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Superconductivity in LigAu electride
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Located at crystal voids, interstitial anion electrons (IAEs) have diverse topologies, which may be tuned to
achieve different properties. Elucidating the role of IAEs in electron-phonon coupling (EPC), and using it to
design electride superconductors, leads to the current prediction of superconducting LigAu at high pressure. We
suggest that the occurence of high-temperature superconductivity in electrides requires high-symmetry structures
with hydrogenlike cages, an electron acceptor element to balance charges, and isolated IAEs coupled with
medium-frequency vibrations. The uniquely designed LigAu electride has a NaCl-type (B1) lattice, with atomic
Au and cubic Lig cages as bases. [solated IAEs are formed at the cage centers, with extra charges taken up by
Au. These octahedrally coordinated IAEs have a p-orbital-like attribute and are strongly coupled with atomic
vibrations in the Lig cages. The strong EPC in LigAu results in a calculated 7, of 73.1 K at 250 GPa, which is the
highest T reported to date for all the electrides. A slight substitutional Pt doping can enhance the T, of LigAu to

exceed liquid nitrogen temperature.
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The search for new superconductors is of great inter-
est in condensed matter physics. Over the years, several
types of BCS superconductors have been discovered, from
earlier A15-type Nb3;Ge [1], layer-type MgB, [2], to re-
cent perovskite-type H3S [3], and sodalite-type LaH;, [4,5].
The discovered T, in BCS superconductors grows continu-
ously from the previously thought upper limit around 40 K
(“McMillan limit”) to above 260 K in recently discovered
hydrides [5,6]. Interestingly, high-7;. hydrides tend to have
high symmetry structures, which has played a guiding role in
the search for new superconductors [7,8].

The co-occurrence of superconducting and electride states
is less explored. In electrides, a fraction of electrons break
away from atoms to reside in the interstitial voids, behaving
like nucleus-free anions [interstitial anion electrons (IAEs)]
[9], which can be tuned in magnitude and topology [10—12] to
achieve new properties. Alkali metals become electrides under
high pressure [13,14] and exhibit moderate superconductivity
(T. < 20 K) [15,16]. Incorporating nonmetal elements into
the electrides can modulate the IAEs and enhance supercon-
ductivity. For example, LisC [17], LisN [18], and LigP [19]
present interconnected IAEs which enhance the T, to 48.3,
48.97, and 39.3 K, respectively.
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High-T; hydrides tend to favor high-symmetry configura-
tions of hydrogen (H), e.g., Hg [20], Hy4 [21], and H3; [22]
cages. One approach to turn these cages into high-symmetry
electrides is to replace H by elements with same valence
configuration but more electropositive [23,24]. Lithium (Li) is
an obvious option, since it behaves like H at high pressure and
maintains electride states that favor superconductivity (Fig. 1)
[15,25]. In addition, Li has the ability to form clusters of var-
ious stoichiometries (“‘superatoms’”) when alloyed with some
transition metals [26]. The formation of electrides generally
requires that Li has a higher stoichiometric ratio than the
other metal [27]. Therefore, the stabilization of high symme-
try electrides of Li requires selecting an electron acceptor to
satisfy geometry and charge balance. Among the elements,
gold (Au) stands out due to its unique chemical attributes and
the ability to present high oxidation states at high pressure
(Fig. 1) [28-30]. As a host, Au also presents a possibility of
stabilizing Li-Au electrides [31].

In this Letter, we report a LigAu electride with good super-
conducvitiy. The structure was inspired by previously reported
LizAu, in which Au and edge shared bcc Liz occupy two fcc
sites in a NaCl lattice [Fig. 2(b)]. In LigAu, we kept the NaCl
motif, but replaced the Lis with cubic Lig cages, isostructural
to the Hg cages [20,32-34]. TAEs are formed at the centers
of the Lig cages, and arranged in another fcc sublattice. The
strong electron-phonon coupling (EPC) in LigAu induces a
high T, of ~ 73.1 K at 250 GPa, much higher than in previ-
ously reported electrides.
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FIG. 1. Schematic illustration of the design strategy for super-
conducting electrides consisting of Li and Au. The special features
of Li and Au that occur under high pressure are highlighted in yellow
and blue, respectively.

Hydrogen cages are important intermediate structures
between molecular H, and atomic H, which, after being pre-
compressed by metal atoms, contribute enormously to the
EPC. Simple-cubic (sc) Hg is a common H cage [20,22]
observed in hydrides [Fig. 2(a)]. Considering the similarity
between Li and H, the formation of a cubic Lig cage should
be possible, but it would require weaker bonds, which means
that some valence electrons need to be removed from the cage.
The cubic voids naturally accommodate the extra electrons,
forming TAEs [Fig. 2(a)]. It should be noted that the crys-
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talline counterpart of simple cubic is dynamically unstable,
and even less so at high pressures when Li departs from
nearly free electron behavior (Fig. S1 of the Supplemental
Material [35]). At high pressure, the reduced interstitial sites
in crystalline simple cubic could not store sufficient IAEs
required to stabilize the structure, and therefore elemental Li
must adopt other structures [15]. Au is a suitable candidate
for an additional “electron reservoir” in the crystal due to
its exceptional charge adjustability, which can act as both an
electron donor and an acceptor [28,31]. Furthermore, the fcc
sublattice of Au is robust to neighboring superatoms (Fig. S2
[35]), ideal for hosting sc Lig in the crystal.

