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Correlation energy of the paramagnetic electron gas at the thermodynamic limit
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The variational and diffusion quantum Monte Carlo methods are used to calculate the correlation energy of
the paramagnetic three-dimensional homogeneous electron gas at intermediate to high density. Ground-state
energies in finite cells are determined using Slater-Jastrow-backflow trial wave functions, and finite-size errors
are removed using twist-averaged boundary conditions and extrapolation of the energy per particle to the
thermodynamic limit of infinite system size. Our correlation energies in the thermodynamic limit are more
accurate than previous results. The present diffusion quantum Monte Carlo energies together with our recently
reported [Phys. Rev. B 105, 245135 (2022)] results at low density, are used to parametrize the correlation energy
of the electron gas using a functional form that satisfies the exact asymptotic behavior at high density.
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Introduction. The pairwise Coulomb repulsion between
electrons results in many-body correlations in electronic sys-
tems, such as the homogeneous electron gas (HEG) [1,2].
The so-called correlation energy is a negative correction to
the mean-field Hartree-Fock energy. Although the correlation
energy is usually only a small percentage of the total energy of
an electronic system, it is crucial for an accurate description
of chemical and electronic properties [3—5]. Unfortunately, it
is also the most complicated part of the energy to calculate
accurately.

The three-dimensional (3D) HEG plays a crucial role
in our understanding of the nature of electronic correlation
in real materials [6—8]. Moreover, the HEG is one of the
most important models for our understanding of bulk sys-
tems under extreme conditions, such as warm dense matter,
which is an exotic highly compressed state of matter that
exists between solid and plasma phases at high tempera-
tures [9—11]. The correlation energy of the 3D HEG as a
function of density [12—14] is a fundamental element in the
description of the electronic properties of real systems by
density functional theory (DFT) [15,16]. However, calcu-
lating the correlation energy accurately requires many-body
wave-function-based methods [17], such as quantum Monte
Carlo (QMC) techniques [18-25]. The variational (VMC)
and diffusion quantum Monte Carlo (DMC) methods [18,26]
are stochastic approaches for obtaining expectation values
of quantum operators. These techniques are especially effi-
cient for calculating the ground-state energies of interacting
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fermions. The main object is an approximate trial wave func-
tion, whose accuracy governs the final energy and intrinsic
statistical fluctuations in the simulations.

The DMC simulations of Ceperley and Alder [18] pre-
sented important data connecting the high- and low-density
regimes of the correlation energy of the 3D HEG. Their data
have been used in parametrizations of the correlation energy
over a wide density range and are frequently used in DFT
calculations. Well-known parametrizations that make use of
Ceperley and Alder’s results [18] were provided by Perdew
and Zunger (PZ81) [27], Vosko, Wilk, and Nusair (VWN80)
[28], and Perdew and Wang (PW92) [29], among others. The
PW92 functional includes five parameters, two determined
from analytic high-density constraints and three by fitting to
the QMC data. A density parameter interpolation (DPI) [12],
which was constructed by imposing four high-density and
three low-density constraints on a seven-parameter functional
form, provided a check based purely on the satisfaction of
the exact constraints. Spink et al. [23] performed QMC cal-
culations for spin-unpolarized and spin-polarized 3D HEGs
over the high- and intermediate-density ranges, which can be
regarded as the most accurate QMC data reported so far. In the
present Letter, we provide new QMC data for the correlation
energy of the paramagnetic (i.e., spin unpolarized) 3D HEG,
which are lower than previously reported results. We use
long-range backflow correlations to make fixed-node errors
more consistent between different cell sizes. Instead of using
the analytic finite-size corrections, we extrapolate our results
to infinite system size which provides more accurate results
at the thermodynamic limit [1]. QMC energies in finite simu-
lation cells obey the variational principle, and it is reasonable
to assume that the QMC energy per particle extrapolated to
infinite system size is also an upper bound on the true energy
per particle. Hence, the fact that our energies are lower than
previous works strongly suggests that our results are more
accurate.
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We have used the VMC and DMC methods to obtain
3D HEG correlation energies at different densities. In the
VMC method, parameters in a trial wave function are op-
timized according to the variational principle with energy
expectation values calculated by Monte Carlo integration in
the 3N-dimensional space of electron position vectors. In the
DMC method, the imaginary-time Schrodinger equation is
used to evolve a statistical ensemble of electronic configu-
rations towards the ground state. Fermionic antisymmetry is
maintained by the fixed-phase approximation in which the
complex phase of the wave function is constrained to equal
that of an approximate trial wave function optimized within
VMC.

