simple combinatorics
leads to p(m) � ln(t/U ) 	 (|m|+1)2

4 
. The expression describes
a symmetric envelope around the average number of particles,
which could be recovered also by considering two symmet-
rical Gaussians shifted by ∓1 with respect to m = 0, for the
positive and negative values of m, respectively. Remarkably,
we find such horizontally shifted envelopes to persist with
reduced offset when approaching the critical point, finally
merging back when transitioning to the superfluid phase [see
Figs. 3(b)–3(e)]. We also highlight here that a similar shift is
the dominating feature of the PDF for the CDW phase, this
time tending to ±2 deep in the perturbative regime, hinting
at the underlying structure of the zero-order ground state, i.e.,
| . . . 0202 . . .〉 [see Figs. 3(c)–3(f)].

The appearance of the |m| dependence in the exponent
due to a nonzero shift of these double parabolic envelopes
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FIG. 3. The logarithm of the PDF (black points) is plotted for a representative configuration of the (a) SF phase [red star; (U,V ) =
(0.5, 0.5)], (b) MI phase [green pentagon; (U,V ) = (5.5, 0.5)], (c) CDW phase (gray square; (U,V ) = (2, 4.5)], and (d) HI phase [brown
diamond; (U,V ) = (5, 3.3)]. The gray lines show the fit of the PDF in terms of Gaussian envelopes and their shifts, as discussed in the main
text. For both MI and CDW, the behavior is linear for small |m|, in compliance with horizontally shifted parabolas: on the right we show the
shift of parabolas’ minima from m = 0 as a function of the inverse distance from the critical point for MI (e) and CDW (f). It is apparent that
they tend, respectively, to 1 and 2 deep in the phases, as predicted by perturbation theory in the text. For the HI, the dominant feature is a
vertical shift between parabolas for the different parities of m: (g) shows a magnification thereof.

can be exploited to distinguish such gapped phases from all
the others. We verified that the values of the α coefficient of
the fit −ln[p(m)] = α|m| + βm2 + γ is nonzero only in the
MI and CDW. The change rate of the coefficient along the
phase transitions manifests again their nature [41]. We also
stress that for the single boundary partition of some specific
models, instead, the PDF may assume asymmetric shapes; see
a description for the XXZ open chain in [6].

Finally, a direct inspection of the PDF in the HI phase
reveals the typical footprint of the topological order. A
detailed description can be obtained by truncating the max-
imum site occupation to nmax = 2 bosons and mapping the
EBH model to a spin-1 Heisenberg model [37,45,46]. In
this framework the configurations of the HI appear as a
dilute antiferromagnet of doblons (2) and holons (0) sep-
arated by an undetermined number of single occupations
(1), | . . . 21 . . . 10 . . . 21 . . . 10 . . .〉 [46]. Noticeably, the PDF
of this topologically gapped phase, panel 3(d), resembles
very closely the Gaussian PDF of the gapless phase, with
the only signature of a slight shift for even/odd Gaussians
[see Fig. 3(g)], alluding to the underlying parity-string order
parameter. This explains the sensibly reduced, though still
sizable, residuals in Fig. 1.

V. CONCLUSIONS

In conclusion, we have shown that the probability den-
sity function of the occupation number of a portion of the

system (and simple fits thereof) can be a powerful agnostic
inspection tool for the phase diagram of quantum many-body
systems. For the extended Bose-Hubbard model, the obtained
results are comparable with much more sophisticated analysis
both via traditional methods dealing with gap scalings and
correlation functions [36] and via modern machine learning
approaches fed with the ES [15]. We claim that the PDF
provides the best intermediate quantity between the whole ES
and the bipartite number fluctuations [3] also for automatic
detection protocols, since it combines the advantage of being
easily accessible in modern experiments (e.g., quantum gas
microscopes) with the wealth of information about the full
many-body state, while requiring little prior knowledge about
the emerging phases. Moreover, we foresee the method to be
valid more in general: An extension beyond zero-temperature
regimes and one-dimensional systems will be an appealing
follow-up of this work.
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