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A DFT+U -type corrective functional is derived from first principles to enforce the flat plane condition on
localized subspaces, thus dispensing with the need for an ad hoc derivation from the Hubbard model. Small,
molecular test systems at the dissociated limit are used to compare the functional form against several previously
proposed DFT+U -type functionals. The functional derived here yields relative errors below 0.6% in the total
energy of the dissociated s-block dimers as well as the dissociated H+

5 ring system, a challenging test case in
which the asymmetric, tilted flat plane condition applies. In comparison, bare PBE and PBE+U (using Dudarev’s
1998 Hubbard functional) yields relative energetic errors as high as 8.0% and 20.5%, respectively.
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Since the inception of the Hohenberg-Kohn theorems [1],
practitioners of density functional theory (DFT) have sought
more accurate, reliable, and efficient density functional ap-
proximations (DFAs) to the exchange correlation functional
E approx

xc [2–13]. Despite these DFAs’ remarkable success in
predicting mechanical properties [14] and crystallographic
structures [15], they still exhibit significant failures in the pre-
diction of molecular bond dissociation [16–18], band gaps in
solids [19–21], and polymorph energy differences in transition
metal oxides [22–24]. Many of these failures can be attributed
to the breaking of certain exact physical constraints, namely
(i) the piecewise linearity condition with respect to electron
count [25] and (ii) the constancy condition with respect to
magnetization [26,27]. The breaking of these two exact con-
ditions is referred to as many-electron self-interaction error
(MSIE) [16,28] and static correlation error (SCE) [27,29],
respectively. The generalization of these two conditions is
referred to as the “flat plane condition” [30].

For a two-electron system it is known that the total
energy with respect to electron count and magnetization
Etot[Ntot, Mtot] will typically be composed of two flat planes
which meet with a derivative discontinuity along the Ntot = 1
line. This is referred to as a “Type 1” flat plane [31] and it will
occur when the convexity condition is met

2Etot[Ntot] < Etot[Ntot + 1] + Etot[Ntot − 1], (1)

for Ntot = 1. This particular two-electron flat plane structure
will be referred to as the “diamond” for brevity. An equivalent
flat plane will also form for the individual components of the
total energy such as the Hartree-exchange-correlation energy
EHxc, as shown by Ayers, Cuevas-Saavedra et al. [32,33]. Total
electronic energies for systems with certain integer numbers
of spin-up and spin-down electrons are well approximated by
currently available DFAs. However, large deviations from the
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exact total energies were reported for systems with noninteger
values, as shown in Fig. 1.

There are similar conditions for many-atom systems. For
a system of Natom isolated atomic sites with a total of Ntot

electrons, a piecewise linearity condition with respect to
electron count should occur separately at each atomic site
where Natom, Ntot ∈ N but Ntot/Natom /∈ N. To see this, let us
temporarily define N = �Ntot/Natom�, where �·� is the floor
function (the integer part). Then, the total energy of the system
with Ntot/Natom electrons at each atomic site should be equal
in energy to the system with k sites with N + 1 electrons
and Natom − k sites with N electrons, where k < Natom and
Ntot = NNatom + k. However, current DFAs yield incorrect
energies for systems with fractional occupancies at the atomic
sites [34]. We refer to this error as “local-MSIE” as, in this
case, one varies the local occupancy at the atomic site N , as
opposed to the global electron count Ntot [35]. Analogously,
there exists local-SCE and a local analog of the flat plane
condition. Local-MSIE and local-SCE will lead to erroneous
total energies even for systems with integer global electron
counts Ntot .

Assuming local-MSIE is predominantly quadratic in nature
(as was reported for global-MSIE [36]), the local-MSIE at an
atomic site can be alleviated with an energetic correction of
the form

Eu = Ueff

2
[(N − N0) − (N − N0)2], (2)

where N is the local occupancy at the atomic site, �N� = N0,
and Ueff is a corrective parameter.

DFT+U functionals [37–40] have often been employed as
a correction to local-MSIE. Much like Eq. (2), DFT+U -like
functionals are comprised of linear and quadratic occupancy-
dependent energy corrections. For example, Dudarev et al.’s
1998 Hubbard corrective functional [40] can be written as

EDudarev
u = Ueff

2

∑
σm

nIσ
mm − (

nIσ
mm

)2
. (3)
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FIG. 1. Deviation of the total energy E in eV, of the He atom/ion
for different values of spin-up (n�) and spin-down (n�) occupancy
using the PBE exchange-correlation functional [3]. The PBE total
energy is assumed to be exact at integer values of n� and n� for the
He species. The exact energy from the flat plane condition is denoted
as EFP.