The simplest fermionic wave function is a Slater determi-
nant, which describes exchange effects but not correlation.
Multideterminant wave functions and pairing (geminal) wave
functions [30] can also be used. The most efficient method
of going beyond the Slater wave function is to multiply it by a
Jastrow factor exp(J), resulting in a Slater-Jastrow wave func-
tion [20,21]. The Jastrow factor usually depends explicitly on
the distances between particles, introducing correlation into
the wave function. The Jastrow factor is positive everywhere
and symmetric with respect to the exchange of indistinguish-
able particles, so it does not change the nodal surface defined
by the rest of the wave function. By evaluating the orbitals in
the Slater determinant at quasiparticle coordinates X, which
are functions of all the electron positions, we introduce a back-
flow transformation [31,32], and the resulting wave function is
referred to as a Slater-Jastrow-backflow (SJB) wave function.

Trial wave function. We used a SJB trial spatial wave-
function U(R) = ¢/®S[X(R)] for all the systems we have
studied, where R = (ry, ..., ry) is the 3N-dimensional vector
of electron coordinates. The antisymmetric Slater part S is a
product of determinants of single-particle orbitals for spin-
up and spin-down electrons. The single-particle orbitals in
S are of the free-electron form vy (r) = exp(ik - r), where
wave-vector k is a reciprocal lattice vector of the simulation
cell offset by twist vector kg, where kg lies in the supercell
Brillouin zone. The Jastrow exponent, which is symmetric
under electron exchange, takes the form

J=U+P+H
= Zu(rij)+2p(rij)+ Z h(rj, rie, 1ij), - (D)
i<j i<j i<j<k
where
Ny
u(r) =Y _ayr'(r — L) O, — 1), )
=0

where r is the minimum-image distance between two elec-
trons, the cutoff length L, is less than or equal to the radius
of the largest sphere that can be inscribed in the Wigner-Seitz
cell of the simulation cell, C = 3 specifies how smooth the
function is at the cutoff length, ® is the Heaviside step func-
tion, and {¢;} are optimizable parameters, which differ for
parallel- and antiparallel-spin electrons. To satisfy the Kato
cusp conditions [33,34], we fix a; = I'/(—=L,)¢ + aoC/L,,
where I' = 1/2 for opposite-spin electrons and I" = 1/4 for
same-spin electrons. We chose N, = 8. The p term has the
symmetry of the simulation-cell Bravais lattice and allows a

description of correlation in the “corners” of the simulation
cell. Its form is

p(r)=> "ay Y cos(G-r), 3)

A GeAt

where A represents a star of symmetry-equivalent, nonzero,
simulation-cell reciprocal-lattice vectors G, and A™ is a subset
of A that consists of one out of each £G pair. The {a4}’s
are optimizable parameters. We used 46 stars of G vectors in
p. The Jastrow also includes symmetric three-electron terms
[35,36],

Ny Np Ny
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where L, is a cutoff length and c¢;,,,’s are linear parameters.
Constraints were placed on the linear parameters to ensure that
h is cuspless. We chose N;, = 4. Different 4 terms, meaning
different {c;,,,}’s, may be used for electron triplets involving
different combinations of spins. However, in this Letter, the
parameters in the three-electron Jastrow factors were con-
strained to be independent of spin.

