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Quantum spin liquid in an RKKY-coupled two-impurity Kondo system
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We consider a two-impurity Kondo system with spin-exchange coupling within the conduction band. Our
numerical renormalization group calculations show that for strong intraband spin correlations the competition of
these nonlocal correlations with local Kondo spin screening stabilizes a phase exhibiting features of a metallic
quantum spin liquid, namely nonlocal impurity-spin entanglement and fractionalized charge excitations, without
the need for geometric frustration. For weak Kondo coupling, the spin-liquid-like and the Kondo singlet phases
are separated by two quantum phase transitions and an intermediate RKKY spin-dimer phase, while beyond
a critical coupling they are connected by a crossover. The results suggest how a quantum spin liquid may be
realized in heavy-fermion systems with strong magnetic correlations in the conduction band, e.g., near a spin-
density-wave instability.
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Introduction. Quantum spin liquids (QSLs) are systems
of interacting spins with long-range entanglement, but with-
out long-range magnetic order down to the lowest observed
temperatures. The concept of nonlocal entanglement was
first introduced in 1973 by Anderson proposing the resonant
valence-bond (RVB) state as the ground state of an antifer-
romagnetically coupled spin system on a triangular lattice [1],
which was later applied to high-temperature cuprate supercon-
ductors [2]. Presently, QSLs are a wide and intensive research
field in its own right [3–5], due to the possibility of hosting
fractional excitations and thus inducing new, unconventional
quantum states of matter. Most theoretical studies are done
on insulating and geometrically frustrated or topological spin
lattice models, such as the triangular, kagome, next-nearest-
neighbor coupled, or honeycomb lattices [3–6].

However, some important, possible realizations of QSLs,
such as near a magnetic heavy-fermion quantum phase transi-
tion (QPT) or in cuprate superconductors [2], require metallic
states and are in general not geometrically frustrated. Such
systems are generically described by Anderson lattice models,
i.e., localized magnetic impurities on a lattice hybridizing
with a sea of itinerant conduction electrons. They often
exhibit a QPT [7,8] between a paramagnetic heavy Fermi
liquid induced by the Kondo effect [9,10] and a magnetically
ordered phase due to the Ruderman-Kittel-Kasuya-Yosida
(RKKY) spin-spin coupling Y [11–13] mediated by conduc-
tion electrons. A QSL in such systems must be stabilized,
on the one hand, against the spin extinction due to Kondo
singlet formation and, on the other hand, against magnetic
ordering. Previous work on metallic, correlated systems pre-
dicted a QSL for strong spin-exchange coupling between
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local and conduction electron spins, but was limited to mean-
field treatments [14,15]. Some candidates for metallic QSLs
in frustrated Kondo lattices have been proposed [16–20].
However, the existence of metallic QSLs without geometric
frustration have remained elusive.

In the present Letter, we study a two-impurity Anderson
(2iA) model which incorporates the salient features of corre-
lated Anderson lattice systems, i.e., Kondo singlet formation,
a nonlocal spin-exchange (RKKY-like) interaction, and spin
correlations within the conduction band, and at the same time
is amenable to a numerically exact solution by the numerical
renormalization group (NRG) [21–23]. Using NRG calcula-
tions we find, in addition to the QPT from a Kondo singlet to
a dimer singlet phase at weak RKKY coupling, another QPT
at strong coupling from the dimer to another phase, character-
ized by fractional impurity spectral density and impurity-spin
entanglement. We therefore term this phase a two-impurity
analog of a bulk QSL. This QSL phase is driven by a dy-
namical effect, the competition between Kondo screening and
strong intraband spin correlations. This phase is continuously
connected to the Kondo singlet phase via strong Kondo spin
exchange. That is, the Kondo effect stabilizes the QSL against
RKKY dimer formation. We discuss potential experimental
realizations of this QSL phase and its relevance for metallic
lattice spin systems.

