
PHYSICAL REVIEW B 107, L121106 (2023)
Letter

First-order topological phase transitions and disorder-induced Majorana
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Using a combination of the mean-field Bogoliubov–de Gennes approach and the density matrix renormal-
ization group method, we discover first-order topological transitions between topological superconducting and
trivial insulating phases in a sawtooth lattice of intersite attractive fermions. The topological characterization
of different phases is achieved in terms of winding numbers, Majorana edge modes, and entanglement spectra.
By studying the effect of disorder on first-order topological phase transitions, we establish disorder-induced
topological phase coexistence as a mechanism for generating a finite density of Majorana particles.
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Introduction. The discovery of topological insulators
marked the beginning of a paradigm shift in our approach
to understanding ordering phenomena in condensed matter
physics [1–6]. Since then, topological phases have become
a recurring theme of research in many fields of quantum as
well as classical physics [7–13]. The search for new topolog-
ical phases is driven not merely by our curiosity to achieve
a fundamental understanding but also by the potential for
their applications. Topological superconductors are of partic-
ular importance as these can host Majorana particles that are
considered to be the building blocks of quantum computers
[14–19]. Topological phases and phase transitions in nonin-
teracting models can be comprehensively understood in terms
of the symmetries of the Hamiltonian [20–23]. On the other
hand, a general understanding of topological phases in inter-
acting systems is a challenging theoretical problem [24–28].

Phase separation (PS) is a ubiquitous phenomenon dis-
played by electronic systems [29–31]. While the inability of
an electronic system to exist in a uniform density state appears
to be an undesirable feature, PS has proven to be of critical
importance in understanding certain aspects of the physics of
strongly correlated electron systems [32,33]. Invoking elec-
tronic PS is for instance essential for theories of the colossal
magnetoresistance effect in manganites [34]. Also, some of
the theories applicable in the low-doping regime of the famous
cuprate superconductors rely on electronic PS [35–37]. To
the best of our knowledge, discussions of the electronic PS
between a topological and a trivial phase—henceforth referred
to as topological PS (TPS)—are lacking in the literature. TPS
has general implications that are independent of the detailed
parameter choices of the model.

In this Letter, we report the discovery of first-order topo-
logical phase transitions in a lattice model of attractively
interacting spinless fermions. Using a combination of den-
sity matrix renormalization group (DMRG) and mean-field
Bogoliubov–de Gennes (BdG) methods, we find that the

model hosts topological superconductor (TSC) and charge-
modulated insulator (CMI) phases. Some of the topological
and trivial phases are separated by first-order boundaries,
leading to TPS. We characterize the topological phases with
the help of winding numbers, edge modes, and entanglement
spectra. We explicitly demonstrate that in the presence of
quenched disorder the TPS leads to a phase coexistence with
Majorana modes residing at the boundaries of TSC regions.
The TPS-based mechanism for generating a finite density
of Majorana modes is qualitatively different from known
mechanisms [38–41], and is generic as it is applicable to all
discontinuous topological phase transitions.

Spinless fermions on sawtooth lattice. Let us consider
spinless fermions with attractive interactions residing on a
sawtooth lattice described by the Hamiltonian,

H = −t
∑

i

(c†
i,Aci+1,A + H.c.) − t ′ ∑

i

(c†
i,Aci,B + H.c.)

− t ′ ∑
i

(c†
i,Bci+1,A + H.c.) − V

∑
i

n̂i,An̂i+1,A

−V ′ ∑
i

(n̂i,An̂i,B + n̂i,Bn̂i+1,A) − μ
∑

i,s

n̂i,s. (1)

Here, ci,s (c†
i,s) annihilates (creates) an electron at the Bravais

site i and sublattice s ∈ {A, B}, and n̂i,s is the corresponding
number operator. Hopping amplitudes are denoted by t and
t ′, and the corresponding attractive interaction strengths by V
and V ′ (see Fig. 1). We set t ′ = 1 as the basic energy scale, and
μ denotes the chemical potential. Note that this elementary in-
teracting model Hamiltonian reduces to a monoatomic Kitaev
chain supporting p-wave superconductivity for t = V = 0,
and the noninteracting limit displays a flat-band dispersion for
t ′/t = √

2.
Mean-field phase diagram. In order to obtain the mean-

field ground states of the Hamiltonian Eq. (1), we decouple
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FIG. 1. Schematic representation of the sawtooth lattice model.
t, t ′ indicate the hopping amplitudes and V,V ′ the attractive interac-
tions between electrons on neighboring sites. Inequivalent sites are
labeled A and B.

the interaction term in pairing and density channels [42–45].
This leads to the effective noninteracting Hamiltonian,

