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Entanglement links and the quasiparticle picture
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The time evolution of a quantum state with short-range correlations after a quench to a one-dimensional critical
Hamiltonian can be understood using the quasiparticle picture, which states that local entanglement spreads as
if it was carried by quasiparticles which separate at a fixed speed. We extend the quasiparticle picture using
the recently introduced link representation of entanglement, allowing us to apply it to initial states presenting
long-range correlations. The entanglement links are current correlators, and therefore follow a wave equation on
the appropriate configurational space which allows us to predict the time evolution of the entanglement entropies.
Our results are checked numerically for free fermionic chains with different initial entanglement patterns.
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Link representations of entanglement. Entanglement is a
central concept for most recent developments in quantum
theory [1]. Let us consider the von Neumann entanglement en-
tropy (EE) SA = −Tr(ρA log ρA) of a block A, obtained from
the reduced density matrix of a pure state, ρA = TrĀ|ψ〉〈ψ |,
where Ā is the complement of A. The state is said to follow
the area law when SA ∝ |∂A|, i.e., when the EE of a block
A is proportional to the measure of its boundary [2,3]. The
area law provides a deep connection between entanglement
and geometry [4], paving the route for the recent holographic
approaches to a quantized gravity [5]. Moreover, it can be
generalized into the so-called link representations of entangle-
ment [6], which associate to each pure state on an N-partite
system a symmetric matrix J , with Ji j = Jji � 0, 1 � i, j �
N , whose entries are called the entanglement links (ELs), such
that

SA =
∑

i∈A, j∈Ā

Ji j, (1)

for all possible blocks A (see Fig. 1 for an illustration). Since
there are 2N different blocks and the EL matrix only contains
N (N − 1)/2 parameters, we cannot ensure the existence of an
exact link representation, except in a few notable cases, such
as valence bond states [7]. Yet, approximate link representa-
tions with low errors have been found for many relevant states.
Interestingly, the entropies built from a link representation
fulfill naturally the subadditivity constraints [6].

Within a continuous framework we can write the EL as a
two-point function J (x, y), such that

SA =
∫

A
dx

∫
Ā

dy J (x, y). (2)

For a one-dimensional (1D) system, this provides an approxi-
mate route to find the EL,

J (x, y) = 1
2∂x∂yS[x,y], (3)

where S[x,y] denotes the EE of the block [x, y]. Of course,
in a discrete setup the derivatives in Eq. (3) become finite
differences,

Ji j = 1
2 (Si, j − Si+1, j − Si, j+1 + Si+1, j+1), (4)

where Sa,b denotes the EE of A = {a, . . . , b − 1}. This link
representation is exact for compact blocks, losing its accuracy
slowly as the number of fragments in the partition is increased.
We should stress that the ground states (GSs) of critical sys-
tems possess a very clean link representation, with J (x, y) ≈
(c/6)|x − y|−2, thus showing that Eq. (1) applies to states with
a logarithmic violation of the area law [8–10], because their
entanglement entropy scales as S[x,y] ≈ (c/3) log(|x − y|/ε),
where ε is the UV cutoff. This scaling suggests that the entan-
glement links can be associated with the expectation value of
current operators,

J (x, y) = 〈J(x)J(y)〉, (5)

which is indeed the case if we let J(z, z̄) = JL(z) + JR(z̄),
with [6]

JL(z) ≡ lim
n→1+

1√
2(1 − n)

∂zTn(z), (6)

where Tn(z) is the twist field operator of order n [10–12], and
we define JR(z̄) as the equivalent antiholomorphic part. The
scaling dimension of the twist operators is �n = c

12 (n − 1/n),
thus proving that the entanglement current operator J(z) has
scaling dimension 1 and therefore ∂z̄JL(z) = ∂zJR(z̄) = 0. We
are therefore led to claim that