Model. Early works by Jones and Varma (JV) [24–26]
effectively considered a two-impurity Kondo model where
each spin-1/2 impurity is coupled to its own metallic host
by the Kondo coupling JK, and the RKKY interaction Y is
replaced by a direct Heisenberg exchange JH between the two
impurities [see Fig. 1(a)]. In this model, the Kondo singlet
ground state and a dimer singlet phase, characterized by a π/2
or 0 scattering phase shift of each impurity, respectively, are
separated by a QPT as a function of the control parameter
JH/T 0

K , where T 0
K is the Kondo temperature of a single Kondo
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FIG. 1. Illustration of the 2iA model with (a) JV direct spin
exchange JH between the impurities and (b) conduction-electron-
mediated (RKKY) coupling via the Heisenberg exchange JY

[Eq. (1)].

impurity [10]. However, any particle-hole (PH) asymmetry
of the JV model changes the QPT into a crossover [27,28].
Moreover, it has even been shown that with a proper modeling
of the RKKY interaction, the antiferromagnetic contribution
to Y stems from the PH-asymmetric component of the ef-
fective Hamiltonian [29]. Hence, generically a QPT does not
occur in two-impurity systems with one common host [30,31],
although the QPT may be restored by a counterterm compen-
sating potential scattering [29], by suppressing charge transfer
between the screening channels [32], or by self-consistency in
the auxiliary 2iA model in a dynamical mean-field treatment
of the lattice [33]. Another difficulty of the JV treatment
[24–26] is that, unlike JH, the true RKKY interaction is not
independent of the Kondo exchange JK, but rather Y ∼ J2

K
[11–13]. This leads to a dynamical frustration effect and a
universal suppression of the Kondo scale depending on Y ,
T 0

K → TK(Y ), as has been shown experimentally [34] and
theoretically [35]. These problems have called into question
the relevance of the JV quantum critical point for QPTs in
Kondo and Anderson lattice systems.

Therefore, we consider a maximally symmetric 2iA model
with conduction-electron-mediated impurity-spin coupling
but without interhost potential scattering as follows [cf.
Fig. 1(b)],

H2iA =
∑

αkσ

εkc†
αkσ cαkσ +

∑

αkσ

V (c†
αkσ dασ + d†

ασ cαkσ )

− U

2

∑

ασ

nασ + U
∑

α

nα↑nα↓ + JY �s1 · �s2. (1)

Here, d†
ασ , dασ and nασ = d†

ασ dασ are the operators for elec-
trons with spin σ =↑,↓ on impurity α = 1, 2, coupled to
their respective conducting leads with operators c†

αkσ , cαkσ

and dispersion εk by the hybridization V , which we assume to
be momentum independent (local) for simplicity. U denotes
the on-site repulsion on the impurity sites. Taking −U/2 for
the impurity single-particle level and a flat conduction
electron density of states ρ at the Fermi level ensures PH sym-
metry. The hybridization generates the Kondo spin-exchange
coupling JK = 4|V |2/U and the single-particle impurity-level
broadening Γ = πρ|V |2 [10]. The conduction electron spin
at the impurity site of host α is defined in terms of the vector
of Pauli matrices �σ and cασ ≡ ∑

k cαkσ as

�sα = 1

2

∑

σσ ′
c†
ασ �σσσ ′cασ ′ . (2)

The last term in the Hamiltonian (1) describes a Heisenberg
exchange of strength JY between these conduction electron

spins. Thus, this model represents a single host as far as spin
correlations are concerned. It preserves PH symmetry, there
is no symmetry-breaking charge transfer between the leads,
and at the same time it generates an RKKY-like coupling
between the impurity spins �Sα , mediated by the conducting
hosts Y �S1 · �S2, where Y ≈ (ρJK )2 JY /4 and �Sα is defined
analogous to Eq. (2). This model captures the salient fea-
tures of the RKKY interaction, i.e., nonlocality, mediation
by the conduction electrons and generation in second order
by the Kondo exchange JK, while its power-law dependence
on the impurity separation appears irrelevant for the present
study. The conduction-mediated coupling Y turns out to be
crucial for the phase diagram of the system, while the robust-
ness of the results against the asymmetry effects is discussed
in Ref. [36].

We analyze the system using the full density matrix
approach to NRG [37,38], which allows for the precise cal-
culation of thermal expectation values and determination of
retarded Green’s functions 〈〈· · · 〉〉ret directly in their Lehmann
representation. We use the open-access code [23] as a ba-
sis for our programs, with discretization parameter � = 2.5
and energy cutoff at each iteration 6 < Ecut < 6.5; see also
Ref. [36]. The different phases of the system are characterized
by the normalized local spectral density of impurity electrons,
AT (ω) = −Γ Im〈〈dασ ; d†

ασ 〉〉ret (ω), and of conduction elec-
trons at the impurity site, BT (ω) = −2D Im〈〈cασ ; c†

ασ 〉〉ret (ω).
Equivalently, we will also use the corresponding T -dependent
differential conductances, G(T ) = − ∫

dω f ′(ω)AT (ω) and
g(T ) = − ∫

dω f ′(ω)BT (ω), where f ′(ω) is the ω derivative
of the Fermi-Dirac distribution function. We define the single-
impurity Kondo scale T 0

K as that temperature where G(T )
reaches 1/2 of its maximum fixed-point value G0 during the
NRG flow (see also below).