H = 1

2

∑
k

�
†
k Hk�k, (2)

with

�k = [c†
k,A c†

k,B c−k,A c−k,B]†, Hk =
[
βk αk

α
†
k −βT

−k

]
,

βk =
[−μ̃A − 2t cos k −t ′(1 + e−ik )

−t ′(1 + eik ) −μ̃B

]
,

αk =
[−2iV �1 sin k −V ′�2(1 − e−ik )
V ′�2(1 − eik ) 0

]
, (3)

μ̃A = μ + 2nAV + 2nBV ′, and μ̃B = μ + 2nAV ′. The
mean-field parameters nA/B = 〈n̂i,A/B〉, �1 = 〈ci+1,Aci,A〉, and

�2 = 〈ci+1,Aci,B〉 = 〈ci,Bci,A〉 are self-consistently determined
[42]. Figures 2(a)–2(d) display the variation of different
mean-field parameters with chemical potential. The density
per site, n = (nA + nB)/2, varies from 0 to 1, with the
end points representing trivial band insulator (BI) phases
corresponding to empty or fully filled bands. The pair
expectation values �1 and �2 are found to be finite at all
nontrivial densities except when there is a plateau at n = 0.5
[see Figs. 2(a), 2(c) and 2(d)]. The difference in average
densities at two sublattices, δn = nB − nA, remains finite in
the entire region. The finite δn is related to the inequivalence
of the two sublattices in the noninteracting tight-binding
model. Finite values of �1 and �2 identify a superconducting
state, within the mean-field description. The n = 0.5 plateau
regions are characterized by a gap in the single-particle
density of states (DOS), together with vanishing pairing
amplitudes and finite δn. Therefore, we label these states
as charge-modulated insulators (CMIs). We summarize the
variations of the mean-field parameters obtained for different
values of t in terms of a ground state phase diagram in
Fig. 2(e). The topological superconductor (TSC) phases are
further labeled as w = ±1, where w denotes the winding
number. Note that the total density displays discontinuities
as a function of μ. This is a direct indicator of a first-order
phase transition and associated electronic PS in the model.
The discontinuities are also present in other mean-field

FIG. 2. (a)–(d) Zero-temperature variations of �1, �2, δn, and n with chemical potential for V = V ′ = 1 and for (a) t = 0.2, (b) t = 0.4,
(c) t = 1.0, (d) t = 2.0. (e) Ground state phase diagram in the t-μ plane constructed from the data similar to that shown in (a)–(d). (f) Same as
(e), for V = 3 and V ′ = 1. Horizontal dashed lines in (e) indicate the scans for which the data in (a)–(d) are displayed. Dashed lines at t = 2
in (e) and at t = 1 in (f) also represent the scans for which the DMRG results of Fig. 3 are obtained. (g) Spectral gap, charge modulation, and
winding numbers as a function of μ for t ′ = V = V ′ = 1 and t = 0.2.
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parameters. While most of the discontinuities seem to involve
the trivial BI as one of the states, we also find a robust jump
in n(μ) between the TSC and CMI [see Fig. 2(d)]. The PS
locations in μ become extended lines in the phase diagram
and are indicated with thick black lines in Fig. 2(e). We
perform similar calculations for V ′ = 1 and V = 3 and the
resulting phase diagram is displayed in Fig. 2(f). The CMI
phase occupies a larger region in the phase space and the
w = +1 TSC is absent. The phase diagram for small V is
displayed in the Supplemental Material [42].

Topological characterization. Given that we are dealing
with a one-dimensional system, the winding number turns out
to be the most natural choice of the invariant that characterizes
topologically distinct phases. Using the standard approach to
unitarily transform the Hamiltonian into an off-diagonal form
[46], we find

UHkU
−1 =

[
0 βk + αk

(βk + αk )† 0

]
. (4)

The winding number is then defined as [46]

w = 1

2π i

∫
dk

1

det[βk + αk]

d

dk
det[βk + αk]. (5)

|w| counts how many times det[βk + αk] winds around the
origin. We find that w takes values 0,±1 for the Hamilto-
nian, where w = 0 corresponds to topologically trivial phases
and a nonzero winding number corresponds to topologically
nontrivial phases. Phases with nonzero w are labeled as TSC
in the phase diagrams. A representative plot displaying the
variation of w with μ is shown in Fig. 2(g). We find that the
sign of w is perfectly correlated with the sign of δn, and has
an interesting interpretation in terms of the SO(3) theory of
intertwined charge and superconducting orders [42,47].