Unlike Eq. (2), here the corrections are given in terms of
subspace occupancy matrix elements

nIσ
mm′ = 〈

φI
m

∣∣ρ̂σ
∣∣φI

m′
〉
, (4)

where ρ̂σ is the spin-σ Kohn-Sham density operator and {φm}
are the set of atomically localized orbitals at atom I (the

atomic site index is often suppressed for clarity). Equation (3)
is written in the basis of localized orbitals that diagonalize
this subspace occupancy matrix. In the case where (i) the
fractional occupancy at the atomic site is limited to the s-spin
channel of one orbital φm, i.e., ns

mm = N − N0 and (ii) all other
orbitals φm′ are fully occupied or unoccupied, Dudarev’s 1998
functional provides a perfect correction for local-MSIE.

Despite DFT+U ’s success in alleviating local-MSIE in this
limiting case, here we stress two points. First, the DFT+U
method was originally derived from the Hubbard model and
it is merely fortuitous that it acts as a correction to local-
MSIE. Second, the DFT+U method does not correct static
correlation error and will therefore not satisfy the local flat
plane condition.

In this Letter, we instead derive a DFT+U -type functional,
disregarding entirely its connection with the Hubbard model
and instead motivating its form entirely on the local analog of
the flat plane condition. Such a functional should, for a single
orbital subspace, satisfy the following four key conditions.

(1) Be a continuous function of the subspace electron
count N and subspace magnetization M.

(2) Yield no correction at integer values of N and M. This
is desirable because (semi-)local functionals are expected to
yield accurate total energies in this case.

(3) Have a constant curvature of −U σ with respect to nσ .
This is desirable because (semi-)local functionals are expected
to have a spurious curvature with respect to nσ due to their
deviation from the local flat plane condition.

(4) Have a constant curvature of J with respect to M. This
is desirable because (semi-)local functionals are expected to
have a spurious curvature with respect to M, again due to their
deviation from the local flat plane condition.

The functional which satisfies these four key conditions is
BLOR (Burgess-Linscott-O’Regan), given for each site by

EBLOR =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

U � + U �

4
Tr[N̂ − N̂2] + J

2
Tr[M̂2 − N̂2] + U � − U �

4
Tr[M̂ − N̂M̂], Tr[N̂] � Tr[P̂].

U � + U �

4
Tr[(N̂ − P̂) − (N̂ − P̂)2]︸ ︷︷ ︸
Symmetric-MSIE term

+ J

2
Tr[M̂2 − (N̂ − 2P̂)2]︸ ︷︷ ︸

SCE term

+ U � − U �

4
Tr[M̂ − N̂M̂]︸ ︷︷ ︸

Asymmetric-MSIE term

, Tr[N̂] > Tr[P̂].
(5)

Here P̂ is the subspace projection operator P̂ = ∑
m |φm〉 〈φm|.

The subspace occupancy and magnetization operators can be
expressed in terms of the spin-resolved subspace occupancy
operators N̂ = n̂� + n̂� and M̂ = n̂� − n̂�, where n̂σ = P̂ρ̂σ P̂.
The magnitude of the correction is controlled by three scalars:
U �, U �, and J , which correspond, respectively, to the cur-
vature with respect to n�, n�, and M. A full derivation of
BLOR is given in S-I. One can show that conditions (1) to
(4) are uniquely satisfied by BLOR (see S-II). The lower and
upper versions of the functional have a similar form (the lower
version of BLOR is the case where Tr[N̂] � Tr[P̂]).

The first term is referred to as the symmetric-MSIE term
because, for a single orbital subspace, it yields zero correction
at integer values of N and yields its maximum correction at
N = 1

2 , 3
2 as shown in the left panel of Fig. 2.

The second term is labeled as the SCE term because, for
a single-orbital subspace, it yields zero correction when the
subspace is maximally spin polarized and yields its maximum
correction at M = 0 for a given value of N , as shown in the
middle panel of Fig. 2.