Kondo versus Heisenberg quasiparticles. In order to illus-
trate the competition between Kondo and intraband screening
we first recollect two limiting cases of Eq. (1) separately.

(1) JK > 0, JY = 0: The single-impurity spin-1/2 Kondo or
Anderson model is well understood [9,10,21]. The local spin
exchange JK between impurity and host induces the Kondo
effect, i.e., the formation of a spatially extended, many-body
spin-singlet state comprising the impurity spin and a multitude
of conduction electron states for T < T 0

K , the Kondo screening
cloud [39,40]. This happens for arbitrarily small JK > 0, since
JK is subjected to the renormalization group flow toward the
strong-coupling fixed point [21]. This ground state is a Fermi
liquid, and its excitations are characterized by the Abrikosov-
Suhl resonance in the impurity spectral density of unit height,
A0(0) = 1, and width T 0

K , the effective bandwidth of the
Kondo quasiparticles (QPs). The conduction spectral density
at the impurity site B0(ω) is proportional to the inverse QP
lifetime and vanishes in a Fermi-liquid manner as ∼(ω/T 0

K )2.
(2) JK = 0, JY > 0: An analogous spin screening occurs

when two metallic leads are coupled to each other by a
Heisenberg interaction JY without impurities. This interlead
coupling leads to the destruction of free band electrons and
the formation of another Fermi-liquid phase, signaled by the
low-frequency vanishing of the spectral density at the coupled
sites as B0(ω) ∼ (ω/D)2. However, unlike in the Kondo case,
this happens only above a critical coupling strength, JY > J∗∗

Y ,
since JY is not renormalized to a strong-coupling fixed point
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FIG. 2. Phase diagrams of the PH-symmetric 2iA model with (a) direct interimpurity exchange JH and (b) conduction-host-mediated
RKKY interaction Y ≈ (ρJK )2JY /4. The black dots mark the QPT positions calculated by NRG, connected by lines for clarity. The dashed
lines represent JH = 1.5T 0

K and T 0
K = 1.5Y , respectively, as indicated. The insets illustrate the spatial structure of the spin correlations in the

different phases.

at low energies [35]. Our NRG calculations show that J∗∗
Y ≈

1.5D for metallic leads with rectangular, normalized density
of states of width 2D, ρ(ω) = 1/(2D). The spin correlations
induced by JY > J∗∗

Y in the hosts form a spatially extended
object of size ξH ≈ vF /JY (with vF the Fermi velocity), which
we call the Heisenberg cloud.

Direct Heisenberg exchange. For comparison below, we
now map out the phase diagram of the 2iA model with a di-
rect Heisenberg exchange. This amounts to replacing the last
term of the Hamiltonian (1) with the direct impurity coupling
term JH �S1 · �S2. As expected, we find for this PH-symmetric
Anderson model the same QPT between a Kondo singlet and
a dimer singlet phase as in the JV two-impurity Kondo model
[24–26]. It is marked by discontinuous jumps of the impurity
and host spectral densities AT =0(0), BT =0(0) from 1 to 0 and 0
to 1, respectively, from the Kondo screened phase to the dimer
phase. Thus, this constitutes a coupling-decoupling QPT in
the charge sector where the Kondo phase is governed by the
Kondo QPs described above and the dimer phase by free
Bloch electrons. Nevertheless, the impurity and conduction
spins remain correlated for all 0 < JH < ∞, and static corre-
lations 〈�S1 · �S2〉T =0 are continuous functions of JH through the
QPT [25]. In Fig. 2(a) we show the resulting phase diagram
in the JH-T 0

K plane near T = 0, where U = D/2 was used
throughout and T 0

K determined from the single-impurity NRG
flow for a given parameter set (U, Γ ) as described below. In
particular, we find the phase transition line as JH = 1.5T 0