∂z∂z̄J = 0, (7)

i.e., the full entanglement current follows a wave equation.
The remainder of this Letter is devoted to exploring the
consequences of Eq. (7) and providing numerical checks in
particular cases.
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FIG. 1. Illustration of the link representation. (a) Let us consider
a quantum state containing N = 6 units, whose nonzero entangle-
ment links (ELs) are denoted by the blue arches. The entanglement
entropy (EE) between blocks A = {1, 2} and Ā = {3, 4, 5, 6} can
be obtained adding up the values of the nonzero ELs crossing the
boundary between them (orange line). (b) The EL can be displayed
more clearly in matrix form, and the EE between blocks A and Ā is
obtained by adding up the matrix entries in the shaded regions above
the diagonal.

Entanglement link dynamics. The quasiparticle picture
(QPP) successfully describes the time evolution of the EE
when a state with short-range entanglement is quenched to
a critical Hamiltonian [13–16]. In this work we extend the
quasiparticle picture using the link representation framework,
in order to characterize the time evolution of the EE of
different initial states, including those presenting long-range
entanglement. Our examples include dimerized states [see
Fig. 2(a)], the rainbow chain of N sites [17–26], whose GSs
can be approximately described as a concentric set of valence
bond states between site i and site N + 1 − i [see Fig. 2(b)],
or the bridge state that we introduce here, which presents
bonds between sites i and i + N/2, with i ∈ {1, . . . , N/2} [see
Fig. 2(c)].

FIG. 2. Illustration of the initial states considered. (a) Dimerized
state. (b) Rainbow state. (c) Bridge state.

According to the QPP, when we quench a short-ranged
state using a 1D critical Hamiltonian the EE of a block of size
� = |x − y| at time t behaves approximately as

S(�, t ) =
{
σvt, vt < �,

σ�, vt > �,
(8)

where v is twice the speed of light, which may depend on the
structure of the initial state [27,28], and σ > 0 is the EE per
site at saturation, and we have neglected the initial value of
the EE. This expression can be written alternatively as

S(�, t ) = σvt 	(� − vt ) + σ�	(vt − �), (9)

where 	(x) is the Heaviside function. Using Eq. (3) we can
estimate the entanglement links,

J (�, t ) = −1

2
∂2
� S(�, t ) = σ

2
δ(vt − �), (10)

which represents an entanglement wave. Indeed, it is straight-
forward to check that this expression fulfills the wave
equation,

1

v2
∂2

t J (�, t ) = ∂2
� J (�, t ), (11)

which can be regarded as an extension of the QPP, in ac-
cordance with Eq. (7) and the requirements of conformal
invariance.

Let us check the validity of Eq. (11) using as our quenching
Hamiltonian a free-fermionic chain,

H0 = −1

2

N∑
i=1

c†
i ci+1 + H.c., (12)

with either open or periodic boundaries, as required. Notice
that the propagation velocity is v = 2 in this case, since the
Fermi velocity is vF = 1. Meanwhile, our initial states will be
chosen as GSs of deformed versions of that Hamiltonian

H (g) = −
N∑

i=1

gi c†
i ci+1 + H.c., (13)

where g = {gi} are the hopping amplitudes, and we assume
periodic boundaries. The GSs of Hamiltonian (13) are Slater
determinants, whose EE can be found using single-body tech-
niques [29]. The ELs are always numerically estimated using
expression (3), which has been shown to provide a good link
representation of these states [7].

Let us consider a dimerized initial state, defined by gi =
[1 + (−1)iδ], using δ = 1/2 and N = 128. Figure 3(a) shows
the time evolution of the EE of blocks of different sizes �.
We observe that each block saturates at a time proportional
to its size, as proposed by the QPP. In Fig. 3(b) we can see
the EL matrix of the initial state. The only nonzero ELs are
located near the diagonal, Ji,i+1 = Ji+1,i. Figure 3(c), on the
other hand, provides the EL matrix at time t = 10, showing
that two wavefronts are traveling in opposite directions from
the original diagonal, as proposed in Eq. (11) if the initial
velocity, ∂t J (�, t = 0), is zero.