The asymmetric-MSIE term will contribute to EBLOR when
an effective magnetic field acts on the subspace. In this case,
we cannot assume that the curvatures U � and U � are equal
in magnitude. This effective magnetic field may be caused by
an external magnetic field acting on the isolated atomic site.
More notably, in practical calculations, the target subspace
will not be entirely isolated from its surrounding environment,
such as the 3d subspace of face-centered cubic nickel. The
3d atomic subspace will experience an internal exchange-
correlation magnetic field from the surrounding nickel atoms
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FIG. 2. The left panel presents the symmetric-MSIE term for an s-orbital subspace as a function of spin-up (n�) and spin-down (n�)
subspace occupancy. The center panel presents the SCE term as a function of n� and n�. The right panel presents the sum of the symmetric-MSIE
and asymmetric-MSIE terms as a function of n� and n�.

and hence we expect that U � �= U � for this site. The difference
in magnitude is accounted for in the asymmetric-MSIE term.
The combination of the symmetric- and asymmetric-MSIE
terms is depicted in the right panel of Fig. 2, which, unlike

the left panel, shows a different curvature along the maximally
spin-up polarized line compared to the maximally spin-down
polarized line.

BLOR can also be expressed in terms of subspace occu-
pancy matrix elements, for each site as

EBLOR =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
σmm′

U σ

2
nσ

mm′δmm′ − U σ

2
nσ

mm′nσ
m′m − U σ + 2J

2
nσ

mm′nσ̄
m′m, N � 2l + 1.

∑
σmm′

(
U σ + U σ̄

2
+ 2J

)
nσ

mm′δmm′ − U σ

2
nσ

mm′nσ
m′m − U σ + 2J

2
nσ

mm′nσ̄
m′m − U σ + 2J

2(2l + 1)
, N > 2l + 1.

(6)

In both cases, the summation runs over all terms on the right-
hand side of Eq. (6).

BLOR has many similarities with existing functionals. For
example, Himmetoglu et al.’s [41] DFT+U+J functional was
recently modified by Bajaj et al. [42,43] to obtain jmDFT, a
functional designed to correct for deviations from the global
flat plane condition. However, jmDFT fails to satisfy condi-
tions 3 and 4. Meanwhile, setting U σ = Ueff , the first two
terms of BLOR in the lower-half plane are equal to Dudarev
et al.’s 1998 Hubbard functional. Furthermore, for non-spin-
polarized systems we have that U � = U � = U − J and the
BLOR functional in the lower half plane simplifies to Moyni-
han’s DFT+U+J method which emulates self-consistency
over the U and J parameters [44].

Before BLOR is applied to test systems, the corrective
parameters U σ and J must first be carefully chosen. Our
aim is to use BLOR to explicitly enforce the EHxc flat plane
condition on localized subspaces embedded within a material
environment. It is worth noting that there is no exact flat
plane condition on subspaces generally, but only in the limit
of a fully isolated site, i.e., the fully dissociated/atomized
limit. By explicitly enforcing the EHxc flat plane condition on
localized states we implicitly assumed that all local curvature
is spurious [35]. Accounting for overall charge and spin con-
servation, one can define the local curvature with respect to
the spin-resolved subspace occupancy nσ for a homonuclear,

diatomic system as

U σ = 1

2

(
∂2E approx

Hxc

∂ (nσ )2

)
nσ̄

, (7)

and with respect to the subspace magnetization as

J = −1

2

(
∂2E approx

Hxc

∂ (M )2

)
N

, (8)

where N and M are the subspace electron count and mag-
netization and E approx

Hxc is the total Hxc energy using the
approximate XC functional.

In this work, the corrective parameters U σ and J were
not calculated directly as second-order partial derivatives as
defined by Eqs. (7) and (8). We chose instead to compute
the corrective parameters from the Hxc potential. This can
be achieved using the spin-resolved minimum tracking lin-
ear response methodology [44,45], which defines an effective
subspace Hxc kernel as

f σσ ′ = ∂

∂nσ ′

(
Tr[P̂]−1 Tr

[
P̂ v̂σ

Hxc

])
nσ̄ ′

, (9)

where v̂σ
Hxc = δEHxc/δρ̂

σ is the Hxc potential operator and we
emphasize that one spin density is fixed while the other varies
(EHxc is the Hxc energy of the system). Within this formalism
the spin-resolved Hubbard parameters for BLOR can be set as
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the diagonal elements of the Hxc kernel

U σ = f σσ . (10)

In Hubbard functionals not accepting a spin-indexed U , the
spin-agnostic U parameter was evaluated by Linscott et al.’s
simple 2 × 2 prescription

U = 1
4 ( f �� + f �� + f �� + f ��), (11)

which emulates the partial derivative with respect to the spin
index. Analogously, the Hund’s J parameter can be computed
as

J = − 1
4 ( f �� − f �� − f �� + f ��). (12)

We note that by constructing J from the elements of the
spin-resolved Hxc kernel, we sidestep the need to perform
a constrained DFT calculation [as required by Eq. (8)]: the
above equation for J obtains the same result via unconstrained
linear-response calculations [45]. Sample linear-response
graphs can be found in the Supplemental Material [46] (with
sections and figures denoted as S), specifically Figs. S12
to S18. As shown in Supplemental Material section S-V,
the Hubbard functionals were also tested using a variety of
prescriptions for the U and J parameters. All further com-
putational details can be found in S-VI while S-VII gives a
practical scheme for implementing various corrective func-
tionals including BLOR.