We replace the edge-sharing bec units in LisAu with IAEs-
centered Lig units. This results in a stoichiometric LigAu
within the same Fm-3m space group [Fig. 2(c)]. The IAE
has a smaller volume than Li atom (Table S1 [35]), which
means that at high pressure the IAE-centered cubic unit is
energetically more favorable than its atom-centered counter-
part. Indeed, the convex hull of the Li-Au phase diagram
indicates that LigAu will replace LizAu to become thermo-
dynamically stable at high pressure (above 177.3 GPa) (Fig.
S3). Furthermore, F'm-3m LigAu becomes dynamically stable
in the pressure range 120-300 GPa (Fig. S4) as confirmed by
phonon calculations. All computational details can be found
in the Supplemental Material [35].

The stability of LigAu is enhanced by charge-transfer-
induced ionic interaction. The Lig cage loses a total charge
of 5.24¢™ to the surroundings. The two electron acceptors,
the TAE and Au atom, gain 0.74e~ and 4.50e¢~ [Fig. 2(c)],
respectively. Thus, the IAE-centered Lig is positively charged,
behaving as a superatomic cation. The electrons transferred
to the Au atom must populate its 6p orbitals (details below),
which causes the expansion of its atomic radius, allowing a
larger space to accommodate IAE-centered Lig. In addition,
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FIG. 2. (a) Cubic Li electride superatom analogous to the Hg cage in UHg. (b) The NaCl lattice in Liz Au consisting of Li; and Au bases.
(c) Crystal structure of Fm-3m LigAu. The IAEs are shown by yellow spots. Numbers below identities are the calculated Bader charges of

their constitutional units at 200 GPa (+/—

indicates electronic loss/gain).
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FIG. 3. (a) Orbital-projected electronic bands and density of states (DOS). (b) Fermi surfaces corresponding to the three bands crossing
the Ef, color coded by the Fermi velocity. (c) The nesting function & (Q) along high-symmetry paths. (d) Calculated A, wog, and 7. of LigAu
at different pressures. (e) Phonon dispersion relations, projected phonon density of states (PHDOS), Eliashberg spectral function o> F (w), and
frequency-dependent EPC parameter A(w). The size of solid dots on the phonon spectra signifies the contribution to the EPC (4,,). (f) The
evolution of A, i, and T, of Pt-doped LigAu with increasing Pt content at 250 GPa. (g) Derivatives of LigAu substituting Li or Au with their
neighboring elements. Dynamically unstable structures are marked in black and stable ones in color. The values represent the calculated Bader

charges of IAEs (purple) and En atoms (black) at 200 GPa.

the Li-Li bond interaction in IAE-centered Lig (Fig. S5), in-
duced by electron transfer, also contributes to the stability of
LigAu.

LigAu presents regular IAEs in a high-symmetry metallic
structure. The electronic band structure shows three bands
crossing the Fermi level (Er), mainly contributed by Li 2p,
Au 6p, and IAEs [Fig. 3(a)]. These bands feature a simul-
taneous occurrence of flat bands (W-L, X-W-K paths) and
steep bands (W-L-I"-X paths). The three corresponding Fermi
surfaces (FSs) are shown in Fig. 3(b). Both FSs 1 and 2 are
derived mainly from a mixture of Li 2p and Au 6p states,
while FS 3 is primarily from the hybridized states of Li 2p
and TAEs, and hybridized states of Li 2p and Au 6p. This
indicates that Li 2p acts as a common channel interacting with