EE of the rainbow state. Let us apply the QPP to states out
of its initial range of applicability, such as the GS of the free-
fermionic rainbow chain [17–26], which presents long-range
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FIG. 3. (a) Time evolution of the EE of the dimerized state with
δ = 0.5 and N = 128. (b) EL matrix for the dimerized state at time
t = 0. (c) EL matrix J (x, y) for the dimerized state quenched to
the homogeneous Hamiltonian, after a time t = 10. Notice the two
wavefronts above the main diagonal, traveling in opposite directions,
due to the periodic boundary conditions.

entanglement and is defined by Hamiltonian (13) using

gi =
{

1 if i = N/2,

e−h(|N/2−i|−1/2) otherwise.
(14)

The EE of blocks within the GS of the rainbow Hamiltonian
grows linearly with their size, S(�) ≈ h�/6 for h 
 1, and
site i is most strongly correlated to site N + 1 − i, thus show-
ing a concentric bond structure which justifies the rainbow
term [see Fig. 2(b)]. We will take as our example the case
N = 128 and h = 0.7, which is quenched to the homoge-
neous Hamiltonian H0, although in this case we will choose
open boundaries. The time evolution of the EE of the lateral
blocks A� = [1, . . . , �] is shown in Fig. 4(a). At time t = 0
the entanglement entropy of these blocks is proportional to
their length, as the volume law requires. The EE of the largest
one, � = N/2, starts to decrease immediately after the quench.
Yet, the EE of smaller lateral blocks remains constant for a
certain time that increases linearly as the block size decreases.
Interestingly, the block of size � starts its decrease when the
entropy of all larger blocks reach its starting value. After all
the blocks have reached their minimum value they start grow-
ing linearly, in similarity to the dimerized state, saturating at a
value proportional to their size, corresponding approximately
to their initial value.

We may also consider the EE of central blocks of size �,
whose initial entanglement is approximately zero, as we can
see in Fig. 4(b). They start growing immediately, twice as fast
as the lateral blocks decrease.

Extended predictions of the QPP. It is relevant to ask
whether the quasiparticle picture can provide an explanation
for these observations. Indeed, based on Eq. (7), we propose

FIG. 4. (a) Time evolution of the EE of lateral blocks within
the rainbow state, and (b) same figure for central blocks. (c) EL
matrix for the rainbow state at t = 0, using h = 0.7 and N = 128,
and (d) EL matrix after t = 10, under a quench to an open boundary
homogeneous Hamiltonian H0.

the following wave equation,

1

v2
∂2

t J (x, y) = 1

2

(
∂2

x + ∂2
y

)
J (x, y), (15)

with suitable boundary conditions, in order to explain the
time evolution of both short-ranged and long-ranged initial
states. Notice that, due to the symmetry J (x, y) = J (y, x), we
could have used only ∂2

x or ∂2
y . Let us apply this equation to

the rainbow case, with open boundaries. In Fig. 4(c) we can
see the EL matrix for t = 0, which contains two different
features: a diagonal double line, corresponding to the local
entanglement, and an opposite diagonal line, which shows
the links between sites i and N + 1 − i, which conforms the
(approximate) concentric bonds. The time evolution leaves
the first line invariant, but it splits the second one into two
wavefronts, one of which propagates rightwards and the other
one leftwards, as we can see in the EL matrix for t = 10 in
Fig. 4(d). Moreover, we see a new wavefront appear, parallel
to the main diagonal, joining the previous two fronts.

We note that the long-range ELs shown in Figs. 4(c)
and 4(d) are solutions of the entanglement wave equation,
Eq. (15), if we choose as initial conditions J (x, y, 0) =
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σδ(x + y − N ) and ∂t J (x, y, 0) = 0, leading to

J (x, y, t ) = σ

2
δ(x + y − N + vt ) + σ

2
δ(x + y − N − vt )

+ σ

2
δ(x − y − N + vt ), (16)

where the last term corresponds to a line parallel to the main
diagonal joining the other two lines, due to reflection at the
boundaries. Indeed, this is what we can observe to a good
accuracy. Yet, the main diagonal of the EL matrix remains
static, showing a remanent nonuniversal behavior.