In Eqs. (5) and (6), BLOR is expressed in a generalized,
from which readily allows its implementation for s, p, d , or f
valence orbitals. However, in this Letter we explore BLOR’s
application solely to s-valence species, in which case there
is no ambiguity as to whether the local flat plane condition
should be enforced on the localized subspace as a whole or on
each localized orbital in the subspace separately. The later of
these two options was used to give BLOR in its current form,
however, analysis of this choice through benchmarking with
p and d valence species will be left to future work.

BLOR was first tested on s-block dimers, (namely, H2,
He+

2 , Li2, and Be+
2 ) with large internuclear separation lengths.

It is assumed that, at these elongated bond lengths, the energy
of the X2 dimer is additive

E [X2] = 2E [X ]. (13)

The subspace occupancies of the atomic species will be
located at the vertices of the diamond, hence the bare Perdew-
Burke-Ernzerhof (PBE) approximation [3] is expected to be
reasonably accurate for E [X ]. We thus assume that 2EPBE[X ]
yields the exact total energy of our stretched X2 species.
This approximation benefits from cancellation of errors due
to practical approximations including (very hard) pseudopo-
tentials. The atomic subspaces of dissociated H2 and Li2 are
approximately located along the N = 1 line of the diamond
(the fold) and are thus dominated by local-SCE. The atomic
subspaces of dissociated He+

2 and Be+
2 are approximately

located along the edges of the diamond and are thus domi-
nated by local-MSIE. These errors will result in the computed
E [X2] �= 2E [X ] for the stretched X2 species.

In Fig. 3 we present the relative errors in the total energies
for H2 at a bond length of 9a0 using different corrective
functionals. PBE yields a significant relative error of 7.99%,

FIG. 3. Bar chart of the relative errors in the total energies of
H2 at a bond length of 9a0 using different corrective functionals
[3,40–43,47], without spurious spin-symmetry breaking. The raw
DFT calculations were performed with the PBE exchange correlation
functional [3]. The DFT+U and DFT+(U−J ) relative errors were
computed using Dudarev et al.’s 1998 functional with the effective
Hubbard parameter (Ueff ) set as U and U − J , respectively. Himme-
toglu et al.’s DFT+U+J functional was employed both with and
without the minority spin term. Both the lower and upper versions of
l-jmDFT and BLOR are included in the bar chart. In the dissociated
limit of H2, each H atom will be singly occupied and hence the
lower versions of BLOR and l-jmDFT are the relevant versions for
dissociated H2, despite the computed occupancy due to spillage being
greater than one at the large but finite bond length of 9a0. The hashing
on the bars of the upper versions of BLOR and l-jmDFT indicates the
deliberate misapplication of these functionals. The BLOR (upper)
corrective functional was evaluated on the PBE density, as discussed
in the main text.

however, most of the corrective functionals significantly
worsen the PBE result, yielding errors up to 24.04%. Use
of BLOR in the lower half-plane yields a very low error of
0.510%. As shown in S-IV, BLOR yields even lower relative
errors for dissociated He+

2 , Li2, and Be+
2 .

In the bar chart our use of the jmDFT functional form is
denoted as l-jmDFT (localized-jmDFT). The jmDFT func-
tional was designed to correct for deviations from the global
flat plane condition and was the main inspiration for the de-
velopment of BLOR, which instead text focuses on the local
flat plane condition. In this work, the jmDFT functional is
implemented to correct for deviations from the local flat plane
condition as opposed to the global equivalent. Furthermore,
we use the simple 2 × 2 method to compute the U and J
parameters for the jmDFT functional, which is not how the
functional was intended to be applied. The poor performance
of l-jmDFT is thus unsurprising.