We also compute the quasiparticle spectra for both open
as well as periodic boundary conditions. The open boundary
spectra display states at exactly zero energy over the μ range
corresponding to the superconducting state [42]. We have
explicitly checked that these states are Majorana zero-energy
modes (MZMs) localized on the edges. In the corresponding
periodic boundary spectra, the naive expectation is that the
bulk gap must close at the transition point between topolog-
ically trivial and nontrivial phases. While the gap seems to
reduce, it does not close at the transition point [see Fig. 2(g)].
This seemingly unusual feature is easy to understand if we
note that a change in μ does not represent a continuous evolu-
tion of the effective noninteracting Hamiltonian in parameter
space. This is because the self-consistent values of various
mean fields are also parameters of the Hamiltonian which
change discontinuously across the transitions.

DMRG results. In order to check the stability of results
beyond the mean-field approximation, we perform DMRG
calculations for some typical parameter sets. First, the density-
density 〈n̂i,sn̂ j,s′ 〉-〈n̂i,s〉〈n̂ j,s′ 〉 and pair-pair 〈P†

ii′ss′Pj j′tt ′ 〉, where
Pi jss′ = c†

i,sc
†
j,s′ , correlation functions are calculated to obtain

the ground state phase diagram. The electronic state is char-
acterized by the dominant correlation function with a slower
decay as a function of distance. The inverse exponent of
the power-law decayed correlation functions (∝1/|i − j|γ ) is
plotted as a function of density per site in Figs. 3(a) and 3(b).
The resultant phase diagrams, as a function of μ, are also
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FIG. 3. (a) Inverse exponent of the density-density and pair-pair
correlation functions as well as the Tomonaga-Luttinger parameter
as a function of density per site for t = 2.0 and t ′ = V = V ′ =
1.0. The corresponding phase diagram is also shown on the top.
(b) Plot similar to (a) for t = t ′ = V ′ = 1.0 and V = 3.0. (c) Edge
component of the single-particle correlation function for t = 2.0,
t ′ = V = V ′ = 1.0 (red) and t = t ′ = V ′ = 1.0, V = 3.0 (blue) with
N = 201 open cluster. The open and solid circles denote the correla-
tions between edged A sites and between edged B sites, respectively.
(d) Entanglement spectra as a function of density per site for t = 2.0,
t ′ = V = V ′ = 1.0 with N = 60 periodic cluster.

shown. Note that the SC correlation function decays expo-
nentially in the charge density wave (CDW) phase [42,48].
The phase diagrams are further confirmed by the Tomonaga-
Luttinger parameter Kρ , which can be obtained accurately
via the derivative of the charge structure factor at q = 0
as Kρ = 1

2 limq→0〈n(q)n(−q)〉 with q = 2π/N and n(q) =∑
l (e

−iql c†
l,Acl,A + e−iq(l+1/2)c†

l,Bcl,B) [49]. The dominant SC
correlation is indicated when Kρ > 0.5. As seen in Fig. 3(a),
Kρ jumps from 0 to ∼1 at μ = −0.59. This clearly indicates
a first-order transition from CDW to topological SC phases at
μ = −0.59. It is also confirmed by the divergence of ∂n/∂μ

at μ = −0.59 [42].
Next, to test the topological nature of the SC phases,

the single-particle correlation function Gi j = i〈λi,sλ̄ j,s′ 〉,
where λi,s = ci,s + c†

i,s and λ̄i,s = (ci,s − c†
i,s)/i are Majorana

fermion operators, between two ends of open cluster is
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FIG. 4. �i,1 and zero-energy LDOS as a function of site index i for (a) D = 0.4, n = 0.46 and (b) D = 0.8, n = 0.435. The other parameter
values are V = 3, V ′ = 1, t = 1, μ = −2.93. Note that the �i,1 values are scaled up in order to emphasize correlations with the LDOS data.

calculated [50]. In Fig. 3(c) we find a significant enhancement
of Gi j in the SC phase around n = 0.8 for t = 2.0 and t ′ =
V = V ′ = 1.0. This indicates that the SC phase is topologi-
cally nontrivial. The topological nature is further confirmed
by the degeneracy of entanglement spectra (ES) ξn(X = Y )
using the Schmidt decomposition of the ground state |ψ〉
as |ψ〉 = ∑

λ e−ξλ(X )/2 |λ〉X |λ〉Y , where |λ〉X and |λ〉Y are the
orthonormal bases for the subregions X and Y , respectively
[42,51]. As seen in Fig. 3(d), the lowest level of ES is fourfold
degenerate. In a topological phase, the spectrum is expected to
be twofold degenerate if the system is cut through a bond [52].
In our system, this corresponds to the entanglement degener-
acy as a signature of the zero-energy Majorana edge states.
Since two bonds are cut in our calculations of ES because of
a periodic chain, the fourfold degeneracy is found in total.