How can we understand Eq. (16) in physical terms? Using
Huygens principle, we start out with the rainbow wave-
front, which corresponds to the secondary diagonal, y =
N − x. Each site of the wavefront generates a new circu-
lar wave around it, and the new wavefront is given by
their envelope. In other terms, each EL excites the neigh-
boring links, one slightly stretched, one slightly shrunk, and
two slightly displaced leftwards and rightwards. Yet, for
the rainbow system the stretched and shrunk links are al-
ready excited, so only the translated links appear. Of course,
the boundary conditions should also be taken into account:
The largest link cannot merely translate, so it gives rise
to two links, one in which the left extreme bounces right-
wards and another one in which the right extreme bounces
leftwards.

Integration of Eq. (16) according to Eq. (2) will provide the
time evolution of the EE of any block [30]. Yet, we would like
to show a graphical procedure that will yield a better physical
intuition in Fig. 5. For the sake of clarity, let us start with an
initial state with short-range entanglement, in Fig. 5(a), where
we have neglected boundary effects for simplicity. The initial
entanglement is denoted by the thick blue line, that splits into
two lines traveling in opposite directions. In general terms,
the EE obtained when a diagonal line crosses a rectangle is
given by the projection of that line on any of the axes. Thus,
we see that the EE grows linearly up to time vt1 = a, remains
constant up to vt2 = N − a, and decays linearly down to zero
from that moment on [31]. That is the prediction of the QPP,
given in Eq. (8).

Let us consider the EL of the rainbow state with open
boundaries, schematically drawn in Fig. 5(b) for lateral blocks
A = [0, a] with a < N/2. Notice that the EE will remain con-
stant up to time vt1 = N − 2a. Then it will start decreasing
linearly until it reaches zero at time vt = N . In other terms,
we get an expression similar to Eq. (8),

SA(t ) =
{
σa, vt < vt1 = N − 2a,

σ (a − v(t − t1)/2), vt1 < vt < N.
(17)

Notice that if a > N/2, we get the same EE as with the
block with size N − a. Let us now do the same calculation
for central blocks of the form B = [a, N − a], with a < N/4,
using Fig. 5(c). Notice that the EE starts at zero, grows lin-
early until time vt1 = 2a. Then it remains constant until time
vt2 = N − 2a, when it will start a linear decrease to zero at

FIG. 5. Illustrating the evaluation of the EE for any time, given
the time evolution of the EL. The strong blue line denotes the EL
at time t = 0, and the parallel thin lines correspond to the EL at any
later times, traveling with constant speed. (a) Dimerized case. The EE
of the block A = [0, a] can be evaluated by counting the EL in the
shaded area. Notice that, due to the periodic boundaries, the front is
formed by two apparently disjoint segments. (b) Rainbow case, using
the same block A = [0, a]. (c) Rainbow case, using lateral blocks,
B = [a, N − a].

time vt = N . In other terms,

SB(t ) =
⎧⎨
⎩

σvt/2, vt < vt1 = 2a,

σa, vt1 < vt < vt2 = N − 2a,

σ (a − v(t − t2)/2), vt2 < vt < N.

(18)
If a > N/4, our graphical procedure shows that the time evo-
lution of the EE of the block [a, N − a] corresponds to that of
block [N/2 − a, N/2 + a], which is approximately the case as
we can see in Fig. 4(b).