Excluding the minority spin term, it is possible to reformu-
late the DFT+U and DFT+U+J functionals in terms of an
MSIE-term Tr[N̂ − N̂2] and a SCE-term Tr[M̂2 − N̂2], with
different linear combinations of U and J as prefactors. In the
case of stretched H2, the MSIE-term is negligible because
the atomic occupancy is equal to 1 in the fully dissociated
limit. Thus, the failure of the DFT+U and DFT+U+J func-
tionals to predict the correct total energy can be attributed
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FIG. 4. The top panel displays isosurfaces of the five lowest
spin up Kohn-Sham orbitals of the dissociated H+

5 ring [48]. The
bottom planel displays a bar chart of the relative errors in the total
energy of dissociated H+

5 at an internuclear separation of 8a0 us-
ing different corrective functionals [3,40–43,47], which are applied
non-self-consistently on the extrapolated, symmetry-unbroken PBE
spin-density. The atomic subspace occupancy is significantly less
than 1 and will be equal to 0.8 at the dissociated limit, thus the
lower versions of BLOR and l-jmDFT are the correct versions for
this system.

to the incorrect SCE-term prefactor of −U/4 in both cases.
Indeed, computing the total energy of H2 at a 9a0 bond length
with both symmetric-MSIE and asymmetric-MSIE prefactors
being equal to 0, but with the correct SCE prefactor of J/2,
yields a relative error of 0.81%.

Several of the corrective functionals (including BLOR)
were found, at least on the basis of molecular orbital theory
analysis, to yield the incorrect ordering of the Kohn-Sham
(KS) orbitals upon self-consistent application of the cor-
rective functional. Whenever this occurred, the corrective
functional was applied non-self-consistently, i.e., the total
energy was evaluated on the PBE density, hence we have
BLOR@PBE. For all corrective functionals where no KS
orbital reordering occurs, the total energy was evaluated both
self-consistently and non-self-consistently and the difference
between the two was found to be negligible. This demon-
strates that BLOR yields correct total energies but fails to

FIG. 5. The decomposition of the total corrective energy asso-
ciated with several functionals [40–43,47] into a symmetric-MSIE
term, a SCE term, a minority-spin term, and an asymmetric-MSIE
term. The exact corrective energy is that required to recover the
correct dissociated-limit total energy.

correspondingly correct the KS potential; rectifying this issue
will be left to future work.

The second system we tested BLOR on was a dissociated
hydrogen ring system, which suffers from both local-MSIE
and local-SCE (in a system where both local-MSIE and local-
SCE are present, error cancellation may occur). Specifically,
we look at the triplet spin state of this system, which provides
a stringent test for the validity of the nascent asymmetric-
MSIE correction term. Dissociated triplet H+

5 is the smallest
hydrogen ring system where (1) the subspaces are not located
along the edge or fold of the diamond and (2) the system
does not suffer from KS orbital degeneracy problems (where
a degenerate pair of KS orbitals is occupied by a single
KS particle). For dissociated H+

5 , bare PBE was found to
yield a spurious symmetry-broken solution in what should
be a five-fold symmetric spin-density. To stabilize the correct
symmetry-unbroken solution, a potential of the form

v̂σ = Gn̂σ̄ (14)

was applied to the atomic subspaces. The total PBE energy
and spin-resolved subspace occupancies were then evaluated
as functions of G and extrapolated to G = 0 to get the correct
PBE energy and spin-resolved subspace occupancies. These
occupancies were then used to obtain the total energy of the
H+

5 system evaluated on the extrapolated, symmetry-unbroken
PBE spin-density for different corrective functionals includ-
ing BLOR.

As shown in Fig. 4, bare PBE yields a very low relative
error of 1.03% for the dissociated H+

5 system. Application
of any functional is found to worsen the bare PBE result,
with the exception of BLOR, which yields a relative error
of 0.08%. This extremely low error is investigated further in
Fig. 5, where the total energy associated with several cor-
rective functionals is decomposed into a symmetric-MSIE
term, a SCE term, and an asymmetric-MSIE term. All cor-
rective functionals shown yield similar positive energies for
the symmetric-MSIE term. However, the corrective function-
als all yield large positive SCE terms with the exception of
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BLOR. A positive SCE term leads to a significant overestima-
tion of the total corrective energy.

In conclusion, our derived corrective functional BLOR
yielded relative energetic errors below 0.6% across all five
dissociated s-block species. This performance was unmatched
by any of the other DFT+U -type functionals tested. However,
the BLOR corrective functional yielded a spurious reordering
of the KS orbitals for He+

2 and Be+
2 , as judged from molecular

orbital theory considerations. This problem was bypassed for
these systems by evaluating the BLOR energy at the PBE
density (BLOR@PBE). Most notably, our DFT+U -type cor-
rective functional was derived entirely from first principles,
based on the flat plane behavior of exact quantum mechanics.

It thereby lifts the assumptions required when deriving such
functionals from the Hubbard model.
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