Including a backflow transformation in the trial wave
function, the Slater part of the wave-function S is evaluated
at transformed quasiparticle coordinates X(R) = R + &(R),
where,

&R) = Z n(rijrij + Zﬂ(ri_;’) (5)
J# JF#

is the backflow displacement of electron i. n is a cuspless,
smoothly truncated, and isotropic polynomial function of
minimum-image electron-electron distance r;;. The polyno-
mial coefficients are optimizable parameters and are different
for parallel- and antiparallel-spin electrons [32]. The form
of n(r) is mathematically equivalent to that of the Jastrow
u(r) term [Eq. (2) with I' = 0 for same-spin electrons and
optimizable for opposite-spin electrons]. Typically, we used
N, = 8 in the polynomial expansions. The & term has the form
of the gradient of a Jastrow p term [Eq. (3)],

mr)=—-Y cu »_ sin(G-1)G, (6)

A GeAt

where the c4’s are optimizable parameters. As the gradient of
a scalar field, the & term is irrotational. We used 44 stars of G
vectors in x. The backflow parameters were allowed to depend
on the spins of the electron pairs.

The wave functions were optimized by variance mini-
mization [37,38] followed by energy minimization [39]. The
CASINO package was used for all our QMC calculations [40].

Finite-size effects. Monte Carlo-sampled canonical ensem-
ble twist-averaged (TA) boundary conditions were used to
reduce quasirandom single-particle finite-size errors in total
energies due to momentum quantization effects [41-45]. The
Hartree-Fock kinetic and exchange energies were used as
control variates to improve the precision of the twist-averaged
energy. Systematic finite-size errors due to the use of the
Ewald interaction rather than 1/r to evaluate the interaction
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TABLE I. TA VMC and DMC correlation energies for N = 54 system size obtained using different terms in the Jastrow exponent and
using both SJB and SJ wave functions. Where Jastrow terms are not specified, U, P, and H terms were used; where the backflow terms are not

specified,  and & terms were used.

Correlation energy (eV/elec.)

re =0.5 rs = 20
Wave fn VMC DMC VMC DMC
SI(U) —2.5112(3) —2.5684(4) —0.311717(2) —0.317465(4)
SI(U + H) —2.5161(3) —2.5680(5) —0.313798(3) —0.317469(5)
SJ —2.5381(3) —2.5685(4) —0.314464(3) —0.317492(5)
SIB(n) —2.6056(5) —2.6166(5) —0.319082(3) —0.320579(5)
SIB —2.6331(3) —2.6366(4) —0.319346(2) —0.320756(4)

between each electron and its exchange-correlation hole and
the incomplete description of long-range two-body correla-
tions were removed by fitting E(N) = E(co) + b/N to the TA
DMC energy per particle at different system sizes [46]. Unlike
the previous work of Spink et al. [23], we do not rely on
analytic finite-size correction formulas [43,46] but instead use
the analytic results to provide the exponents used in finite-size
extrapolation formulas. All our calculations were performed
using face-centered-cubic simulation cells, maximizing the
distance between each particle and its closest periodic image.

At very high density ry <« 1, systematic finite-size effects
are more challenging. In this regime, the QMC energy is close
to the Hartree-Fock energy, and, hence, the QMC energy per
particle initially shows the Hartree-Fock O(N~2/%) scaling
with system size [43] before eventually crossing over to the
asymptotic O(N ') scaling when the finite-size error becomes
small compared with the correlation energy.

Correlation energies. We studied the paramagnetic 3D
HEG at density parameters ry = 0.5, 0.75, 1, 2, 3, 4, 5, 7,
10, and 20. For each density, QMC calculations were per-
formed for simulation cells with N = 130, 226, and 338
electrons. Our DMC energies were extrapolated linearly to
zero time-step t with the target walker population being

VMC-SJB(n)
VMC-SJB

DMC-SJB(n)
DMC-SJB

(21 117

VMC-S)(U) DMC-S)(U)
VMC-SJ(U+H) DMC-SJ(U+H)
VMC-S) DMC-S)

0.00 ¢ Y
-0.02
-0.04
-0.06

—0.08

Corr. energy diff. (eV/el)

-0.10

|
o
=
N
L 4

1 2 3 4 5 6
Variance (a.u)

varied in inverse proportion to the time step [47]. The dif-
ference between the twist-averaged DMC energy at small
rs(i.e., rg < 1.0) obtained with a time-step T = 0.02;’52 and the
energy at zero time step is not statistically significant.
The same behavior was observed at large ry with 7 =
0.0172. The energies and variances calculated using SJB wave
functions for different system sizes are reported in the Sup-
plemental Material [47]. The correlation energy is defined as
the difference between the Hartree-Fock energy per electron
[which is Egg = 3(97 /4)*3/(10r2) — 3(97r /4)'/3 /(47 1) for
the paramagnetic HEG] and the exact ground-state energy per
electron where the latter is approximated by our SJIB-DMC
results extrapolated to the limit of infinite system size.