K ,
with slight deviations for JH/D � 1, as compared to JH =
2.2T 0

K for the JV two-impurity Kondo model [25].
RKKY coupling and QSL. We now consider the full 2iA

model (1). As can be seen from the discussion of the Heisen-
berg cloud above, the interhost spin coupling JY destabilizes
not only the Kondo phase via the RKKY interaction (see
below), but also the (almost) free Bloch states in the host
towards an interhost spin-correlated phase, when the rele-
vant coupling exceeds the characteristic energy scale of the
destabilized phase, i.e., Y � T 0

K and JY � D, respectively.
We therefore extend our study to large JY of the order of the
conduction bandwidth D, using U = D/2 and Γ = 0.0488U
corresponding to T 0

K ≈ 10−4U , for the numerical evaluations.
The temperature dependence of the impurity conductance
G(T ) and of the host conductance at the impurity site g(T ),

each normalized to its unitary value, G0 and g0, is shown in
Figs. 3(a) and 3(b), respectively. It is seen that there exist three
stable, low-energy fixed points characterized by the T = 0
conductances as

(1) Kondo : G(0) = G0, g(0) = 0 (red curves),

(2) RKKY : G(0) = 0, g(0) = g0 (green curves),

(3) QSL : G(0) = fractional, g(0) = 0 (blue curves).

These are attained for different interhost coupling strengths
JY separated by QPTs at JY = J∗

Y (long-dashed curve) and
JY = J∗∗

Y (short-dashed curve) as shown in the figure. The
behaviors in phases (1) and (2) are as in the 2iA model with
direct Heisenberg exchange (see above). Phases (1) and (2)
are therefore identified with the well-known Kondo and the
RKKY (dimer) phases, respectively. The fixed point (3) is
strikingly different. First, the fractional value of the impurity
conductance G(0) in the most PH-symmetric case appears
rather unexpectedly. While for simple Fermi-liquid leads,
G(0) would be guaranteed to be either 0 or G0, the interaction
JY allows for a very different scenario with 0 < G(0) < G0.
With the host conductance g(T ) ∼ T 2, this can be understood
as a distribution of the scattering phase shift between the
impurity and the interacting part of the conduction band, or
fractionalization of the (Fermi-liquid) QPs into conduction
band and impurity components. Together with the nonlocal
spin correlations shown in Fig. 4 and discussed below, these
are the defining features of a QSL. The mechanism stabilizing
the two-impurity QSL, namely competition between Kondo
coupling and intraband spin exchange, does not rely on a
small number of impurities and will still be active in bulk
systems. Thus, we call phase (3) the two-impurity QSL state
or two-impurity analog of a QSL.

An important observation is that each of the G(T ) and
g(T ) curves in Figs. 3(a) and 3(b) is characterized by two
temperature scales, TKw(JY ) at which the system flows away
from the high-T free-local-moment fixed point, and a strong-
coupling scale on which the respective Kondo, RKKY, or
QSL strong-coupling fixed points are attained. From the NRG
flow, in the Kondo phase (JY < J∗

Y ) we define TKw(JY ) as
the temperature where GT (0) reaches 1/2 of its maximum
value G0, and TKs(JY ) as the temperature where it becomes
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FIG. 3. RG flow and crossover scales in the Kondo, RKKY, and QSL phases. (a) and (b) show the temperature-dependent impurity
conductance G(T ) and the host conductance at the site of the impurity g(T ), respectively. The crossover scales are identified as explained
in the text. The long (short) dashed lines were obtained for the quantum critical points at JY = J∗

Y (JY = J∗∗
Y ), respectively. (c) The crossover

scales TKw, TKs, TY , and TSL as a function of JY . The insets represent the zoomed-in shaded areas around the QPTs. All computations were done
for the parameter values U/D = 1/2, Γ/U = 0.0488, corresponding to T 0

K /U ≈ 10−4.

G(T ) > 0.9G0 [cf. Fig. 3(a)]. While for JY = 0, TKw(0)
coincides with the single-impurity Kondo scale T 0

K and is
proportional to the strong-coupling scale TKs(0), TKw(JY ) and
TKs(JY ) are in general independent, depending on two pa-
rameters T 0

K and JY . In the RKKY phase (J∗
Y < JY < J∗∗

Y ),

FIG. 4. Signatures of the QPTs in physical quantities, depending
on the RKKY coupling parameter JY at T = 0. (a) and (b) show the
normalized impurity and conduction spectral densities, A0(0) and
B0(0), respectively. The static spin correlations between the impurity
spins and between the conduction spins at the impurity site are shown
in (c) and (d).