all other states. Based on the orbital hybridization, the IAE’s
octahedral topology, and the orbital symmetry matching rule,
we infer that IAEs in LigAu show a p-orbital-like attribute
(Fig. S6). The maximum Fermi velocity is concentrated at
two centrosymmetric points on the FS 2, whereas the medium
and low Fermi velocities have a symmetrical distribution on
all three FSs [Fig. 3(b)], indicating strong FS nesting [54].
The nesting function £(Q) shows that a considerable region
of the FS is nested by I'-X-W-K vectors [Fig. 3(c)] [55].
Moreover, a sharp van Hove singularity (VHS) occurs at
—1.09 eV below the Er (Fig. S7), similar to H3S [56,57]
and LaH;( [58]. These electronic structures have been shown
to be favorable for the formation of stable Cooper pairs
[17,59].
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The superconductivity of LigAu is evaluated via EPC cal-
culations and the Allen-Dynes modified McMillan formula
[60,61]. As shown in Fig. 3(d), the EPC constant A increases
notably between 150 and 270 GPa, mainly due to the softening
of acoustic branches around the L point and the low-energy
optical branches around L and the I'-X path [Figs. 3(e) and
S8]. However, the phonon frequency logarithmic average wiog
decreases with pressure. The two competing mechanisms
result in a 7, peaking at 250 GPa. Using a Coulomb pseu-
dopotential of u* = 0.1, the calculated 7, at 250 GPa is 68.5
K [Fig. 3(d) and Table S2], and considering its semiempirical
character [62], the estimate of 7. when ©* is in the range 0.08—
0.13 goes between 73.1 and 62.2 K (Fig. S9). With inclusion
of spin-orbital coupling, the 7, of LigAu is calculated to be
66.3 K with pu* = 0.1 (Fig. S10). All these T, values exceed
the highest T, reported to date for electrides [48.3 K for LisC
[17], 48.97 K for LisN [18] and others (Fig. S11)], as well as
higher than the 7, of Au compounds [~ 30 K for Ba(AuH;),
[63]]. Moreover, LigAu is predicted to be a single-gap super-
conductor, corresponding to a T, of 81.8 K (Fig. S12) based
on electron-phonon Wannier calculations [64]. Given a sharp
DOS peak (VHS) below the Er in LigAu, replacing a small
amount of Au with Pt, acting as a hole donor, might boost Ng,
to yield higher 7. Using virtual crystal approximation [65], an
optimal T, value of 78.3 K (with u* = 0.1) is achieved at Pt
doping close to 0.5% [Figs. 3(f) and S13-S15]. For supercon-
ductors with light mass elements such as hydrides, the nuclear
quantum effect (NQE) may have effects on the 7, [66—68].
However, the NQE has been shown to have neglectable effects
on superconducting Li [69] and is therefore not included in the
superconductivity study of LigAu.

The PHDOS and Eliashberg spectral function a>F (w) can
be divided into three regions: the low-frequency region (below
7 THz) dominated by the Au atom, the Lig cage-derived
intermediate-frequency region (7-20 THz), and the high-
frequency (above 20 THz) region [Fig. 3(e)], which make the
contribution of 35.0%, 50.8%, and 14.2% total A, respectively.
The strongest local EPC is from two softened acoustic modes
around the L point [Fig. 3(e)], i.e., the twofold degenerate
E-1 and E-2 modes. These modes represent stretching vibra-
tions of pairs of Li atoms across the body diagonal in the
Lig cage, which favors a strong extrusion interaction with
IAEs (Fig. S16). Meanwhile, the Au atom also participates
in the vibrations, exhibiting a low-frequency feature. These
two modes induce a shift in energy around the L point, and
a removal of degeneracy around the I" point (Fig. S17). The
mechanism by which the E-1 and E-2 modes promote the
EPC is similar to that of the E,; mode in MgB, [70]. In the

intermediate-frequency region, the three modes (71, 7»,, and
soft E-3) associated with twisting vibrations of the Lig cage
(Fig. S18) induce a minor shift of the flat bands along the
W-L and X-W-K paths (Fig. S19). Therefore, the Lig cage
and TAEs dominate superconductivity in LigAu.

Finally, we explore the key factors for stabilizing this elec-
tride using elemental substitutions for Li and Au [Fig. 3(g)].
For clarity, the electropositive atoms (replacing Li) are de-
noted by Ep, and the electronegative ones (replacing Au) are
En. It turns out that no EpgAu, apart from LigAu, is dynam-
ically stable [Figs. S20 and S21 and Fig. 3(g)]. LigEn, on
the other hand, has several dynamical stable structures, e.g.,
LigAg, LigZn, LigCd, and LigHg, which shows robustness
to electronegative replacement [Fig. 3(g) and Figs. S22 and
S23]. Interestingly, LigAg is metallic (Figs. S24 and S25),
while LigZn, LigCd, and LigHg are all semiconducting (Fig.
S26). This suggests that electronic properties in the double-fcc
electride can be further tuned through isotypic replacement or
doping.

In summary, we have designed an electride material,
LigAu, consisting of a double fcc lattice with atomic Au and
cubic Lig cages as bases. The IAEs are located at the cage
centers, forming octahedronlike TAEs with a p-orbital-type
attribute. This topology of the IAEs induces strong coupling to
the vibration of Lig cages, and enhances the phonon mediated
superconductivity. LigAu is calculated to have the highest su-
perconducting 7. among all reported electrides to date. More-
over, the T, of LigAu can be further increased by substitutional
Pt doping. Our work serves as a guide to design superconduct-
ing electrides with high-symmetry building blocks.
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