Table I summarizes the contribution of each term of the
trial wave function to the correlation energy per particle in a
simulation cell containing N = 54 electrons. We considered
two systems with rg = 0.5 and r; = 20. Figure 1 shows the
improvements in the VMC and DMC correlation energies
resulting from the inclusion of different terms in the Jastrow
and backflow functions.

Full configuration interaction quantum Monte Carlo
(FCIQMCO) calculations for N = 54 electrons in simple cubic
cells subject to periodic boundary conditions (PBC) find the

VMC-SJB(n)
VMC-SjB

0.000 ¢ 0 ¢
g ~0.001
3 —0.002 .
£ -0.0031 o¢
—0.004
-0.005
—0.006
—0.007
-0.008

DMC-SJB()
DMC-SJB

VMC-S)(U) DMC-S)(U)
VMC-SJ(U+H) DMC-S)(U+H)
VMC-5) DMC-5)

Corr. energy d

o rs=20.0

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Variance/10%(a.u)

FIG. 1. Twist-averaged VMC and DMC correlation energies at system size N = 54 as a function of variance, relative to the correlation
energy with a SJ wave function in which the Jastrow factor only contains the isotropic two-body term U. Results are shown at density

parameters r, = 0.5 (left panel) and 20 (right panel).
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TABLE II. TA VMC and DMC energies of the 3D HEG extrapolated to the thermodynamic limit from different system sizes (N = 130,
226, and 338), compared with the DMC results of Spink et al. [23], and Ceperley and Alder [18]. Our DMC energies have been extrapolated

to zero time step.

Total energy (Ha/elec.)

VMC DMC
T Present week Present week Spink et al. Ceperley and Alder
0.5 3.4255(1) 3.42541(8) 3.43011(4)
0.75 1.28625(5) 1.28620(5) ‘e ‘e
1.0 0.58643(4) 0.58640(2) 0.58780(1) 0.5870(5)
2.0 0.00195(2) 0.001917(9) 0.002380(5) 0.002050(2)
3.0 —0.06728(1) —0.067309(9) —0.067075(4) ‘e
4.0 —0.07767(1) —0.07771(1)
5.0 —0.07594(1) —0.07597(1) —0.075881(1) —0.07560(5)
7.0 —0.066304(5) —0.066348(2) e ‘e
10.0 —0.053503(2) —0.053527(5) —0.0535116(5) —0.0533750(2)
20.0 —0.031720(6) —0.031755(3) —0.0317686(5) —0.0316450(1)

ground-state energies of the 3D HEG at density parameters
rs = 0.5 and 1 to be 3.2202(2) and 0.5300(3) Ha/elec., re-
spectively [24]. Using the same simple cubic cell with the
same system size (N = 54) and PBC, our SJB-DMC total
energies for r¢ = 0.5 and 1 are 3.220 897(3) and 0.529 791(2)
Ha/elec., respectively. These DMC energies were obtained
using time steps of 0.005 and 0.01 a.u., respectively. Our
results indicate that the SJB-DMC and FCIQMC energies are
within errors of each other. Our Jastrow-Backflow functions
are available to be downloaded from Ref. [47]. According
to Spink et al. [23], the TA VMC energy of the spin-
unpolarized 3D HEG at ry = 0.5 at a system size of N = 118
is 3.413 78(2) Ha/elec. Our TA VMC simulation for the same
system size yields the energy as 3.412 460(4) Ha/elec., which
is ~ 36 meV/elec. lower because of the inclusion of the &
term in our Letter.