and in the QSL phase (JY > J∗∗
Y ), the respective strong-

coupling scales TY and TSL are defined as the temperature
where g(T )/g0 = 0.9 and g(T )/g0 = 0.1 [cf. Fig. 3(b)]. The
dependence of the crossover scales on the RKKY parameter
JY is shown in Fig. 3(c). We note that all strong-coupling
scales vanish quadratically at the respective quantum critical
points; see the insets of Fig. 3(c). However, the weak-coupling
Kondo scale TKw remains finite with a suppression factor of
TKw(J∗

Y )/T 0
K ≈ 1/e (with e ≈ 2.718 the Euler’s constant), and

ceases to exist beyond J∗
Y , in agreement with the analytic result

of Ref. [35].
The dependence of physical quantities on the RKKY

parameter JY are shown in Fig. 4 for fixed T 0
K . For suffi-

ciently low T 0
K , the quasiparticle spectral densities A0(0) =

G(0) and B0(0) = g(0) exhibit discontinuous jumps signal-
ing the two phase transitions at J∗

Y and J∗∗
Y , respectively.

In the QSL phase (JY > J∗∗
Y ), A0(0) has fractional values

which decay to zero into the QSL phase. This signals in-
complete (and deep in the QSL phase vanishing) Kondo
screening of the impurity spins. The static impurity-spin
correlations [Fig. 4(c)] behave continuously at the Kondo-to-
RKKY transition, as expected from a JV-like QPT, but exhibit
a sharp cusp at the RKKY-to-QSL QPT and approach the
singlet value of −3/4 deep in the QSL phase. By contrast,
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the conduction spin correlations [Fig. 4(d)] show no indica-
tion of singular behavior. The fact that anomalous behavior
appears only in the impurity (fractional charge excitations and
spin correlations) but not in the conduction electron sector,
gives rise to defining this phase as a two-impurity analog
of a quantum spin liquid. Above a critical value of T 0

K (i.e.,
for sufficiently strong Kondo coupling) all quantities behave
continuously, i.e., there exists no QPT (see curves for T 0

K ≈
10−2U in Fig. 4).

All these results can now be summarized in the com-
plete phase diagram of the RKKY 2iA model Eq. (1) shown
in Fig. 2(b). While the Kondo-to-RKKY QPT is essentially
identical to the one of the model with direct Heisenberg
exchange [Fig. 2(a)] with a critical line of Y ≈ 1.5T 0

K , the
RKKY-to-QSL line is independent of T 0

K and occurs at a
large coupling of JY ≈ 1.5D. This is expected, because the
couplings Y and JY destabilize the quasiparticles in the Kondo
and in the RKKY phases at their respective characteristic
energy scales, T 0

K and D. The independence of the RKKY-
to-QSL transition line of T 0

K implies that it must meet with
the Kondo-to-RKKY transition line. That is, the RKKY phase
must terminate at a critical value of T 0

K , as seen in Fig. 2(b),
and the zero-temperature QSL and Kondo phases are contin-
uously connected via a crossover at large T 0

K . Note that this is
in stark contrast to the case of a direct Heisenberg interaction
between the impurities [Fig. 2(a)], where the QPT exists for
all values of T 0

K .
Conclusion and experimental realization. We report the de-

tection of a new, stable fixed point, exhibiting quantum spin-
liquid features in a model of two magnetic ions coupled to a

metallic electron system with additional spin coupling within
the conduction band. This phase is characterized by nonlocal
spin entanglement and fractionalized charge excitations on the
magnetic ions, an analog of spin liquids in lattice systems.
This quantum spin liquid is stabilized by a dynamical frus-
tration effect, i.e., the interplay of Kondo spin screening and
strong conduction-electron spin correlations with a correlation
energy of the order of the conduction bandwidth. Geometrical
frustration is not required, but may enhance the effect, in
particular, reduce the critical intraband correlation strength
for the formation of the spin-liquid phase. In heavy-fermion
compounds or Anderson lattice systems, such correlations
may be achieved near a magnetic, e.g., spin-density-wave
instability within the conduction electron system. This phase
may also be realized experimentally in two-impurity sys-
tems with a low conduction bandwidth, such as magic-angle
bilayer graphene [41], with magnetic coupling between the
layers.

Acknowledgments. Stimulating discussions with Frithjof
Anders, Fabian Eickhoff, Andreas Gleis, Mohsen Hafez-
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