Thus, two of the key features of the mean-field results,
the TSC phases and PS, are also confirmed by the DMRG
analysis. In contrast to the mean-field results, the DMRG
calculations also find a CDW phase and a trivial SC phase
[compare Figs. 3(a) and 3(b) with t = 1 scans in Figs. 2(e)
and 2(f)]. This may be because the instability to trivial PS, as
a particle condensation into a self-bound system of concen-
tration, is missing in the mean-field analysis. It is known that
the dominance of s-wave conventional SC appears near the
trivial PS [53]. Accordingly, a competition between TSC and
SC could occur in the DMRG calculations [42].

Topological phase coexistence and Majorana modes. Hav-
ing discussed the phase diagrams, the important features
associated with some of the phases, and their stability beyond
mean field, we now focus on the effect of quenched disorder
on TPS. We add an on-site disorder term,

∑
i εi(n̂i,A + n̂i,B),

to the Hamiltonian Eq. (1), where εi ∈ (−D/2, D/2) are ran-
dom variables drawn from a uniform distribution. Since the
translational invariance is lost in the presence of disorder, we
are forced to perform calculations in real space. The BdG
mean-field Hamiltonian in the presence of disorder can be
written as

H = 1
2�†

r Hr�r + E0, (6)

where the Nambu spinor �r contains 4N components ob-
tained by repeating the index i from 1 to N in

�r = [c†
i,A c†

i,B ci,A ci,B · · · ]†. (7)

Hr is a Hermitian 4N × 4N matrix with nonzero diagonal and
off-diagonal 4 × 4 blocks given by

hii =

⎡
⎢⎢⎣

εi − μ̃i,A −t ′ 0 −V ′�i,2

−t ′ εi − μ̃i,B V ′�i,2 0
0 V ′�∗

i,2 −(εi − μ̃i,A) t ′

−V ′�∗
i,2 0 t ′ −(εi − μ̃i,B)

⎤
⎥⎥⎦,

hi,i+1 =

⎡
⎢⎢⎣

−t 0 −V �i,1 0
−t ′ 0 −V ′�i,3 0

V �∗
i,1 0 t 0

V ′�∗
i,3 0 t ′ 0

⎤
⎥⎥⎦ = h∗

i+1,i, (8)

where μ̃i,A = μ + V (ni−1,A + ni+1,A) + V ′(ni−1,B + ni,B) and
μ̃i,B = μ + V ′(ni,A + ni+1,A). The above Hamiltonian is diag-
onalized via real-space Bogoliubov transformations [43–45],
and the site-dependent quantum expectation values of den-
sity and pairing operators are iteratively computed to obtain
self-consistent solutions. We demonstrate the key result by
selecting a range of μ values that cover the phase separation
between TSC and CMI for V = 3, V ′ = 1, and t = 1. We
display the spatial dependence of the pairing amplitude �i,1,
along with the local DOS at zero energy, in Fig. 4. Regions
with finite pairing amplitudes coexist with regions with zero
pairing amplitudes. The number of segments corresponding
to the two types of regions increase upon increasing disorder
strength [compare Figs. 4(a) and 4(b)]. Most importantly, we
find that at the edges of SC regions there exist sharp peaks in
the zero-energy local density of states (LDOS). These peaks
can only arise from the Majorana zero modes that reside on
the edges of all SC segments. It is also clear from the plots
that if the length of the SC segment is small, then the two
edge modes can hybridize. Our calculations explicitly show
that TPS provides an interesting route for generating a finite
density of Majorana zero modes. These findings are quali-
tatively validated by DMRG calculations in the presence of
disorder [42]. In fact, the CDW order is strongly suppressed
in the presence of disorder [42], and therefore the qualitative
agreement between the mean-field and DMRG results is fur-
ther enhanced.

Conclusion. By investigating a lattice model of attractively
interacting fermions, we have unveiled a mechanism for gen-
erating a finite density of Majorana particles. The existence of
a first-order phase transition and the associated TPS are the
key prerequisites for the realization of the proposed mecha-
nism. Within the TPS mechanism, the MZMs can be found
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throughout the system in contrast to the conventional mech-
anism that limits the existence of MZMs only to the edges.
Furthermore, given that the on-site potential can be controlled
via a suitable application of gate voltages, the MZMs can be
mobilized. Given that the implications of our study are gen-
eral, it is not necessary to have an exact realization of the toy
model studied here in order to implement the mechanism in
an experimental setup. Nevertheless, for a proof-of-principle
verification, the model is realizable in optically trapped ultra-
cold atomic gases [54–56]. Our results also provide a simple
understanding of why the conventional idea of a gap closing at
topological transitions cannot be generally applicable to inter-
acting systems. Indeed, such scenarios have been reported for

interacting quantum spin Hall insulators, in one-dimensional
systems and also in Weyl semimetals [57–60]. In general, our
study establishes that the interplay of interactions and topol-
ogy in many-particle quantum systems holds many, possibly
useful, surprises.
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