Our VMC and DMC energies extrapolated to the limit of
infinite system size are listed in Table II. To obtain the best
linear fit and reduce the noise in the energies as a function of
the number of particles N, a larger number of twists was used
for higher densities and smaller system sizes. The smallest and
largest numbers of twists were 120 and 10%, respectively. Our

results show an unexpected trend of decreasing VMC-DMC
difference with increasing system size. This trend can be made
plausible by an extreme example. If an uncorrelated Slater
determinant trial wave function was used then the VMC would
reduce to Hartree-Fock theory with an O(N~2/3) finite-size er-
ror in the energy per particle (see Table I of the Supplemental
Material [47]), whereas the fixed-node DMC energy would
include long-range two-body correlations and the finite-size
error would go as O(N~!). Hence, VMC and DMC energies
may behave very differently as functions of system size. Com-
paring our infinite-system VMC and DMC results with the
DMC energies of Spink et al. [23] demonstrates not only the
improvement of the trial wave function due to the inclusion of
long-range m backflow terms, but also the importance of re-
moving finite-size effects by extrapolation rather than relying
on analytic correction formulas.

Table III compares our VMC and DMC results for the
correlation energy with the PZ81 [27], VWNB8O0 [28], PW92
[29], and DPI [12] parametrizations, as well as the DMC data
of Spink et al. [23]. Our correlation energies are the lowest.
Even at the high density ry = 0.5 our DMC correlation energy
is lower than the DPI parametrization by —16 meV /elec.

TABLEIII. Correlation energies for the spin-unpolarized 3D HEG from the PZ81 [27], VWNSO0 [28], PW92 [29], and DPI [12] parameters,

DMC (Spink et al. [23]), and this Letter (VMC and DMC).

Correlation energy (eV/elec.)

r, PZ81 VWNS0 PW92 DPI DMC (Spink er al.) VMC DMC
0.5 ~2.069 ~2.097 ~2.085 ~2.108 ~1.996 ~2.121(3) —2.124(2)
0.75 . ~1.829(1) ~1.831(1)
1.0 ~1.623 ~1.633 ~1.627 ~1.637 ~1.605 —1.642(1) ~1.6432(5)
2.0 ~1.227 ~1219 ~1.218 ~1215 ~1.218 ~1.2301(5) ~1.2310(2)
3.0 ~1.013 ~1.004 ~1.005 ~0.996 ~1.010 ~1.0159(3) ~1.0166(2)
4.0 e - o - - ~0.8758(3) ~0.8769(3)
5.0 ~0.771 ~0.766 —0.768 ~0.755 ~0.774 ~0.7756(3) ~0.7764(3)
7.0 o . o - - ~0.6368(1) —0.6380(1)
10.0 ~0.505 ~0.485 ~0.505 ~0.495 ~0.510 ~0.5098(1) ~0.5105(2)
20.0 ~0.313 ~0.302 ~0.314 ~0.308 ~0.316 —0.3149(1) ~0.3159(1)
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Ceperley expression

Gell-Mann-Brueckner expression

— =60 T T T T T T T -
§—0.2 T . . T . T g " PZ81 —m
S-04 — ©50f PW92
.06} = E DPI —®
08} L S 40 VWN80
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r r f
S S s

FIG. 2. Correlation energy of the spin-unpolarized 3D HEG as a function of r,. (Left panel) The VMC and DMC correlation energies are
fitted to Eq. (7) and are compared with the PZ81 [27] parametrization. (Middle panel) VMC and DMC correlation energies at high density
(ry =0.5, 0.75, and 1) are fitted to Gell-Mann and Brueckner’s asymptotic formula. The fitting parameters are presented in the main text.
(Right panel) Difference between our DMC correlation energy (Present week-DMC) and the PZ81 [27], VWNSO0 [28], PW92 [29], and DPI

[12] DFT functionals.