The persistent subdiagonal. Figures 3(c) and 4(d) show a
persistent subdiagonal line in the EL matrix for longer times,
which seems to challenge our description. Yet, we should
notice that Eq. (15) should be complemented with suitable
boundary conditions and probably a source term along the
x = y line, which is privileged by the local structure of the
quenching Hamiltonian H0. Thus, we conjecture that the per-
sistent subdiagonal is a nonuniversal phenomenon. Indeed,
Fig. 6 shows the behavior of links Ji,i+1 for the dimerized
and rainbow cases analyzed before as a function of time, thus
linked to Figs. 3 and 4. In the dimerized case [Fig. 6(a)], the
subdiagonal ELs tend to a constant after a quick transient.
In the rainbow case [Fig. 6(b)], we observe a wave pulse
propagating over a constant background.
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FIG. 6. Subdiagonal ELs of the dimerized and rainbow cases
shown in Figs. 3 and 4, as a function of time.

The bridge state. Let us consider one last example, a va-
lence bond state that we will call the bridge state,

|�〉 =
N/2∏
k=1

1√
2

[
c†

k + (−1)kc†
k+N/2

]|0〉, (19)

where |0〉 is the Fock vacuum [see Fig. 2(c)]. Now, let us
show that the evolution of state |�〉 after a quench to H0 (with
periodic boundaries) can be described using the extended
version of the QPP. At t = 0, the state is a valence bond
solid, and therefore the EL matrix can be exactly found, Ji j =
σδi, j+N/2 mod N [7]. We may solve the wave equation with ini-
tial condition J (x, y) = σδ(x − y + N/2) and ∂t J (x, y) = 0,
and obtain two traveling waves, J (x, y, t ) = (σ/2)δ(x − y +
N/2 + vt ) + (σ/2)δ(x − y + N/2 − vt ), as we can observe in
Figs. 7(a) and 7(b). Yet, in this case the wavefronts leave a
larger amount of radiation behind, since the lattice artifacts
are stronger because the initial state is synthetic. We are then
led to predict that the entanglement entropy behaves as

S(�, t ) =
{
σ�, vt < N/2 − �,

σ (N/2 − vt ), N/2 − � < vt < N/2,
(20)

before the revivals due to the periodic boundaries, which
correspond to the results shown in Fig. 7.

Conclusions and further work. We have extended the quasi-
particle picture (QPP) to describe the time evolution of the
entanglement entropy after a quench to a critical Hamiltonian,
when the initial state presents long-range entanglement. Our
extended description of the QPP makes use of the entangle-
ment link (EL) representation for the entanglement entropy
of different blocks. Conformal field theory arguments show
that the EL must fulfill a wave equation on a tensor-product
space built by two copies of the configuration space, due to
their nature as current correlators. The propagation veloc-
ity associated with the wave equation depends both on the
quenching Hamiltonian and the structure of the initial state

FIG. 7. (a) Time evolution of the EE of contiguous blocks within
the bridge state of N = 128 sites. Since the state and the quenching
Hamiltonian are translation invariant, all contiguous blocks of the
same size have the same entropy. (b) EL matrix at time t = 0. (c) EL
matrix after t = 10.

[27,28], and may even vanish, e.g., in the case of eigen-
states of the quenching Hamiltonian. We should stress that
our predictions only apply to 1+1D critical Hamiltonians, for
any value of their central charge, but they need not apply to
noncritical cases, in which another evolution equation should
be expected. Moreover, we have observed nonuniversal effects
near the diagonal line of the EL matrix, which are in need of
further clarification.

Our results have been checked for the case of free fermions
on a chain, using initial states with different patterns of entan-
glement. More numerical experiments are required to check
the validity of our formulation for other conformally invariant
systems, such as the critical Ising or XXZ models. More-
over, our predictions refer to the EL obtained from the von
Neumann entropy. Higher-order Rényi entropies give rise to
alternative EL representations which may present a different
time evolution and are also interesting to investigate.

Of course, this extension of the QPP is subject to lattice
effects which limit its validity in the long run [28,32]. It is
relevant to ask how these lattice effects will spoil its predic-
tions for different initial states and different critical models.
It is also interesting to wonder about the application of our
extension of the QPP to higher-dimensional systems, where
we can find phenomena such as the entanglement tsunami that
describes the evolution of the EE in certain holographic setups
[33].
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