Following Ceperley [21], we fit

Y
1+ Bi/7s + Bors’

to our SJB-DMC correlation energies (Fig. 2). The fitting
parameters y, B;, and B, are —0.151(5) Ha, 1.18(7), and
0.338(5), respectively. The x2 value of the fit is 307.48 per
degree of freedom. Equation (7) is accurate for large rg as
we have shown in our recent work on the low-density phase
diagram of the HEG where our DMC correlation energies for
30 < ry < 100 were fitted to Eq. (7) giving a x2 per degree
of freedom of 0.521 [1]. We found that the x2 per degree of
freedom becomes 0.698 by fitting DMC correlation energies
for 20 < ry < 100 to Eq. (7), and we found the fitting parame-
ters y, B1, and B, to be —0.1278(55) Ha/elec., 0.897(53), and
0.299(12), respectively.

According to the all-orders perturbation theory of Gell-
Mann and Brueckner [17] the correlation energy at high den-
sity is given by E.(rs) = A In(ry) + C + O[rg In(rg)], where
A= #[1 —In(2)] # 0.0311 Ha and C ~ —0.0465 Ha. The
appearance of powers of In(r) in this formula shows that the
correlation energy is a nonanalytic function of r; for ry — 0
and describes the failure of the naive perturbation approach.
The constant term C is the sum of the second-order Onsager’s
exchange integral and a numerical constant caused by the sum
over divergent contributions [48]. In practice, this asymptotic
formula is accurate only for very small ry; < 1. We fitted our
VMC and DMC correlation energies for r; = 0.5, 0.75, and
1 to the Gell-Mann-Brueckner expression (Fig. 2). The fitting
parameters are Ayyc = 0.0250(5) Ha, Cyye = —0.06030(2)
Ha, Apmc = 0.0250(5) Ha, and Cpyec = —0.06040(1) Ha.
The difference between the VMC and the DMC fitting param-
eters is small because the random errors due to twist averaging
at high density dominate. Figure 2 shows that at ry < 0.1 the
correlation energy predicted by the Gell-Mann-Brueckner for-
mula becomes smaller than VMC and DMC. One can include
an additional term in the Gell-Mann-Brueckner expansion and
write the high-density expansion of the correlation energy per
electron as

E.(rs) = A In(rs) + C + BrgIn(rg) + O(r),

E.(rs) = @)

®

where the exact value of the coefficient of rgln(r;) is B =
0.009229 21 [13]. We fitted our DMC correlation energies for

rs = 0.5, 0.75, 1.0, and 2.0 to the extended expansion, and we
found that the fitting parameters A, C, and B are 0.0275(4),
—0.06001(7), and —0.0031(2) Ha/elec., respectively, with a
%2 value of 3.525 79.

We fitted all our DMC correlation energies for 0.5 < rg <
100, which are reported in this Letter and in our recently
published paper [1], to Egs. (7) and (8), and we found the
x? per degree of freedom to be 54.3. We searched for the best
fit with the smallest x> value and discovered that by adding
ars 3% term to the sum of Egs. (7) and (8), the x? value
is reduced to 1.26. Hence, the DMC results indicate that the
correlation energy,

E.(rs) = A In(rg) + C + BrgIn(rs) +

R

L r
1 4 Bi/7s + Bars

can describe the correlation energy of the 3D paramagnetic
HEG within the density range 0.5 < ry < 100, which covers
the high-, middle-, and low-density regimes. The fitting pa-
rameters are listed in Table IV.

Conclusion. In conclusion, we have performed VMC and
DMC simulations using SJB trial wave functions to calculate
the correlation energy of the paramagnetic 3D HEG at high
and intermediate densities. We corrected finite-size errors by
twist averaging and extrapolation to the thermodynamic limit.
Our DMC energies obtained in this Letter together with our
previous low-density results reported in Ref. [1] have been
used to parametrize the correlation energy of the spin unpo-
larized 3D HEG at high, intermediate, and low densities.

€))

TABLE IV. Fitting parameters of Eq. (9) in Hartrees.

Fitting parameter Value Asymptotic standard error
A (Ha/elec.) 0.000435098 0.0001665

C (Ha/elec.) —0.00221852 0.0008169

B (Ha/elec.) —3.02312 x 1077 1.493 x 1077

D (Ha/elec.) —0.0134875 0.0006189

y (Ha/elec.) —0.077337 0.004517

B 0.470881 0.05071

B2 0.262613 0.004956
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